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In this paper, a real-time capable Nonlinear Model PregicBiontroller (NMPC) is implemented for the attitude cohtrfoan upper
stage launch vehicle with liquid propellant. A mass springded is used as an analogy to simulate the disturbance deddrg the
sloshing propellant. For the implementation of the NMPC patimal control problem (OCP) is defined with finite time fzom.
The objective function is minimized while satisfying camdtts on the control inputs. The resulting OCP is transctibsing single
shooting method to parametrize the control inputs usinépumi discretization points. The continuous control inpaits obtained by
linear interpolation. A dedicated discretization aldumitin FORTRAN is coupled with a solver which used quasi-Newatgorithm
to generate solutions fast. Approximation of the Hessiatrimé used to reduce computational requirements. Furbee, the
algorithm can perform parallel computation of the derixegi of the objective function with respect to optimizatiariables. This
results in a real-time capability of generating solutiomghie order of milliseconds for each iteration. The algonitis applied for
attitude maneuver and disturbance rejection for the ugpgeof a launch vehicle.
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Nomenclature f State vector field
gm . Moment input map

State vector JF Force input map

Input vector Lv Launch vehicle

Time NLP Nonlinear programming
State space NMPC Nonlinear model predictive controller
Input space OCP Optimal control problem
Time interval

ObjeCtive function Subscripts

Admissible input space 0 . Initial

Terminal region constraint f Final

Stage cost p . Prediction

Terminal cost c . Control

Number of discretization points i Discrete form

Hessian matrix | Lower bound

Lebesgue space u Upper bound

State performance weight

Input performance weight Superscripts

Perturbation step m Dimension of the input space
Continuous function n Dimension of the state space
Gradient of a function 00 . Infinity

Order

Mass of rigid body 1. Introduction

Mass of propellant

Moment arm

Within the last decade, space science and technology have
become an essential part of daily activities. As a resudtietlis
an increase in demand for launching various payloads ftareli
ent purposes. One of the challenges in inserting a paylda@in
Moment desired orbit is the precise attitude control of the uppagebf
Optimization variable the launch vehicle (LV). Most LVs use liquid propellant fbet
Pitch angle of rigid body last stage due to various advantages of throttable enditesr
Angle of fluid surface level drawback of these liquid propellant engines in terms ofiaté
Penalty coéicient for terminal cost control is the disturbance generated during the maneuwéeof
vehicle caused by the sloshinffext of the propellant. This pa-
per recognizes the sloshing problem and proposes an NMPC for

Length of pendulum
Moment of inertia
External force
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attitude control of an upper stage LV.



Among the available controller design schemes for systems past 4

. g . ) 4 Future/prediction
with nonlinear dynamics, NMPC has been implemented in real

- e
world problems. For instance, it is used in chemical process
control and various aerospace applicatibrfs. NMPC has EPoint
several advantages like its straightforward implemeoatca- Closed-loop Predicted
pable of handling constraints on inputs as well as statekitan state x _State X

ability to stabilize the system despite model mismatch er ex

Closed-| Open-loop input u
ternal disturbances. One drawback of NMPC is that there is ~ ¢!0sed-loop r|_|_|_|_‘_,_|_Q|_|_I_|_|_L
no guarantee to find a solution for the associated optincizati inputu | 1|

problem. The main disadvantage of this method is the demand- t t|+5 t+T, t+T:
ing necessity for computational resources while for easfait ___Control Horizon H, o
tion a related OCP has to be discretized and solved. Thexefor i — — >
- . . Prediction Horizon H,
real-time application of NMPC is coupled to the advancement
in computing technology. Consequently, NMPC related stsidi Fig. 1. The principle model of NMPC

are gaining momentum in line with these advancements. Re
view of NMPC method$® , studies about computational aspects
of NMPC* as well as robustness and stability propeftiés .
are available in the literature. min - (X0, X(tr). u(t); to)

There are various controller implementations for the upper st XM = F(x®), u(), x(to) = Xo

is an element of the state spax) € X. The finite horizon
open-loop OCP is formulated as

stage LV. Most of these applications are based on linearalont n (2)
methods’ ® . There are also adaptive based mettbdsd X(f) e XC R, Vi€ o to+1p]
controllers with nonlinear dynamié® . X(to +tp) € Q
In this paper, a real-time capable NMPC controller for the ith inequality constraints
upper stage of a LV is developed. In Section 2, the NMPC is
formulated considering the objective function, equalitygl an- X< X(M) < X (3)

equality constraints for states and control inputs. Théoul- L < u(t) < uy
ogy for diSCl’etiZing the infinite dimensional OCP into an NLP wherex = f(x(t), u(t)) is the equality constraint to be satisfied.
is introduced. Details of the solution for the associated®NL The Objective is to minimize the cost function of the f0||(mg|
using BFGS method are also provided in this section. Sectionform
2 also includes the parallel computation of derivativeshaf t
objective function with respect to discrete control inpusing

finite difference method. The dynamical model of the LV is pre- ~ J (Xo, X(t1), u(t); tp) = f (AUTRAU+AXT QAX)dt + E(xr)
sented in Section 3. Section 4 includes the numerical seBrit to

the simulations of disturbance rejection and attitude robraif 4)
a large angle maneuver scenarios. Finally, Section 5 cdaslu
the paper with a short summary.

to+tp

whereAu = (U— Uret), AX = (X — Xret). Similarly, Xret @anduyes

are the desired constant reference values. The cost faattio
J is defined in terms of the stage cost (the first term in Eq.(4)),
which specifies the performance of the controller and teainin
cost (the latter term in EQ.(4)).

A quadratic form for stage cost is used . The positive definite
matricesQ andR are the weights for the deviations of states and
control inputs from desired values. The state informati(ip)
enters the system with initial states. In this paper, it suazed
that full state information is available. The implemerdatof
NMPC could be summarized as follows

2. Methodology

The NMPC problem is formulated by solving a series of
finite-horizon OCPs subject to system dynamics and conssrai
involving states and controls. Based on the full state méor
tion at timetp, the controller predicts the future dynamic be-
haviour of the system over a prediction horizidg for a time
interval fto, to + tp]. Then, it determines the control inputs in
order to minimize the objective function for the desiredfper
mance. The control inputs are then applied over a givenabntr 1. Obtain the measurementsof the system.

horizon H, within the time interval fy, to + tc] wheret; < tp,. 2. Calculate the optimal inputs minimizing the cost funetio
The principal model of NMPC is given in Fig. 1.. in Eq.(4) over prediction horizoHl,.
3. Implement the optimal inputs over the control horizén
2.1. Formulation of NMPC and get new measurement
Consider the nonlinear dynamical system with state space 4- Provide optimal inputs as initial guess for the next itera
X ¢ R"and the input spadd ¢ R™ tion.

. 5. Continue with (2) until the predetermined number of ikera
XV = F(x(@,u®), tel=[bt] @ tions are completed.
X(to) = %o € X Fig. 3. shows the flow of the algorithm. In this study, the stop
The control input is contained in the space of admissiblérobn  ping criteria is determined as the maximum number of itera-
signals; that isu(t) € Ua.g = L=([to, tf], U). For each pointin  tions. For each iteration, the states are propagated ooe gec
time, the solution or state trajectory:) : R, — X of Eq.(1) the given time domain.
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NMPC flow chart

Another aspect is the stability and performance of the ctletr
The prediction horizoi, plays an important role for the stabil-
ity of the closed-loop system. On one side, if hgis short, the
controller tries to steer the system to desired states witlorz
agile behaviour. If it is even shortened, the controller migot
able to stabilize the system around the given equilibriuintpo
On the other hand, ifl, is long enough, the size of the problem
increases, demanding additional computational resources
The OCP defined in Eq.(2) and Eq.(3) is infinite dimensional
and discretized to obtain a corresponding Nonlinear Progra
ming (NLP). In this paper single shooting method with urnifor
discretization points in time is used to approximate an @sso
ated NLP of the OCP.
2.2. Discretization of the OCP to associated NL P

In order to discretize the OCP defined by Eq.(2), control in-
puts are parametrized using single shooting method. The con
trol input u(t) is discretized using uniform discretization points
in timet;, resulting in discrete forra(t;) of control inputs. Val-
ues of the control inputs between the discretization paants
approximated by interpolating the discrete control inpu(ts
using linear interpolation.

Uniform grid points are obtained by discretizing the time in
terval into equal-spaced discretization points such that

ti € [to, t¢], i=0,..,N
X(t)=x, xeR" i=0,..,N (5)
ut)=u, ueR™ i=0,.,N

holds. Similarly the discrete form of the objective functis

N
J = w(X; — Xg)* + Z AUTRU; + AXTQAX;,  t € [to, tp],
i=0

7 (6)

The trajectories of the states are obtained by integratiegon-
trol input by using 4 order Runge-Kutta numerical integration

i=0,..,N.

scheme. In order to find the values of the discrete contraitsp
at the discretization points, resulting NLP needs to beesbhy
a numerical solver.
2.3. Solution of the NLP

In this paper, the Broyden—-Fletcher—Goldfarb—Shanno
(BFGS) method is used to solve resulting NLP. The BFGS
method is a quasi-Newton method for solving unconstrained
nonlinear optimization problems. As in Newton’s methode on
uses a second order approximation to find the minimum of a
functiona(z). The Taylor series ak(z) around an iterate is:

a(z + A2) ~ a(z) + Ve(z) Az + %AZTBAZ, 7)
whereVa is the gradient an8 an approximation to the Hessian
matrix. The gradient of this approximation (with respeci\to
)is

Va(z + AZ) ~ Va(z) + BAz (8)

and setting this gradient to zero (which is the objectivepif-o
mization) provides the Newton step:

Az = -BVa(z) (9)

Different from Newton method, the BFGS method uses an ap-
proximation of the Hessian matrix of second derivativessad
of exact Hessian matrix.

Limited memory BFGS method (L-BFGS) is a modified ver-
sion of BFGS method, where L-BFGS stores only a few vectors
that represent the approximation implicitly. Memory requi
ment is linearly dependent on the number of optimizationvar
ables, which reduces the necessity of computational power.

The L-BFGS-B algorithm further extends L-BFGS to handle
simple box constraints on variables. In other words, cairgs
of the formu, < u; < u, whereu, andu, are constant lower and
upper bounds of the respective optimization variable. Ia th
paper, a FORTRAN implementation of the L-BFGS-B method
is used? .
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Implementation of NMPC

The optimization is terminated either when the change in the
objective function is sfiiciently small, or infinity norm of the
projected gradient becomesficiently small.



2.4. Numerical Derivatives Upper
In order to obtain the solution of NLP, derivatives of the
objective function with respect to optimization variablee

Propellant

needed. These derivatives are obtained using finiterdince Tenk
method by using the Taylor series expansion of the objective Py oropetnt
function.

a(z+ A2) = a(2) + Az’ (2) + O(AD). (10) v

Main Thruster Nozzle
Solving fora’(2) gives , . .
Fig. 5. Upper-stage LV with sloshingtect of propellant
a(z+ A2) — a(z
(g - 20D —ad
Az

The perturbation valudz < 1 is problem dependent and
chosen by tuning. Obtaining the derivatives of the objectiv
function is the most time consuming phase during solution of
the associated NLP. In order to speed-up the computatibes, t
derivatives are evaluated independently using shared myemo
parallelization with OpenMP. In this way, a master threzaeh andy is the relative angle of the fluid surface with respect to

aspecified number of slave threads and the system (_iividek.ata horizontal plane. The control vector includes two contngitits
among them. These threads then run at the same time, with thﬁ = (F. M)T with F i the force provided by the main engine and

runtime enwlrc.)n.ment allocating thre.ads tcﬂfelrer.n cores of the M denotes the control torque. The control inputs are defined in
CPU. The division of the tasks are illustrated in Fig. 4., mhe box constraints.i.e

each slave thread works independently to carry out relaisd c

+ O(A2). (11)

The nonlinear model of the upper stage LV is taken fién
. A mass-damper-spring system is used to model the nonlin-
ear dynamics of the upper stage LV with the sloshiffga as
illustrated in Fig. 6..

The nonlinear dynamical model consists of four states
(6,6,4,%)7, whered is the pitch angle of the upper stage LV

mands. F(t) € (0,400] N
P M(t) € [-40Q 400] Nm (12)
N | > ~
The state and control vectors satisfy the relatos: f(x) +
NMPC Discretization < [ZJF(X) éM(X)]U with
| .
v v v v o

My Ms Sin(2)—20)L262+21my mg sin@—6) L/
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L 1 1 ]

—
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Parallel Evaluation of
Numerical Derivatives

13)
v
Optimization
0
Lms sin(2y—26)
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Fig. 4. Division of tasks for computation of derivative oktbbjec- _— My MeL2 Sin@—6)2+ Jmy +Jms (15)
tive function in parallel. gm = 0

_ 2L cos@—6)(m¢ +mg)
1(2Im;¢ +2JIMg+L2ms ms—L2m¢ ms cos (2 —26))

3. TheNonlinear Dynamical Model of the Upper Stage The above equations represent tfiena nonlinear dynamics

of the system in state space. The parameters associatethevith
Liquid sloshing is the uncontrolled movement of the propel- popjinear dynamics are given in Table 1.

lant inside a tank or container. During the maneuver of the

upper stage of a LV, this movement acts as an disturbance to Table 1. Nominal values for parameters
the system. There are various passive and active methods to me my L | 3
mitigate the &ects of the sloshing. For the active methods, 10170 kg | 3470kg| 1m | 3m | 105000 kgr

the objective is to design feedback controllers so that tre ¢
trolled LV achieves desired attitude while rejecting thstuii-
bance caused by sloshinffext as shown in Fig. 5..



Fig. 6. Analogy of mass-spring system for modeling the shggh
effect of propellant

4, Numerical Results

The closed loop system is simulated for twéelient scenar-
ios. In the first scenario, the initial angle of the fluid acts a
disturbance to the system and the controller stabilizepltme
with the induced disturbance resulting from the sloshifigat
of the fluid. In the second scenario, the upper stage LV paigor
a large angle maneuver while keeping the sloshiieceto the

Initially, both the surface level of fluid and the pitch angle
the upper stage LV are equal wixtg = (0,0, 0,0). The NMPC
tries to stabilize the system while the upper stage LV perfor

a large angle maneuver t¢ = (90°,0,90°, 0). Previous com-
ments also hold for attitude control of the upper stage LV in
terms of obeying constraints and behaviour of the control in
puts. In this scenario, the magnitude of the sloshing amisunt
bounded at around 20

Table 2. Comparison of Computation Time for DisturbanceeRej
tion Scenario

1§t ond
Scenario (ms)| Scenario (ms)
Sequental 414 583
Computing
Parallel 132 188
Computing

Table 2 shows the computation time per iteration of NMPC
for both cases. It is obvious that if the derivatives of the ob
jective function with respect to discrete control inputs eom-
puted in parallel, the computation time per iteration drejgs
nificantly. The speed-up is 3.13 for the first scenario with th
Quad Core CPU. In the second case, the speed-up is likewise
with the previous case with 3.10. The main reason for why
the super linear speed-up is not achieved, is due to thehact t

minimum. The computations are performed using an Intel i7 only computation of derivatives was performed in parallal.

Quad Core CPU operating at 2.80 Ghz and 8 GB of RAM.

the second scenario, the computation time for each iteratio

The sloshing amount is defined as the quantitative measurdS more compared to the first scenario with initial disturen

for sloshing and defines the relativetfdrence of the pitch an-
gle and the level of the fluid surface. The objective is to imbta
the desired states with optimal control inputs while redgc¢he
sloshing amount. During the simulations, the prediction-h-
zonH, is selected as 60 s and control horizdpas 1s.

Fig. 7. shows the trajectories of the states and controltén
for the simulation of first scenario with the presence ofiahi
disturbance withxy = (60°,0,0,0). The NMPC is able to at
tenuate the sloshing amount, while steering the systemets
desired values witlx; = (0,0, 0, 0).

—&— Pitch Angle
—&— Deflection of Fluid Level
—©— Sloshing Metric

Deflection of Fluid Level (°)
Force (N)
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Rate of Deflection (°/s)
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0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time(s) Time(s)

Fig. 7. State trajectories of upper-stage LV with initiadtdirbance

Similarly, Fig. 8. shows the trajectories of the states and ¢
trol inputs for the second scenario with a large angle magreuv

on the fluid level. It can be deduced that, for the second sce-
nario computing the optimal control inputs is more demagdin
in terms of computational resources.

—o— Pitch Angle
—6— Defl uid Level
—— Slosl c 200
150
100 g
50

0 50 100 150 200 250 300 0 50
Time(s)

Deflection of Fluid Level (°)
Force (N)

150 200 250 300
Time(s)

Rate of Deflection (°/s)

0 50 100 150 200 250 300
Time(s)

Fig. 8. State trajectories of upper-stage LV with for larggla ma-
neuver scenario

Robustness of the NMPC is shown with Monte Carlo simu-
lations. The pitch angle is varied with€ 6, < 20° and rate
of fluid level is varied with-2°/s < g < —2°/s using uniform
distribution. 250 simulations are carried out with MonterlGa
analysis for 400 seconds for each specific case.

As shown in Fig. 9., all the test cases converge to the desired
value while obeying the constraints on the control inpusblé
3. tabulate the numerical values for the Monte Carlo anglysi
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Fig. 9. Monte Carlo Analysis for the NMPC
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Time(s)
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Table 3.  Monte Carlo analysis results

Mean | Standart Deviation
0(°) 0.0164 0.1447
0(°/s) | -0.0002 0.0017
v () 0.0029 0.1239
v (°/s) | 0.0001 0.0032
F(N) 6.5562 8.4413
M (Nm) | -0.0036 0.1832

In some cases the input force doesn’t tend to zero, whictdcoul
be explained by the selection of stopping criteria. AlthHodg-
sired states are obtained, the optimizer tries to minintizeob-
jective function, resulting in nonzero thrust values foe first
second of simulations. If the simulations are terminatedraf
achieving the desired values withfBaiently small error mar-
gins, these nonzero thrust values could be eliminated.

5. Conclusion

In this paper an algorithm for real-time capable NMPC is
introduced. The NMPC is established with a given nonlinear
dynamical model of the upper stage LV, equality and inegyali
constraints leading to an OCP. The infinite dimensional GCP i
discretized with single shooting method and control infares
parametrized with equidistant discretization points imeti All
values between the discretization points are obtained imgus
linear interpolation.

During the two simulated scenarios, the NMPC stabilizes the
upper stage LV with dferent initial and terminal conditions.
The derivatives of the objective function with respect tdi-op
mization variables are evaluated in parallel to decreasgue
tation time per each NMPC iteration. Computation time per
each NMPC cycle is shown for these two scenarios. The so-
lutions are obtained for discrete control inputs and staied-
tories are evaluated by numerical integration of theserobnt
inputs. It was seen that for all the simulation results, thetiol
inputs are bounded with the given upper and lower limits.

Monte Carlo analysis shows the robustness of the solution,
ensuring stability with dferent initial conditions. Further de-
velopments include the use of nonuniform grid points in titme

parametrize the control inputs. The selection of predictiori-
zonH, on stability and computation time could also be further
analyzed.
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