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In this paper, a real-time capable Nonlinear Model Predictive Controller (NMPC) is implemented for the attitude control of an upper

stage launch vehicle with liquid propellant. A mass spring model is used as an analogy to simulate the disturbance generated by the

sloshing propellant. For the implementation of the NMPC, anoptimal control problem (OCP) is defined with finite time horizon.

The objective function is minimized while satisfying constraints on the control inputs. The resulting OCP is transcribed using single

shooting method to parametrize the control inputs using uniform discretization points. The continuous control inputsare obtained by

linear interpolation. A dedicated discretization algorithm in FORTRAN is coupled with a solver which used quasi-Newton algorithm

to generate solutions fast. Approximation of the Hessian matrix is used to reduce computational requirements. Furthermore, the

algorithm can perform parallel computation of the derivatives of the objective function with respect to optimization variables. This

results in a real-time capability of generating solutions in the order of milliseconds for each iteration. The algorithm is applied for

attitude maneuver and disturbance rejection for the upper stage of a launch vehicle.
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Nomenclature

x : State vector
u : Input vector
t : Time
X : State space
U : Input space
I : Time interval
J : Objective function
U : Admissible input space
Ω : Terminal region constraint
D : Stage cost
E : Terminal cost
N : Number of discretization points
B : Hessian matrix

L∞ : Lebesgue space
Q : State performance weight
R : Input performance weight
∆x : Perturbation step
α : Continuous function
∇ f : Gradient of a function
O : Order
ms : Mass of rigid body
mp : Mass of propellant
L : Moment arm
l : Length of pendulum
J : Moment of inertia
F : External force
M : Moment
z : Optimization variable
θ : Pitch angle of rigid body
ψ : Angle of fluid surface level
w : Penalty coefficient for terminal cost

f̃ : State vector field
g̃M : Moment input map
g̃F : Force input map
LV : Launch vehicle

NLP : Nonlinear programming
NMPC : Nonlinear model predictive controller
OCP : Optimal control problem

Subscripts
0 : Initial
f : Final
p : Prediction
c : Control
i : Discrete form
l : Lower bound
u : Upper bound

Superscripts
m : Dimension of the input space
n : Dimension of the state space
∞ : Infinity

1. Introduction

Within the last decade, space science and technology have
become an essential part of daily activities. As a result, there is
an increase in demand for launching various payloads for differ-
ent purposes. One of the challenges in inserting a payload into a
desired orbit is the precise attitude control of the upper stage of
the launch vehicle (LV). Most LVs use liquid propellant for the
last stage due to various advantages of throttable engines.Major
drawback of these liquid propellant engines in terms of attitude
control is the disturbance generated during the maneuver ofthe
vehicle caused by the sloshing effect of the propellant. This pa-
per recognizes the sloshing problem and proposes an NMPC for
attitude control of an upper stage LV.



Among the available controller design schemes for systems
with nonlinear dynamics, NMPC has been implemented in real
world problems. For instance, it is used in chemical process
control and various aerospace applications1) 2) . NMPC has
several advantages like its straightforward implementation, ca-
pable of handling constraints on inputs as well as states, and its
ability to stabilize the system despite model mismatch or ex-
ternal disturbances. One drawback of NMPC is that there is
no guarantee to find a solution for the associated optimization
problem. The main disadvantage of this method is the demand-
ing necessity for computational resources while for each itera-
tion a related OCP has to be discretized and solved. Therefore,
real-time application of NMPC is coupled to the advancements
in computing technology. Consequently, NMPC related studies
are gaining momentum in line with these advancements. Re-
view of NMPC methods3) , studies about computational aspects
of NMPC4) as well as robustness and stability properties5) 6)

are available in the literature.
There are various controller implementations for the upper

stage LV. Most of these applications are based on linear control
methods7) 8) . There are also adaptive based methods9) and
controllers with nonlinear dynamics10) .

In this paper, a real-time capable NMPC controller for the
upper stage of a LV is developed. In Section 2, the NMPC is
formulated considering the objective function, equality and in-
equality constraints for states and control inputs. The methodol-
ogy for discretizing the infinite dimensional OCP into an NLP
is introduced. Details of the solution for the associated NLP
using BFGS method are also provided in this section. Section
2 also includes the parallel computation of derivatives of the
objective function with respect to discrete control inputsusing
finite difference method. The dynamical model of the LV is pre-
sented in Section 3. Section 4 includes the numerical results for
the simulations of disturbance rejection and attitude control of
a large angle maneuver scenarios. Finally, Section 5 concludes
the paper with a short summary.

2. Methodology

The NMPC problem is formulated by solving a series of
finite-horizon OCPs subject to system dynamics and constraints
involving states and controls. Based on the full state informa-
tion at time t0, the controller predicts the future dynamic be-
haviour of the system over a prediction horizonHp for a time
interval [t0, t0 + tp]. Then, it determines the control inputs in
order to minimize the objective function for the desired perfor-
mance. The control inputs are then applied over a given control
horizon Hc within the time interval [t0, t0 + tc] where tc ≤ tp.
The principal model of NMPC is given in Fig. 1..

2.1. Formulation of NMPC
Consider the nonlinear dynamical system with state space

X ⊂ Rn and the input spaceU ⊂ Rm

ẋ(t) = f ( x(t), u(t)) , t ∈ I = [t0, t f ]

x(t0) = x0 ∈ X
(1)

The control input is contained in the space of admissible control
signals; that isu(t) ∈ Uad = L∞([t0, t f ],U). For each point in
time, the solution or state trajectoryx(·) : R+ → X of Eq.(1)

Fig. 1. The principle model of NMPC

is an element of the state spacex(·) ∈ X. The finite horizon
open-loop OCP is formulated as

min
u∈Uad

J(x0, x(t f ), u(t); tp)

s.t. ẋ(t) = f (x(t), u(t)), x(t0) = x0

x(t) ∈ X ⊆ Rn, ∀t ∈ [t0, t0 + tp]

x(t0 + tp) ∈ Ω

(2)

with inequality constraints

xL ≤ x(t) ≤ xU

uL ≤ u(t) ≤ uU
(3)

whereẋ = f (x(t), u(t)) is the equality constraint to be satisfied.
The objective is to minimize the cost function of the following
form

J(x0, x(t f ), u(t); tp) =

t0+tp
∫

t0

(∆uTR∆u+∆xTQ∆x)dt+E(x f )

(4)

where∆u = (u−ure f ), ∆x = (x f − xre f ). Similarly, xre f andure f

are the desired constant reference values. The cost functional
J is defined in terms of the stage cost (the first term in Eq.(4)),
which specifies the performance of the controller and terminal
cost (the latter term in Eq.(4)).

A quadratic form for stage cost is used . The positive definite
matricesQ andR are the weights for the deviations of states and
control inputs from desired values. The state informationx(t0)
enters the system with initial states. In this paper, it is assumed
that full state information is available. The implementation of
NMPC could be summarized as follows

1. Obtain the measurementsx0 of the system.
2. Calculate the optimal inputs minimizing the cost function

in Eq.(4) over prediction horizonHp.
3. Implement the optimal inputs over the control horizonHc

and get new measurementx0

4. Provide optimal inputs as initial guess for the next itera-
tion.

5. Continue with (2) until the predetermined number of itera-
tions are completed.

Fig. 3. shows the flow of the algorithm. In this study, the stop-
ping criteria is determined as the maximum number of itera-
tions. For each iteration, the states are propagated one secod in
the given time domain.



Fig. 2. NMPC flow chart

Another aspect is the stability and performance of the controller.
The prediction horizonHp plays an important role for the stabil-
ity of the closed-loop system. On one side, if theHp is short, the
controller tries to steer the system to desired states with amore
agile behaviour. If it is even shortened, the controller might not
able to stabilize the system around the given equilibrium point.
On the other hand, ifHp is long enough, the size of the problem
increases, demanding additional computational resources.
The OCP defined in Eq.(2) and Eq.(3) is infinite dimensional
and discretized to obtain a corresponding Nonlinear Program-
ming (NLP). In this paper single shooting method with uniform
discretization points in time is used to approximate an associ-
ated NLP of the OCP.
2.2. Discretization of the OCP to associated NLP

In order to discretize the OCP defined by Eq.(2), control in-
puts are parametrized using single shooting method. The con-
trol input u(t) is discretized using uniform discretization points
in time ti, resulting in discrete formu(ti) of control inputs. Val-
ues of the control inputs between the discretization pointsare
approximated by interpolating the discrete control inputsu(ti)
using linear interpolation.

Uniform grid points are obtained by discretizing the time in-
terval into equal-spaced discretization points such that

ti ∈ [t0, t f ], i = 0, ...,N

x(ti) = xi, xi ∈ R
n, i = 0, ...,N

u(ti) = ui, ui ∈ R
m, i = 0, ...,N

(5)

holds. Similarly the discrete form of the objective function is

J = w(x f − xd)2
+

N
∑

i=0

∆uT
i Rui + ∆xT

i Q∆xi, ti ∈ [t0, tp],

i = 0, ...,N. (6)

The trajectories of the states are obtained by integrating the con-
trol input by using 4th order Runge-Kutta numerical integration

scheme. In order to find the values of the discrete control inputs
at the discretization points, resulting NLP needs to be solved by
a numerical solver.
2.3. Solution of the NLP

In this paper, the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method is used to solve resulting NLP. The BFGS
method is a quasi-Newton method for solving unconstrained
nonlinear optimization problems. As in Newton’s method, one
uses a second order approximation to find the minimum of a
functionα(z). The Taylor series ofα(z) around an iterate is:

α(zk + ∆z) ≈ α(zk) + ∇α(zk)T
∆z +

1
2
∆zT B∆z, (7)

where∇α is the gradient andB an approximation to the Hessian
matrix. The gradient of this approximation (with respect to∆z
) is

∇α(zk + ∆z) ≈ ∇α(zk) + B∆z (8)

and setting this gradient to zero (which is the objective of opti-
mization) provides the Newton step:

∆z = −B−1∇α(zk) (9)

Different from Newton method, the BFGS method uses an ap-
proximation of the Hessian matrix of second derivatives instead
of exact Hessian matrix.

Limited memory BFGS method (L-BFGS) is a modified ver-
sion of BFGS method, where L-BFGS stores only a few vectors
that represent the approximation implicitly. Memory require-
ment is linearly dependent on the number of optimization vari-
ables, which reduces the necessity of computational power.

The L-BFGS-B algorithm further extends L-BFGS to handle
simple box constraints on variables. In other words, constraints
of the formul ≤ ui ≤ uu whereul anduu are constant lower and
upper bounds of the respective optimization variable. In this
paper, a FORTRAN implementation of the L-BFGS-B method
is used11) .

Fig. 3. Implementation of NMPC

The optimization is terminated either when the change in the
objective function is sufficiently small, or infinity norm of the
projected gradient becomes sufficiently small.



2.4. Numerical Derivatives
In order to obtain the solution of NLP, derivatives of the

objective function with respect to optimization variablesare
needed. These derivatives are obtained using finite difference
method by using the Taylor series expansion of the objective
function.

α(z + ∆z) = α(z) + ∆zα′(z) + O(∆z2). (10)

Solving forα′(z) gives

α′(z) =
α(z + ∆z) − α(z)

∆z
+ O(∆z). (11)

The perturbation value∆z ≪ 1 is problem dependent and
chosen by tuning. Obtaining the derivatives of the objective
function is the most time consuming phase during solution of
the associated NLP. In order to speed-up the computations, the
derivatives are evaluated independently using shared memory
parallelization with OpenMP. In this way, a master thread shares
a specified number of slave threads and the system divides a task
among them. These threads then run at the same time, with the
runtime environment allocating threads to different cores of the
CPU. The division of the tasks are illustrated in Fig. 4., where
each slave thread works independently to carry out related com-
mands.

Fig. 4. Division of tasks for computation of derivative of the objec-

tive function in parallel.

3. The Nonlinear Dynamical Model of the Upper Stage

Liquid sloshing is the uncontrolled movement of the propel-
lant inside a tank or container. During the maneuver of the
upper stage of a LV, this movement acts as an disturbance to
the system. There are various passive and active methods to
mitigate the effects of the sloshing. For the active methods,
the objective is to design feedback controllers so that the con-
trolled LV achieves desired attitude while rejecting the distur-
bance caused by sloshing effect as shown in Fig. 5..

Fig. 5. Upper-stage LV with sloshing effect of propellant

The nonlinear model of the upper stage LV is taken from12)

. A mass-damper-spring system is used to model the nonlin-
ear dynamics of the upper stage LV with the sloshing effect as
illustrated in Fig. 6..

The nonlinear dynamical model consists of four statesx =
(θ, θ̇, ψ, ψ̇)T, whereθ is the pitch angle of the upper stage LV
andψ is the relative angle of the fluid surface with respect to
horizontal plane. The control vector includes two control inputs
u = (F, M)T with F is the force provided by the main engine and
M denotes the control torque. The control inputs are defined in
box constraints,i.e,

F(t) ∈ (0, 400] N

M(t) ∈ [−400, 400] Nm.
(12)

The state and control vectors satisfy the relation ˙x = f̃ (x) +
[g̃F (x) g̃M(x)]u with

f̃ =














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



















θ̇
m f ms sin(2ψ−2θ)L2θ̇2

+2lm f ms sin(ψ−θ)Lψ̇2

2m f msL2 sin(ψ−θ)2+2Jm f+2Jms

ψ̇

−
2JLθ̇2m f sin(ψ−θ)+2JLθ̇2ms sin(ψ−θ)+2L3θ̇2m f ms sin(ψ−θ)+L2ψ̇2lm f ms sin(2ψ−2θ)

2lm f msL2sin(ψ−θ)2+2Jlm f+2Jlms
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(13)

g̃F =


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g̃M =


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0
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(15)

The above equations represent the affine nonlinear dynamics
of the system in state space. The parameters associated withthe
nonlinear dynamics are given in Table 1.

Table 1. Nominal values for parameters

ms m f L l J
10170 kg 3470 kg 1 m 3 m 105000 kgm2
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Fig. 6. Analogy of mass-spring system for modeling the sloshing

effect of propellant

4. Numerical Results

The closed loop system is simulated for two different scenar-
ios. In the first scenario, the initial angle of the fluid acts as
disturbance to the system and the controller stabilizes theplant
with the induced disturbance resulting from the sloshing effect
of the fluid. In the second scenario, the upper stage LV performs
a large angle maneuver while keeping the sloshing effect to the
minimum. The computations are performed using an Intel i7
Quad Core CPU operating at 2.80 Ghz and 8 GB of RAM.

The sloshing amount is defined as the quantitative measure
for sloshing and defines the relative difference of the pitch an-
gle and the level of the fluid surface. The objective is to obtain
the desired states with optimal control inputs while reducing the
sloshing amount. During the simulations, the prediction hori-
zonHp is selected as 60 s and control horizonHc as 1 s.

Fig. 7. shows the trajectories of the states and control inputs
for the simulation of first scenario with the presence of initial
disturbance withx0 = (60◦, 0, 0, 0). The NMPC is able to at-
tenuate the sloshing amount, while steering the system to the
desired values withx f = (0, 0, 0, 0).
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Fig. 7. State trajectories of upper-stage LV with initial disturbance

Similarly, Fig. 8. shows the trajectories of the states and con-
trol inputs for the second scenario with a large angle maneuver.

Initially, both the surface level of fluid and the pitch angleof
the upper stage LV are equal withx0 = (0, 0, 0, 0). The NMPC
tries to stabilize the system while the upper stage LV performs
a large angle maneuver tox f = (90◦, 0, 90◦, 0). Previous com-
ments also hold for attitude control of the upper stage LV in
terms of obeying constraints and behaviour of the control in-
puts. In this scenario, the magnitude of the sloshing amountis
bounded at around 20◦.

Table 2. Comparison of Computation Time for Disturbance Rejec-

tion Scenario
1st

Scenario (ms)
2nd

Scenario (ms)
Sequental

Computing
414 583

Parallel
Computing

132 188

Table 2 shows the computation time per iteration of NMPC
for both cases. It is obvious that if the derivatives of the ob-
jective function with respect to discrete control inputs are com-
puted in parallel, the computation time per iteration dropssig-
nificantly. The speed-up is 3.13 for the first scenario with the
Quad Core CPU. In the second case, the speed-up is likewise
with the previous case with 3.10. The main reason for why
the super linear speed-up is not achieved, is due to the fact that
only computation of derivatives was performed in parallel.In
the second scenario, the computation time for each iteration
is more compared to the first scenario with initial disturbance
on the fluid level. It can be deduced that, for the second sce-
nario computing the optimal control inputs is more demanding
in terms of computational resources.
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Fig. 8. State trajectories of upper-stage LV with for large angle ma-

neuver scenario

Robustness of the NMPC is shown with Monte Carlo simu-
lations. The pitch angle is varied with 0≤ θ0 ≤ 20◦ and rate
of fluid level is varied with−2◦/s≤ ψ̇0 ≤ −2◦/s using uniform
distribution. 250 simulations are carried out with Monte Carlo
analysis for 400 seconds for each specific case.

As shown in Fig. 9., all the test cases converge to the desired
value while obeying the constraints on the control inputs. Table
3. tabulate the numerical values for the Monte Carlo analysis.
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Fig. 9. Monte Carlo Analysis for the NMPC

Table 3. Monte Carlo analysis results

Mean Standart Deviation
θ (◦) 0.0164 0.1447
θ̇ (◦/s) -0.0002 0.0017
ψ (◦) 0.0029 0.1239
ψ̇ (◦/s) 0.0001 0.0032
F (N) 6.5562 8.4413

M (Nm) -0.0036 0.1832

In some cases the input force doesn’t tend to zero, which could
be explained by the selection of stopping criteria. Although de-
sired states are obtained, the optimizer tries to minimize the ob-
jective function, resulting in nonzero thrust values for the first
second of simulations. If the simulations are terminated after
achieving the desired values with sufficiently small error mar-
gins, these nonzero thrust values could be eliminated.

5. Conclusion

In this paper an algorithm for real-time capable NMPC is
introduced. The NMPC is established with a given nonlinear
dynamical model of the upper stage LV, equality and inequality
constraints leading to an OCP. The infinite dimensional OCP is
discretized with single shooting method and control inputsare
parametrized with equidistant discretization points in time. All
values between the discretization points are obtained by using
linear interpolation.

During the two simulated scenarios, the NMPC stabilizes the
upper stage LV with different initial and terminal conditions.
The derivatives of the objective function with respect to opti-
mization variables are evaluated in parallel to decrease compu-
tation time per each NMPC iteration. Computation time per
each NMPC cycle is shown for these two scenarios. The so-
lutions are obtained for discrete control inputs and state trajec-
tories are evaluated by numerical integration of these control
inputs. It was seen that for all the simulation results, the control
inputs are bounded with the given upper and lower limits.

Monte Carlo analysis shows the robustness of the solution,
ensuring stability with different initial conditions. Further de-
velopments include the use of nonuniform grid points in timeto

parametrize the control inputs. The selection of prediction hori-
zonHp on stability and computation time could also be further
analyzed.
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