
SPARTAN: An Improved Global Pseudospectral
Algorithm for High-fidelity Entry-Descent-Landing Guidance Analysis

By Laurens HUNEKER1), Marco SAGLIANO2) and Yunus ARSLANTAS2)

1)Astrodynamics and Space Missions Department, Technical University Delft, Delft, The Netherlands
2)Guidance, Navigation and Control Department, German Aerospace Center (DLR), Bremen, Germany

Usage of numerical optimization for generation and analysis of optimal trajectories has rapidly increased over the years. The

approach presented here allows for the generation of numerical guidance schemes, which are not possible with analytical methods.

SPARTAN (Shefex-3 Pseudospectral Algorithm for Re-entry Trajectory Analysis) is a tool based on the use of the global Pseudospec-

tral methods for the transcription of optimal control problems. This method has several advantages. It removes the Runge phenomenon

and it has an exponential convergence to the corresponding Optimal Control Problem (OCP) that can be numerically validated when it

is applied to smooth problems. The initial infinite dimensional OCP is transcribed into a Non-Linear Programming (NLP) problem by

a proper collocation of the differential equations and the constraints for the related problem. The resulting NLP can then be solved by

off-the-shelf solvers. Two realistic example problems are given to demonstrate the performance of SPARTAN, and optimal trajectories

were generated for both problems.
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Nomenclature

a : Constraints

b : Stepsize

c : crossrange

d : Downrange

D : Drag

g : Gravity

h : Height

k : Material heating coefficient

J : Cost function

K : Lagrangian

L : Lift

m : Mass

M : Mach number

n : Load factor

P : Legendre polynomial

q : Dynamic pressure

Q : Heating rate

R : Radau quadrature

S : Reference surface area

t : Time

T : Thrust

u : Control

x : State

α : Angle of attack

β : Pitch angle

θ : Inversed atmospheric scale height

γ : Flight path angle

λ : Geocentric latitude

μ : Geocentric longitude

ξ : Heading angle

ρ : Atmospheric density

σ : Bank angle

η : specific propellant consumption

τ : Nodal values

χ : Yaw angle

ω : Roll rate

Ω : Earth’s angular velocity
Subscripts

D : Drag

l : Lower

L : Lift

m : Main thruster

RCS : Reaction control system

u : Upper

0 : Initial state

1 : Thrust in downrange direction

2 : Thrust in crossrange direction

3 : Thrust in height direction

1. Introduction

Pseudospectral methods (PSM) are gaining more and more

popularity in the aerospace community due to their easiness

of application to solve smooth problems. The idea behind

PSM is that the differential equations, the cost function and

the constraints are collocated at a defined set of nodes obtained

from the roots of linear combination of Legendre polynomi-

als. The set of collocation points used are indeed the roots of

the Legendre-Gauss-Radau as proposed in 1). Pseudospectral

methods allow to solve OCP’s numerically by converting the as-

sociated problem into a Non-Linear Programming (NLP) prob-

lem. Another property of the usage of pseudospectral methods

is the removal of the Runge phenomenon. SPARTAN is a tool

created to obtain optimal trajectories for the SHEFEX-3 mis-

sion as done in 2). The tool has been developed to solve differ-

ent set of problems and the results are repeated in 3), 4), and 5).

SPARTAN uses two different ”off-the-shelf” solvers to obtain

a solution for the finite dimensional NLP. The primary solver

is SNOPT, a sparse solver for constrained optimization prob-

lems. 6) Another tool is IPOPT (Interior Point OPTimizer). 7)



SPARTAN is developed such a way that the two aforementioned

solver packages could be used for computing optimal trajecto-

ries. This paper discusses mathematical background and appli-

cation of SPARTAN to two problems. The paper is organized

as follows. The transcription of a generic problem is given first

in Section 2. The Jacobian and different contributors are ex-

plained in Section 3. Two example problems, the X-33 and a

generic moon lander problem are introduced in Section 4. The

validation of this program is found in Section 5. The conclu-

sion, including a short summary, is included in Section 6.

2. Transcription of the problem

Consider a continuous system with the following dynamics

ẋ = f (x(t), u(t), t), x ∈ Rn and u ∈ Rm (1)

where x are the states, u is the control and t is the time and

suppose that we have a cost function with the form

J = φ(x(t f )) +

∫ t f

t0
K(x(t), u(t), t)dt (2)

where J is the cost function, φ is the Mayer term related to

the final states and K is the Lagrange term. The states and the

controls are bounded by

xl ≤ x(t) ≤ xu (3)

ul ≤ u(t) ≤ uu (4)

The constraints g, associated with the states and controls, are

defined in the following manner

al ≤ a(x, t, u) ≤ au (5)

The goal is to minimize the cost Eq. (1) while satisfying the

relationships of Eqs. (2)-(5). Multiple methods exist for solv-

ing NLP for the OCP defined above. Pseudospectral methods

are a class of methods that are very powerful when it comes to

approximating the solution of a NLP. The method used here is

called Legendre-Gauss-Radau (LGR). In this method, the con-

tinuous functions are approximated by collocating them using

discretization nodes (also called collocation points). The cost

function, equations for system dynamics, and the constraints are

collocated into these nodes and they are subsequently treated

as a set of nonlinear algebraic constraints. In other words, the

infinite dimensional OCP is converted into finite dimensional

NLP. Pseudospectral methods transform the physical domain of

a variable (time t, in this case) into a normalized independent

variable τ in the interval [−1,1] instead of [t0,t f ]. It is possible

to transform back and forth between the independent variable τ

and t with the following affine transformations

t =
t f − t0

2
τ +

t f + t0
2

(6)

τ =
2

t f − t0
t − t f + t0

t f − t0
(7)

The scaling of the time is reverted at the end of all the cal-

culations. The states and controls that are converted to discrete

points are described with:

x(ti) � Xi, i ∈ [0,N] (8)

u(t j) � U j, j ∈ [1,N] (9)

These points substitute the continuous functions at the dis-

cretization nodes. The location of the nodes are calculated with

the Radau Quadrature and the Newton-Raphson method which

comes with a slight modification from 9). Given by

(τn)i+1 = (τn)i − Rn−1(τn)

R′n−1
(τn)

(10)

with

Rn−1(τn) =
Pn−1(τn) + Pn(τn)

1 + τn
(11)

R′n−1(τn) =
2n

1 − τ2
n

Pn−1(τn) (12)

where Pn represents the Legendre polynomial of order n.

Pi(τ) =

N∏
j=0, j�i

(
τ − τ j

τi − τ j

)
(13)

Dividing Eqs. 11-12 and using P(n−1)(τn) = −Pn(τn) as used

with the Radau Pseudospectral Method (RPM) as seen in 10)

results in

(τn)i+1 = (τn)i −
(

1 − τn

2

)
Pn−1(τn) + Pn(τn)

Pn−1(τn) − Pn(τn)
(14)

The nodal values τ is obtained until |τ(i+1) − τi| reaches ma-

chine zero. The initial guess τ0 for this method is provided by

using the Chebyshev Polynomials. 11) Initial guess using the

Chebyshev polynomials is calculated with

τ0 = − cos

(
2π(n j − 1)

2(n j − 1) + 1

)
(15)

where n j is the number of the root, with j ∈ [0, ... ,N − 1],

with N0 being 0. A stable node-placement composition of a

higher number of nodes can be achieved in this way. 600 nodes

were obtained in a numerically stable sense with computations

in MATLAB.

3. Structure of the Jacobian

The quality of the results and the computation time are

strongly affected by the Jacobian generated from the transcrip-

tion of the OCPs. This Jacobian is sparse by nature due to the

non-dependency of the different states with one another when

considering the dynamical equations of the problem. Taking

advantage of this inherent sparseness can reduce the computa-

tional time. 10) The Jacobian can be expressed as the sum of

three parts

Jac = JacPs + JacNu + JacTh (16)

where the pseudo-spectral part JacPs is inherent to the use

of the Flipped Radau Pseudospectral method (FRPM), and

describes the differential relationship between the different

nodes. 10) The numerical Jacobian JacNu is computed using the

complex-step method or the dual-step. The complex-step ap-

proximates the differential and it has the following form, 12)

f ′(x) =
im[ f (x + ib)]

b
(17)



The dual-step method has an exact solution, 13) and it makes

use of the dual-class method to compute first derivatives

f ′(x) =
dual[ f (x + εb)]

b
(18)

Both methods are much more extensively discussed and com-

pared in 8).

The theoretical contribution of the Jacobian is only applied

if there is an unknown final time. If the final time is defined as

free parameter in the OCP, another column corresponding to the

final time is added to the Jacobian. 10)

Poor scaling of the Jacobian and states can generate numeri-

cal difficulties during the optimization, even in the presence of

a proper transcription method. For that reason, an automatic

scaling technique is added. A linear technique called Projected

Jacobian Rows Normalization (PJRN) is used. 2) The scaled Ja-

cobian is used by SNOPT or IPOPT to calculate the optimal

trajectories while minimizing the cost function. In this paper,

solutions only obtained by SNOPT are given. The resulting

states and controls are then scaled inversely and the nodes are

linked together using Lagrange polynomials. 10)

4. Entry-Descent-Landing Mission Examples

4.1. The X-33
The first example simulates a landing sequence for a generic

X-33 re-entry vehicle. 14) Standard models such as the terminal

area and a heading alignment cylinder are not used. Instead, the

craft is to pass through a flight approach corridor. The simula-

tion environment is discussed first before moving to the mission

specifics. The equations of motion used for the X-33 are:

ḣ =V sin γ (19)

μ̇ =
V cos γ cos η

r cos λ
(20)

λ̇ =
V cos γ sin ξ

r
(21)

V̇ = − D
m
− g sin γ + Ω2r cos λ(sin γ cos λ − ...

cos γ sin λ sin ξ) (22)

γ̇ =
L cosσ

mV
+

(V
r
− g

V

)
cos γ + ...

2Ω cos λ cos ξ + ...

Ω2r
V

cos λ(cos γ cos λ + sinγ sin λ sin ξ) (23)

ξ̇ =
L sinσ

mV cos γ
− V

r
cos γ cos ξ tan λ + ...

2Ω(tan γ cos λ sin ξ − ...

sin λ) − Ω2r
V cos γ

sin λ cos λ cos ξ (24)

It can be seen that a standard 3-DOF model is used where h

is the height of the plane, μ is the geocentric longitude, λ is

the geocentric latitude, V is the airspeed, γ is the flight path

angle and ξ is the heading angle, and r is the summation of the

altitude and the equatorial radius of the Earth (r = h + Re).The

gravity is subsequently calculated with the inverse square law

Table 1. Constants used in the X-33 re-entry scenario.

m 2455 slugs Vehicle’s empty mass

S 1608 ft2 Vehicle reference

surface area

Re 20902900 ft Equatorial radius

of the Earth

g0 32.174 ft/s2 Surface gravity

Ω 7.2722 · 10−5 rad/s Earth’s angular velocity

ρ0 0.002378 slugs/ft2 Vehicle’s empty mass

GM 0.14076539 · 10−5 ft3/s2 Earth’s gravitational

constant

θ 4.20168 · 10−5 ft−1 Inverse atmospheric

scale height

(g = GM/r2) . The two control inputs are the angle of attack α

and bank angle σ. The lift and drag are calculated with

L =
1

2
ρ(h)V2CL(α,M)S (25)

D =
1

2
ρ(h)V2CD(α,M)S (26)

The density of the atmosphere is calculated with the expo-

nential model:

ρ(h) = ρ0e−θh (27)

The lift- and drag-coefficient are functions of the angle of at-

tack and the Mach number generated by fitting the aerodynamic

data of the X-33 with a 2nd order polynomial.

CL(α,M) = − 0.0005225α2 + 0.03506α − ...
0.04857M + 0.1577 (28)

CD(α,M) =0.0001432α2 + 0.00558α − ...
0.01048M + 0.2204 (29)

Imperial units are used in order to compare the results with

existing literature . 14) Values of the constants mentioned above

can be found in Table 1.

For this problem, the following state vector is used.

x =
[
h, μ, λ, V, γ, ξ, α, σ

]T
(30)

The derivatives α̇ and σ̇ are used as control inputs to realisti-

cally simulate the movements of the vehicle. The control vector

is thus defined as

u =
[
α̇, σ̇

]T
(31)

The box constraints on the states are defined as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ft
−90 deg
−90 deg

1 ft/s
−89 deg
−180 deg
−10 deg
−80 deg

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
μ
λ
V
γ
ξ
α
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

400000 ft
90 deg
90 deg

26000 ft/s
89 deg
180 deg
50 deg
80 deg

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

The angular rates of the control inputs are limited by[−5 deg/s
−5 deg/s

]
≤
[
α̇
σ̇

]
≤
[
5 deg/s
5 deg/s

]
(33)



Fig. 1. States of the X-33 during re-entry.

Three different path constraints are imposed on the vehicle.

The load factor nz, the dynamic pressure q, and the heating rate

Q, they are calculated with

nz =
|L cosα + D sinα|

m
(34)

q =
1

2
ρ(h)V2 (35)

Q = k
√
ρ(h)V3.15 (36)

The value of the material heating coefficient k is 4.47228 ·
10−9. 14) The three path constraints have the following upper

and lower bounds:

⎡⎢⎢⎢⎢⎢⎢⎣
−2.5 g’s

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ≤
⎡⎢⎢⎢⎢⎢⎢⎣
nz
q
Q

⎤⎥⎥⎥⎥⎥⎥⎦ ≤
⎡⎢⎢⎢⎢⎢⎢⎢⎣

2.5 g’s
300 lb/ft2

70 BTU/ft-s

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (37)

The plane should be approaching the runway at the end of the

trajectory. The cost function is designed in such a manner that

the final location of the trajectory is at Cape Canaveral.

J =
√

FACr − r f
2+
√

FACλ − λ f
2+
√

FACμ − μ f
2 (38)

FAC stands for Flight Approach Corridor. It is an imaginary

box that, if properly entered, aligns the vehicle to the runway. 14)

The initial conditions are set south-west of Cape Canaveral,

x0 =
[
167323,−84.7112, 25.6, 8530.2,−1.3, 0, 20, 2

]T
(39)

The X-33 should roughly approach the Kennedy Space Cen-

ter under the following set of approximated end conditions

x f =
[
2000,−80.7112, 26.7, 600,−6, 0, 170

]T
(40)

The results of SPARTAN for this particular problem can be

seen in Fig. (1), Fig. (2), and Fig. (3). The results proved

to be smooth. The final states are successfully reached within

353 seconds with a slow turn and smooth control inputs. The

numerical integration of the control inputs by the Runge-Kutta

are inline with the solution from SPARTAN.

Fig. 2. Controls of the X-33 during re-entry.

Fig. 3. The values of the constraints of the X-33.

4.2. Lunar Lander
The second example is a lunar landing scenario, with a S/C

having a non-throttable engine and reaction control system

composed of three throttable orthogonal thrusters. The goal is

to land the lunar lander on the surface of the moon from orbit at

a pre-determined position. 4)

Two different initial reference frames are defined. These are

the body fixed coordinate system and the moon-centred moon-

fixed coordinate system (dhc-frame). 4) The state vector is

x(t) =
[
ḋ, ḣ, ċ, d, h, c, β, χ,m

]T
(41)

The other variables are the pitch angle β, the yaw angle χ, and

the mass m. The control vector is given by

u(t) =
[
Tu,Ts,Tq, ωβ, ωχ

]T
(42)

The thrust values are taken in non-dimensional form with re-

spect to mass of the lunar lander. The three thruster vectors are



transformed from the body-frame to the dhc-frame .

T1 =
m0

m

[
cos

(
β − d

r

) (
(Tm + Tu) cosχ + Tq sin χ

)
− ...

sin

(
β − d

r

)
Ts

]
(43)

T2 =
m0

m

[
sin

(
β − d

r

) (
(Tm + Tu) cosχ + Tq sin χ

)
+ ...

cos

(
β − d

r

)
Ts

]
(44)

T3 = − m0

m

(
(Tm + Tu) cosχ + Tq sin χ

)
(45)

The main thruster Tm is constant and is set to 1 N/kg. The

equations of motion can then be described as

d̈ =
r

m(r + h) cos c
r

(
−T1 cos

d
r
+ T2 sin

d
r

)
+ ...

2ḋ
(

ċ
r
· tan

c
r
− ḣ

r + h

)
(46)

ḧ =
r

m(r + h) cos c
r

(
−T1 cos

d
r
+ T2 sin

d
r

)
+ ...

2ḋ
(

ċ
r
· tan

c
r
− ḣ

r + h

)
· ...

[(
−T1 sin

d
r
− T2 cos

d
r

)
cos

c
r
− T3 sin

c
r

]
+ ...

[(
ḋ cos

c
r

)2
+ ċ2

]
r + h

r2
− GM

(r + h)2
(47)

c̈ =
r

m(r + h)

[(
T1 sin

d
r
+ T2 cos

d
r

)
sin

c
r
− T3 cos

c
r

]
−

ḋ2

r
sin

c
r

cos
c
r
− 2ċḣ

r + h
(48)

The standard gravitational parameter of the Moon GM is

4.9044 · 1012 m3/s2 and its radius r is 1737,000 m. The states of

the lander itself are described in the following manner

β̇ =ωβ (49)

χ̇ =ωχ (50)

ṁ =|Tm| · ηm − (|Tu| + |Ts| + |Tq|) · ηRCS (51)

where ηm and ηRCS are the fuel coefficients for the main thruster

and reaction control system with values 5 · 10−4 N/(kg s) and

3.75 · 10−4 N/(kg s) respectively. The goal is to land at a pre-

determined position, the cost function is therefore

J =
√

(d f inal − dpos)2 + (h f inal − hpos)2 (52)

The initial conditions of the lunar lander are defined as

x0 = [5,−19, 0, 0, 300, 0,−86.0583, 0, 0.5397]T (53)

And the final states are restricted to

x f = [0, 0, 0, f ree, 0, f ree,−90, 0, f ree]T (54)

The constraints on the controls are defined as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−0.4
−0.4
−2
−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tu
Ts
Tq
ωβ
ωχ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.222
0.4
0.4
2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(55)

Fig. 4. The states of the lunar lander

Fig. 5. The controls of the lunar lander

The results of the entire simulation are found in Fig (4) and

Fig (5). The final state is reached for given equality and in-

equality constraints and the Runge-Kutta integration returned

satisfactory results. The difference between solution of NLP

and propagation of control inputs is smaller than 0.05 meters

for final position and altitude.

5. Validation

An auto-validating feature based on the use of Runge-Kutta

integration schemes is used at each run to validate the results.

The controls that are generated by SPARTAN are inserted into

MATLAB’s ODE45 solver and the states obtained by propa-

gation of control inputs are compared with the solution found

with SPARTAN. The Space Shuttle example from 3) has been

used as a benchmark to assess the improved accuracy with the

increase of nodes. The results can be seen in Fig. (6). Theoreti-

cally, the difference between the solution of the OCP and states

obtained by the propagation of the control inputs should ap-



Fig. 6. The difference between SPARTAN and a Runge-Kutta inte-

gration scheme over the number of nodes.

Fig. 7. The difference between SPARTAN and a Runge-Kutta inte-

gration scheme for X33 reentry example.

proach zero with the increase of discretisation points. Simula-

tions, however, show an asymptotic behaviour after 300 points,

possibly due to truncation errors. The difference between the

two methods is still acceptable, especially considering that the

two dominant factors are the velocity and height. The compu-

tation time for this case is 15.20 seconds for the 100 nodes case

and 270 seconds for 300 nodes obtained by a desktop computer

with quad-core CPU at 2.66 GHz and 4 GB of RAM.

Similarly, the solutions obtained for Lunar Lander example

and X33 is also verified with the same methodology. The results

are shown in Fig. (7) and Fig. (8). For the lunar lander the error

is uniform for all states except mass of the lander. In the second

case the maximum error is experienced for the height of the

X33.

6. Conclusion

This paper demonstrated the capabilities of SPARTAN, a

tool that employs the Lagrange-Gauss-Radau pseudospectral

method to discretise OCP. It has numerous mathematical advan-

tages such as scaling, numerical integration with the dual step,

and stable node placement to be able to solve optimal control

problems by discretizing the given OCP. Two entry-descent-

landing examples were given for demonstration purposes and

both solutions were smooth and satisfy constraints within de-

fined error margins. The system is able to handle a different

amount of collocation points with increased stability if more

Fig. 8. The difference between SPARTAN and a Runge-Kutta inte-

gration scheme for Lunar Lander example.

points are used, with up to 600 points used whilst still proving

to be numerically stable.

SPARTAN has proved to be useful to generate trajectories for

nonlinear problems having fixed or free final time.
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