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Abstract—On-board computer software (OBSW) is an integral
part of every space mission. It has been continuously growing in
size and complexity. The insufficient level of automation in the
development process of such software leads to low software re-
usability and drives up the costs. This paper presents a generic
approach to describe and model the on-board software in terms
of data that is processed by it. Domain Specific Language
(DSL) based framework is developed using which provides a
DSL editor, a model validator, and a code generator. Using the
framework, a system data model is created. The C++ code is
generated from it which is then customized to implement low-
level behavior. As a proof of concept, the telecommand handling
functionality of OBSW is developed to prove the feasibility
of applying the solution to the whole system. Based on the
analysis conducted on the source code of the TET-1 satellite of
the German Aerospace Center (DLR), a DSL is designed and
implemented. The resulting DSL-based framework is tested
with an example model and target code customization, showing
its ease of use and proving that it behaves as expected.
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1. INTRODUCTION
The size and complexity of On-board Software (OBSW) of
spacecrafts is steadily increasing. It contains hundreds of
thousands of lines of code responsible for the whole function-
ality of the spacecraft. Generally OBSW consists of software
from different subsystems like Thermal Regulation, Attitude
and Orbit Control (AOCS), Guidance and Navigation Control
(GNC), Power Distribution Unit (PDU) etc as shown in
Figure 1.

Despite of different mission objectives for each spacecraft,
functionalities like handling telecommands, serializing cus-
tom sensor data for telemetry reports or managing internal
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Figure 1. General Structure of Spacecraft’s On-Board Soft-
ware System (TET-1 Image Credit [1])

distribution of data are usually common for all spacecraft
missions. Traditional software development methods based
on manual coding are adding considerable cost for developing
such repetitive tasks and therefore no longer suitable. For
example consider a Command and Data Handling (CDH)
subsystem which is a vital part of on-board software of every
spacecraft system. This subsystem is responsible to process
the data which has to be exchanged between the ground-
station and the spacecraft. As for every communication,
a common protocol has to be defined which describes the
structure of the transmitted data. For this purpose there are
already standards available (e.g., ECSS PUS Standard [2],
CCSDS [3]). In general these standards are very universal
and have to be tailored to the specific mission where they are
used in, due to the very broad requirements of each mission.
In most of the projects this tailoring is done individually
for each mission. Also for small projects, like sounding
rocket missions, the overhead of a full-sized protocol would
be too high and a custom protocol is preferred. In both
cases the output of these processes are hardly reusable as
they are most likely designed for one mission only. This
circumstance brings up the problem, that one has to start all
over to implement a quite similar functionality in different
projects.

This low-level design and development has many drawbacks,
which become increasingly significant as the complexity of
the system grows. Firstly, having human developers carrying
out repetitive low-level tasks is highly unproductive, since
they are focusing on implementation details instead of design
decisions. Secondly, humans are prone to make occasional
errors, as opposed to computers, which only produce sys-
tematic errors which are easier to trace. Lastly, the fact that
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software development is carried out at a low level leads to low
re-usability.

The software usage of Attitude and Control Software (ACS)
of DLR’s BIRD mission was successfully applied for TET-
1 mission [1], [4]. The reuse analysis shows approximately
74.7% of ACS code can be taken over unchanged. This reuse
is possible because BIRD’s ACS was developed keeping the
idea of software reuse in mind. The significant results from
this use-case has strongly made us to put more efforts in the
direction of software reuse in case of on-board software.

One solution of this problem, which is presented in this
paper, is to use a model-driven approach for defining the
data to be transmitted. This approach has the big advantage
that it enables clarity and comprehensibility of the whole
subsystem while being flexible enough to match the mission
requirements. This closes the gap between the already used
standards and the mission specific data and reduces cost of
reoccurring tasks. A model driven language framework is
developed at the department of Simulations and Software
Technology (SC) at German Aerospace Center (DLR) to
streamline the software development process for Command
and Data Handling. The framework provides a domain
specific language (DSL) to model high level description of
the data structures used in the spacecraft system. As a part of
the framework design, requirements and implementations of
previous missions were analyzed to identify commonly used
data structures and protocols. Based on this, a generic model
of data structures has been designed. This model is then used
for generating code to support the development of the on-
board data handling software.

The model provides higher level of abstraction which allows
not only a quicker development of complex systems but also it
provides an opportunity for an early verification of the system
design. It has been shown that about 70% of faults are intro-
duced early in the development process. And 80% of those
caught only at the stage of integration testing or later where
the cost of fixing them is much higher [5]. By validating the
model, which is directly linked to the target system, many
of these faults could be eliminated early in the development
process. The model can also advance earlier phases of the
spacecraft engineering process. When the data transmissions
are modeled in the early phases, one can keep track of data
usage and the data budget of the telecommunication.

The paper describes current initiatives taken in this direc-
tion in Section 2. Section 3 describes concept and scope
of the language framework developed in order to automate
OBSW software process. Section 4 provides detailed DSL
implementation with respect to AOCS subsystem and CDH.
Finally, the paper ends with a conclusion and insight to future
work in Section 5.

2. STATE OF THE ART
First of all we want to differentiate between Model-Driven
Software Development (MDSD) and Model-Based Software
Development (MBSD). MBSD uses models merely as doc-
umentation artifacts [6]. On the other hand, MDSD puts
models at the core of the development process. These models
are then used to automatically generate platform-dependent
designs, source code, tests, and even documentation [7]. This
significantly increases not only software reuse but also allows
the developer to abstract away the implementation details,
which are not relevant to the problem domain.

There is also distinction between descriptive and prescriptive
models. A descriptive model is mostly developed for com-
munication and/or analysis of a system, while a prescriptive
model is used to partially (or fully) automate the implementa-
tion of the system [8]. Therefore, when referring to models in
the context of MDSD, one refers to prescriptive models which
imply a higher level of detail. Such models are created to gain
a more meaningful insight into the system, more reusable
software, and better integration of design, implementation
and testing [9].

With this background about MDSD, now we describe the dif-
ferent initiatives taken in the direction of modeling and code
generation for spacecraft’s on-board software development.

Taking inspiration from AUTomotive Open System ARchi-
tecture (AUTOSAR) which is an open and standardized
automotive software architecture, the initiative called Space
AVionics Open Interface aRchitecture (SAVOIR) [10] has
been started. The SAVOIR initiative is mainly promoted by
the European Space Agency (ESA) to define comprehensive
standards and processes for a better collaboration of the
European Space community. One output of this initiative
is the "Avionics Reference Architecture" which provides a
common set of interfaces for spacecrafts. This description
can be used as a starting point for developing a interface
architecture which has the potential to get widely accepted.

As a part of the SAVOIR initiative, the so-called "SAVOIR-
FAIRE" group is working on a software architecture for use
inside the SAVIOR concept. One output of the working group
is the COrDeT on-board software reference architecture [11].
COrDeT is following a component-oriented concept where
the software is built out of replaceable building blocks. This
concept is very flexible and enables the development of "plug-
and-play" software.

Space Plug-and-play Avionics (SPA) focuses on using a
plug-and-play approach to allow easy replacement of space
avionics components. [12]. At the software side, the concept
involves developing a middleware layer called Satellite Data
Model (SDM) to which all components are linked to. This
layer aims at promoting software reuse at the application
level.

Other than the software architecture and interfaces, another
key aspect of the command and data handling subsystem is
the data structures that protocols used for communicating
with the ground support environment. Current available
standards for telemetry and telecommands are designed on
the abstract level and have to be tailored to the mission re-
quirements. The tailoring then consists in the definition in the
actual data structures transmitted with these protocols. One
method to define the structures in a consistent way is provided
by the widely used Abstract Syntax Notation One (ASN.1)
[13]. It provides a platform independent way to describe
data structures. Out of this notation, the representations and
serializing methods for different programming languages can
be generated. Although ASN.1 provides a way to describe
the data, that notation is designed for this purpose only and
extending it for other applications and functionalities is not
sophisticated.

The above mentioned approaches are going in the direction
of MBSD. They cover modeling of only high level system
and/or software architecture. The models are at the descrip-
tive level. Since we want to achieve the automation of low
level repetitive programming tasks, we need a prescriptive
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Figure 2. The hierarchy of the description model

way of modeling.

While modeling the on-board software in a prescriptive way,
we came across the different options of modeling. For
example, graphical or textual, general-purpose or domain-
specific etc. We compared the possibilities and we preferred
to use textual and domain-specific modeling for two reasons.
First, we are addressing a special set of software here that
is on-board software and therefore we need means to model
domain specific features. Second, we want to model low
level implementation details of a software. And with a textual
model, we can provide such details in an extensible way.

For embedded applications, DSL-based projects have already
been undertaken successfully [14]. It has also been shown
that for real time requirements the usage of DSLs and Model-
Driven-Development is also feaseable [15].

So we have decided to develop a domain specific language
to model on-board software which will automate recurrent
design patterns beyond the architecture.

3. CONCEPT DEVELOPMENT
The main concept of the Data Description Language (DDL)
is to provide a data-centric model of the satellite system.
This model defines the different structures which will be
transmitted throughout the mission execution.

Hierarchy

The files from TET-1 mission were analyzed for structure,
functionalities and behavior. The analysis of the TET-1 files
follows a bottom-up paradigm, starting with the C++ classes
corresponding to the command handlers. For the better un-
derstanding of command handlers and finding common pat-
terns or features, several instances were taken and compared.
Based on this analysis and from the experience of domain
experts from previous missions, the generic mission data
architecture is divided into four hierarchical layers, which is
seen in figure 2.

The uppermost layer is the mission layer. It only contains
one element: the root node. This unique node describes the

general parameters for the mission. It also holds a set of
all applications that will be used for this mission which are
settled in the next lower level. Applications allow a grouping
of data which have the same or a similar context. Each
application holds a set of metrics and commands that it is
able to process. An application can contain multiple internal
components. The grouping of data can overlap, which means
that for example data of a single sensor can be contained
in more than one application and multiple applications can
command actuators or internal procedures. The concept
of application matches with the applications of the CCSDS
standard. The next lower level contains the structures that
make up a single metric or command of a certain application.
This structure is self-containing and maps to one packet of
the underlying transmission protocol. Every packets consists
of an ordered list of basic data types. These fields are used
as parameters for the Metric and Command packages. In
conjunction with Metric packages the parameters contain the
actual data from the sensors and the states of the system. As
a part of a Command package the parameters define the data
associated with this command.

This concept allows not only a description of the data which
will be transmitted but also the interfaces to the different
software components of the on-board software. This leads to
a so-called data-centric approach for the on-board software
development. Instead of the system bus concept for space
systems described in the paper of Venigalla et al. [16], the
data-centric approach puts the command and data handling
component into the center of the architecture.

The advantage of this architecture is to have a single point
where the definition of the data and interfaces is implemented,
easing the effort to manage changes and additions to these
definitions.

Scope

When examining the entire chain of data transmission and
processing, as shown in Figure 3, the primary scope of the
DDL is the data transmission between the spacecraft and the
ground station.

The DDL provides a standard for the representing data for
the transmission on the application level. This includes the
high-level specification of the data packages for telemetry and
telecommands, and the corresponding serialization mecha-
nisms. As mentioned in the hierarchy section, the DDL is also
able to describe the interfaces to the different applications
used in the on-board computer. Therefore the scope of the
DDL also extends to parts of the command and data handling
component.

Figure 3 also shows the concept of the data-centric archi-
tecture. Here the command and data handling component is
considered different to the remaining components of the on-
board data processing. The dotted line in this figure shows
the scope of the Data Description Language. The language
mainly covers the serialization methods and datatypes. Ad-
ditionally, stubs and interfaces for the Command and Data
Handling subsystem can be defined, as the structure of all
messages which will be handled is known.

Corresponding to the domain model in Figure 2, a semantic
Data Description Model (DDM) is developed which is de-
fined in Figure 4. One to one mapping between each level in
both models can be easily seen.

Based on this semantic DSL model, a set of DSLs are
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Figure 3. General Structure for Command and Data Han-
dling

Figure 4. The semantic DSL model

designed to fulfill requirements stated in Section 1. The aim
is to provide mission independent templates which will used
in future missions to define mission dependent specifications.
From these, mission specific code and tests will then be
generated automatically, resulting in a reduced development
overhead. The DSLs are defined in hierarchical manner with
two levels. First level is the Common Language module. The
global data types and common terminologies are defined in
this DSL. The second level is the Application Language mod-
ule. In this, the dsl provides a way to model a data structure
required to define specifications of respective applications.
As mentioned above, the scope of this paper is limited to
the command and data handling application. Therefore, we
illustrate the implementation of the same in next section.

Figure 5. GGP based Command Handler

The command and data handling application software is
organized hierarchically. Commands are grouped into com-
ponents, and components are grouped into applications as
shown in Figure 4.

Most of the target code is automatically generated from the
model created using DSLs (see Section 4). However, for
some of the software components, generated and manually
written code must be integrated. The framework follows the
Generation Gap Pattern (GGP) [17] to separate automatically
generated and manual code. The idea is to put purely gener-
ated files in a folder named src-gen and to have files which
are generated only once (e.g. class stubs, subsystem specific
detailed software implementation) in a different folder named
src that allows the user to modify them. Figure 5 shows
how the automated (Always generate) and manual (Generate
once) code generation is integrated together based on GGP.

The implementation details of language grammar and code
generation are illustrated in the next section.

4. IMPLEMENTATION
The grammar for the set of domain specific languages de-
scribed in this paper is developed by using the widespread
open source framework Eclipse and Xtext [18]. A DSL is
described in Xtext by using an EBNF (Extended Backus-
Nauer Form) style grammar. From this, a parser for the DSL
with an internal representation and a code editor is generated.
The generated DSL editor supports syntax highlighting, code
folding, content assist, and inline error markers. Additional
checks such model validation, content assist feature and code
formatting capabilities is added by providing simple Java
extensions to the Xtext project.

This section provides an overview of implementation. The
complete implementation details are available in [19].

Grammar

As a first step, a grammar for common DSL is defined as
shown in the Listing 1 .

It covers number literals, qualified identifiers and documen-
tation comments which form the basis for the application
specific DSLs. Each terminal is in turn then defined. It
provides abstraction on top of default terminals provided by
Xtext shown in Listing 2.

Based on the common grammar and the semantic model
shown in Figure 4, higher level elements of the application
data model are defined. They contain a collection of the
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Listing 1. Definition of Common Grammar

/∗ Common t e r m i n a l s and d a t a t y p e s
∗ f o r a l l AOCS grammars
∗ /

g e n e r a t e common
" h t t p : / / www. d l r . de / lambda / d s l / common / Common"

i m p o r t
" h t t p : / / www. e c l i p s e . o rg / emf / 2 0 0 2 / Ecore " as

e c o r e

/∗ P r o d u c t i o n r u l e
∗ Needed t o g e n e r a t e EPackage
∗ and f o r t e s t i n g
∗ /

CommonModel : ’common ’ name=ID
(

’ I n t V a l u e ’ i n t V a l u e = I n t V a l u e
| ’ S i g n e d I n t ’ s i g n e d I n t = S i g n e d I n t
| ’ Rea lVa lue ’ r e a l V a l u e = Rea lVa lue
| ’HEX’ hex=HEX
| ’ Q u a l i f i e d I D ’ q i d = Q u a l i f i e d I D

) ;

Listing 2. Definition of Data Types

/∗ Data t y p e r u l e s ∗ /

Q u a l i f i e d I D
r e t u r n s e c o r e : : E S t r i n g : ID ( ’ . ’ ID ) ∗ ;

I n t V a l u e
r e t u r n s e c o r e : : E I n t : S i g n e d I n t | HEX;

/∗ Data t y p e s wi th v a l u e c o n v e r t e r s
∗ /

S i g n e d I n t r e t u r n s
e c o r e : : E I n t : ( ’+ ’ | ’− ’ ) ? INT ;

Rea lVa lue
r e t u r n s e c o r e : : EDouble : S i g n e d I n t ’ . ’ INT

EXPONENT? ;

elements which are immediately below them in the hierarchy.
By taking the advantage of the cross-referencing mechanism
of Xtext, we get some extra freedom while defining the
hierarchy. The grammar is listed as follows in Listing 3.

Using an application level grammar, a mission specific sub-
system level grammar is defined. For example, the AOCS
subsystem grammar defining data model for command and
data handling application is shown in Listing 4.

Defining these grammar rules is a one time task. We have
tried to include all the possible rules based on the previous
experience. We have tried to keep it as simple and basic as
possible by splitting the complex data structure to the atomic
unit level. Of course the rules can be modified or extended as
per the special requirements of the individual mission.

After compiling grammar rules, our domain specific language
is ready to use for defining the actual mission data model.
Eclipse provides DSL specific editors where individual do-
main expert can define the data model corresponding to the
domain. As an example, Listing 5 shows the definition of a
AOCS data model based on the AOCS grammar defined in
Listing 4.

Figure 6. Generated Customizable files

Model Verification

A big advantage of model-driven development of software
is the practical verification on model level. To support the
requirements for safe and reliable software the model is
checked against several constraints. This constrains defined
by the DSL enable better type safety and range checks to
achieve more reliable code.

Listing 4. AOCS Grammar

grammar de . d l r . lambda . d s l . aoc s .AOCS wi th
de . d l r . lambda . d s l . common . Common
h i dd en (WS, ML_COMMENT, SL_COMMENT)

g e n e r a t e aOCS
" h t t p : / / www. d l r . de / lambda / d s l / aoc s /AOCS"

i m p o r t " h t t p : / / www. e c l i p s e . o rg / emf / 2 0 0 2 / Ecore "
as e c o r e

AocsModel :
( a p p l i c a t i o n D e f s += A p p l i c a t i o n

| componentDefs +=Component
| commandDefs+=Command
| p a r a m e t e r D e f s += P a r a m e t e r
| e n u m e r a t i o n D e f s += Enumera t ion
| r a n g e D e f s +=Range

) ∗
;

Code Generation

From the developers of Xtext, the Xtend [20] framework
is developed to generate source code files from the model
created using Xtext grammar definition. Xtend is a statically
typed programming language and has strong template fea-
tures to create code generators. Therefore the same is used in
this case for generating C++ source code. The Xtend template
maps the grammar rules into C++ syntax rules along with
semantic implementation. Based on the model file created in
Listing 4 and concept described in Figure ??, the C++ project
structure with required folders and source files is generated
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Listing 3. Definition of Application Grammar

A p p l i c a t i o n :
comment=DOC_COMMENT?
’ a p p l i c a t i o n ’ name=ID ’ i s ’

( e n u m e r a t i o n D e f s += Enumera t ion
| r a n g e D e f s +=Range
| p a r a m e t e r D e f s += P a r a m e t e r
| commandDefs+=Command
| componentDefs +=Component
| ’ component ’ componentRefs +=[ Component | Q u a l i f i e d I D ]

) ∗
’ end ’ ’ a p p l i c a t i o n ’

;

Component :
comment=DOC_COMMENT?
’ component ’ name= Q u a l i f i e d I D ’ i s ’

( e n u m e r a t i o n D e f s += Enumera t ion
| r a n g e D e f s +=Range
| p a r a m e t e r D e f s += P a r a m e t e r
| commandDefs+=Command
| ’ command ’ commandRefs +=[Command ]

) ∗
’ end ’ ’ component ’

;

Command :
comment=DOC_COMMENT?
’command ’ name=ID ’ i s ’

( e n u m e r a t i o n D e f s += Enumera t ion
| r a n g e D e f s +=Range
| p a r a m e t e r D e f s += P a r a m e t e r
| ’ p a r a m e t e r ’ p a r a m e t e r R e f s +=[ P a r a m e t e r ]

) ∗
’ end ’ ’command ’

;

P a r a m e t e r :
comment=DOC_COMMENT?
’ p a r a m e t e r ’ name=ID ’ i s ’
t y p e =Type ( a r r a y ?= ’ a r r a y ’ ’ ( ’ a r r a y S i z e =INT ’ ) ’ ) ?
(

( c o n s t r a i n e d ?= ’ i n ’ (
r a n g e C o n s t r a i n e d ?= ’ r a n g e ’ ( r a n g e =AnonymousRange | r a n g e R e f =[ Range ] )
| enumCons t r a ined ?= ’enum ’ ( e n u m e r a t i o n =AnonymousEnumeration | e n u m e r a t i o n R e f =[ Enumera t ion ] )

) ) ?
& ( ’ wi th ’ ’ u n i t s ’ u n i t = Un i t ) ?

)
;

automatically.

As described in Section 3, the code generation follows so
called Generation Gap Pattern. According to it, two types
of files are generated such as:

• src : This folder receives all the files which follow the
generate once policy. They are not overwritten or deleted,
and the user may edit them as needed. It mainly consists of
command handlers, the base class and specific classes (see
Figure 6).
• src-gen : Purely generated files are written to this folder.
All the resources in it are cleaned and re-written every time
the code generator runs. Additionally, the files are marked as
‘derived’ so that the user is warned by Eclipse when trying to
edit them (see Figure 7).

5. CONCLUSION AND FUTURE WORK
The DSL based framework presented in this paper provides
a stable base to start developing the CDH. The set of data
description language is designed to cover common function-
alities to all satellite subsystems and a simple hierarchical

semantic model for CDH functionality. By using a data
description DSL, a unified data model for CDH is created
and required code is automatically generated from it. Because
of the cross-referencing capabilities of Xtext, domain experts
get flexibility to separate a model definition by levels of ab-
straction. The ’generate once’ pattern was chosen to provide
the separation of manual and automatic code.

Frequently used functionalities like data serialization and
protocol wrapping are encapsulated into a library which is
then utilized from the generated code. In this way, knowledge
from previous missions is maintained and can be reused in
future missions.

Such DSL-based models of data structures of a spacecraft’s
on-board system reduces design and programming efforts. It
also provides verification of models which results into less
error-prone and high quality software.

The DSL-based approach provides a standard process to
define a general data structure. But at the same time, it
gives enough flexibility to tailor it to the mission specific
requirements.
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Listing 5. TET-1 Mission specific AOCS Data Model

/∗ Example AOCS model ∗ /

/∗ Documenta t ion comments p r e c e d i n g a p p l i c a t i o n s , components ,
∗ commands o r p a r a m e t e r s w i l l be i n c l u d e d i n t h e t a r g e t code
∗ /

a p p l i c a t i o n app i s

/∗ Components can be g i v e n q u a l i f i e d names f o r t h e p u r p o s e
∗ of o r g a n i z i n g t h e g e n e r a t e d f i l e s , b u t t h e y w i l l be t r e a t e d
∗ by t h e i r l a s t name only , so i t must be un iq ue .
∗ /

component my . c p t i s

/ / Command d e f i n i t i o n
command cmd i s

/ / P a r a m e t e r d e f i n i t i o n
p a r a m e t e r pa r1 i s f l o a t i n r a n g e 0 . 0 t o 1 . 0 wi th u n i t s ms

/∗
∗ Components , commands , p a r a m e t e r s , r a n g e s and enums can a l s o
∗ be r e f e r e n c e d , a s long as t h e i r d e f i n i t i o n i s i n scope
∗ /

p a r a m e t e r pa r2
p a r a m e t e r pa r3 i s i n t 3 2 i n enum ENUM

end command

end component

end a p p l i c a t i o n

/ / D e f i n i t i o n o f p a r a m e t e r t o be r e f e r e n c e d w i t h i n a command
p a r a m e t e r pa r2 i s boo l

/ / D e f i n i t i o n o f enum t o be r e f e r e n c e d w i t h i n a p a r a m e t e r
enum ENUM i s (ZERO, TWO=2 , THREE)

Figure 7. Purely Generated files

As mentioned in the Section 2, the Space Avionics Open
Architecture (SAVOIR) is an initiative for standardization of
the system architecture and component interfaces. It supports
DSL-based development. Therefore our solution fits well
with the ongoing efforts in the same direction. In future, we
would like to make our data description language compatible
with SAVOIR.

The integrated design environment named Virtual Satellite
(VirSat) [21] is designed to support the design process of
spacecraft systems in a concurrent engineering way starting
from Phase 0/A. Based on the model based systems en-
gineering and the object oriented approach, VirSat creates
and maintains the consistent system model and subsystem
dependencies. In the case that the data description model
shows promising results, its development may be continued
with the final goal of being integrated in the VirSat framework
and linked to the common system model throughout the
different phases of spacecraft development.

In future, automatic test case generation and code verification
could be added to reduce testing efforts. The data model
can also form a basis for implementing the ground support
software in future. While keeping the data model extensible,
new functionalities can be added in future. That makes it
usable for many applications.
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