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Preface 

Dear reader, 

You are holding in your hands a volume of the series „Reports of the DLR-Institute of 
Transportation Systems“. We are publishing in this series fascinating, scientific topics from the 
Institute of Transportation Systems of the German Aerospace Center (Deutsches Zentrum für 
Luft- und Raumfahrt e.V. - DLR) and from his environment. We are providing libraries with a 
part of the circulation. Outstanding scientific contributions and dissertations are here 
published as well as projects reports and proceedings of conferences in our house with 
different contributors from science, economy and politics. 

With this series we are pursuing the objective to enable a broad access to scientific works and 
results. We are using the series as well as to promote practically young researchers by the 
publication of the dissertation of our staff and external doctoral candidates, too. Publications 
are important milestones on the academic career path. With the series „Reports of the DLR-
Institute of Transportation Systems / Berichte aus dem DLR-Institut für Verkehrssystem-
technik“ we are widening the spectrum of possible publications with a bulding block. Beyond 
that we understand the communication of our scientific fields of research as a contribution to 
the national and international research landscape in the fiels of automotive, railway systems 
and traffic management.  

This volume contains the proceedings of the SUMO2015 – Intermodal Simulation for 
Intermodal Transport Data, which was held from 7th to 8th May 2015 in Berlin-Adlershof, 
Germany. SUMO is a well established microscopic traffic simulation suite which has been 
available since 2002 and provides a wide range of traffic planning and simulation tools. The 
conference proceedings give a good overview of the applicability and usefulness of simulation 
tools like SUMO ranging from new methods in traffic control and vehicular communication to 
the simulation of complete cities. Another aspect of the tool suite, its universal extensibility 
due to the availability of the source code, is reflected in contributions covering rapid scenario 
prototyping and interfacing improvements to govern microscopic traffic simulation results. 
 
The major topic of this third edition of the SUMO conference is the interaction of different 
types of traffic and intermodality. Several articles cover heterogeneous traffic networks as well 
as logistics and pedestrian extensions to the simulation. Subsequent specialized issues such as 
disaster management aspects and applying agile development techniques to scenario building 
are targeted as well. The conference’s aim was bringing together the large international user 
community and exchanging experience in using SUMO, while presenting results or solutions 
obtained using the software or modeling mobility with open data. Let you inspire to try your 
next project with the SUMO suite. There are many new applications in your environment. 

 

Prof. Dr.-Ing. Karsten Lemmer 
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1 Experiences with SUMO in a Real-Life Traffic 
Monitoring System 

Karl-Heinz Kastner and Petru Pau; 
RISC Software GmbH, Softwarepark 35, 4232 Hagenberg, Austria  

{karl-heinz.kastner, petru.pau}@risc.software.at  

Abstract 
In this paper, we give an overview of a traffic monitoring system currently operating for 
Upper Austrian roads, which uses SUMO for providing traffic data on roads where real-time 
traffic information is unavailable. We describe a method for reliably integrating traffic 
information sent by sensors mounted on driving cars, which works by detecting the most 
probable routes covered by these cars. Traffic information obtained from dense networks of 
vehicle counters needs special interpretation, especially when used for calibrating a traffic 
simulation that runs in parallel.  

Keywords: traffic monitoring systems, floating-car data, map-matching, simulation 
calibration. 

1.1 Introduction 

As project “ITS Austria West” enters its second year of service, we are proud to give a short 
report on the acquired experiences, encountered problems, new requirements and the 
implemented solutions. Our previous papers [2] and [3] offer detailed descriptions of various 
topics from the project; we focus here on very specific problems which arose since the system 
became operational. 

The main goal of the project is to provide reliable, up-to-date traffic information for the roads 
of the state Upper Austria. Basis data come from the state authorities and includes a soon-to-
be public database of Austrian roads. Real-time traffic data is collected from a set of data 
sources, graciously provided by some logistic, taxi and ambulance companies, as well as by 
the Austrian highway authority Asfinag. 

The main component of our project, TOMS (Traffic Online Monitoring System) aggregates the 
real-time data and issues periodically (basically every minute) snapshots of the traffic situation. 
On the one hand, these snapshots are used to update a set of WMS (Web Map Service) layers 
that can be visualized as LOS (Level of Service) in a provided web-site; on the other hand, 
delays or traffic jams are packaged and sent to the central Austrian traffic information 
platform, VAO (Verkehrsauskunft Oesterreich). 

The number of roads affected by real-time traffic data is significantly smaller than the number 
of considered road-segments in Upper Austria: Data packets cover less than 10 000 road 
segments, while the number of roads segments monitored by TOMS is greater than 180 000. 
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In order to generate and/or analyze traffic information for uncovered roads, we simulate the 
traffic with SUMO [1].  

TOMS can thus start SUMO, connect to it, get periodically lane and vehicle information, and 
calibrate the simulation by adding or removing vehicles.  

The initial demand model for the simulation has been provided by government as well and 
has a comprehensive set of trips on Upper Austrian roads, distributed hourly. We used this 
demand model to generate a set of trips along routes computed with our own algorithms. 
The 1.6 million trips led to huge traffic jams during rush hours; they needed more than a 
week simulation time to dissolve. We refined the set of trips through a (rather large) number 
of successive simulation runs, whose output was analyzed in order to detect delayed vehicles: 
They were either sent on alternative routes, or inserted earlier into the simulation. With the 
calibrated demand model all vehicles reach their targets before 1:00AM next day – in other 
words, SUMO simulates quite realistically the daily Upper Austrian traffic in less than 25 hours 
simulation time.  

In this paper, we concentrate our discussion on specific problems occurring in the day-to-day 
work of TOMS: 

1. Integration of real-time data: We described briefly in [2] our intended method for 
integrating numerical information received from sensors installed on running 
vehicles. The implemented solution is presented here in more detail. The results are 
used to calibrate the simulated traffic on road segments covered by the running 
vehicles.  

Data coming from static counters may need special treatment, especially if the 
detectors are close to each other: Lots of vehicles can be counted by more than 
one detector in a given time interval. The on-line calibration of the simulated traffic 
needs to take this into account. 

2. Interfacing one or more simulations: Quite often the need arose to start more than 
one simulation in parallel, e.g. in order to analyze the effect an event on a specific 
road can have. Our system contains components that enable starting and 
controlling simulations remotely, with or without on-line calibration. The generated 
traffic situations can be integrated into specific WMS layers, which can be 
visualized in TOMS. 

3. Addressing the efficiency problems: The microscopic simulation is too slow for the 
traffic during rush hours. With the mesoscopic version of SUMO, however, we 
obtain excellent results. 

We begin by mentioning some interesting information about the day-by-day use of or system. 

1.2 ITS Austria West in Service 

ITS Austria West has run almost without interruption ever since becoming operational, more 
than one year ago. The main component, TOMS, provides traffic information with a one-
minute periodicity. Additional components take care of receiving, pre-processing and 
forwarding the incoming real-time data.  
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Here are some numbers: 

 The monitored road network has 248 749 nodes and 323 282 road segments (edges) 
with a total length of 27 437 km. 

 There are 3 traffic information sources providing vehicle counter data, one of them 
monitoring motorways. The detectors monitor around 200 road segments. 

 There are 5 traffic information sources providing floating car data. On average, around 
6000 road segments are covered by the FCD. 

 Every minute, the real-time traffic data from the last 15 minutes are analyzed and 
integrated into a traffic situation snapshot. The processing time very exceeds 30 
seconds. 

 The calibrated demand model for the simulation has 1.2 million routes and 1.6 million 
vehicles. 

1.3 Floating-car data 

In order to correctly integrate floating-car data, we had to come up with solution to the 
following problems: 

1. Road-segment detection: We need to reliably decide from which road segment a 
floating-car data packet was sent. 

2. Velocity uncertainty: For small values of the velocity, we have to assess whether the 
cause is a problem on the road (traffic jam), a particular, non-significant event (like 
waiting in front of a red light), or a malfunction of the sensor. 

3. Calibrating simulated traffic: On road segments where floating-car data becomes 
available, some traffic values computed from FCD may differ significantly from the 
simulated traffic.  

In the following, we begin by shortly discussing the main characteristics of floating-car data 
providers grouped after the behavior of vehicles. We then describe our map-matching 
algorithm that solves the first problem. We show how the output of this algorithm – in fact, 
sets of routes driven by vehicles – is used to solve the second problem, the velocity.  

1.3.1 Long-distance drives 

The sensors installed on vehicles driving long-distance trips deliver the most convenient, 
reliable and rich sets of data. Incidentally, the location devices send their readings in very 
small time intervals – 5 to 10 seconds.  

As the long-distance drives tend to be on important (high level) streets, the driven road 
segments are normally present into the road network monitored by TOMS. Most of the times, 
a simple, geometry-based map-matching algorithm successfully pinpoints the road segment 
from which floating-car data packets were sent. Such packets contain both the coordinates 
and the heading, and they are employed in tandem to strengthen and validate the road-
segment detection.  
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The image below (Figure 1-1) shows a segment of a typical long-distance drive. 

  

Figure 1-1: Section of a long-distance drive. 

However, the long-distance drives cover mainly road segments outside of cities, so they are 
less important for computing traffic situations in urban areas. 

1.3.2 Taxi drives 

The trips driven by taxis are rather chaotic, 
without clear-cut begin-end points, quite 
often covering the same road segments 
more than one time. Since they happen 
mainly in urban areas, where lots of less-
significant road segments are not 
monitored by TOMS, some readings 
cannot be properly matched.  

There may also be sequences of readings 
with zero (or near-zero) velocity.  

The data packets come at variable time 
intervals, between 10 and 60 seconds. 
Figure 1-2 contains the trajectory of a 
typical taxi drive.  

1.3.3 Ambulance drives 

In essence quite similar to taxi drives, the ambulance drives have some specificity: 

 Expectedly, routes have an endpoint near a hospital (see Figure 1-3). 

 Long sequences of floating-car data packets with 0 velocity and random heading occur 
at the other endpoint. 

 The routes can extend outside cities. 

 

Figure 1-2: Normal taxi drive. 
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Our initial, geometry-based approach for identifying the driven road segments performed very 
well with data from long-distance drives and less accurately with the other sensors: We got 
lots of false positives, i.e., road segments where the aggregated FCD “reported” traffic 
problems (delays or traffic jams). Filtering out possible stops at traffic lights did too little to 
improve the outcome. 

Specifically designed map matching methods became a necessity. 

1.3.4 Map Matching 

The literature concerning map matching is quite vast; we took some ideas from [4] and 
implemented first a fast geometry-based map matching, whose efficiency was supported by 
the ubiquitous R-Tree [5] which helps speed up all searches in our road network. Shortly, 
given a FCD packed containing coordinates, heading and velocity, we use the coordinates to 
find a set of nearest road segments and we use heading to identify the best match. All this 
happens, clearly, if the velocity information is plausible (negative values, or values 
unrealistically big, are known to occur every now and then).  

For readings coming from long-distance drives this method works very well. Almost all road 
segments on the driven route are hit by at least one FCD packet and properly identified in the 
map-matching process. The traffic values can be reliably collected. 

However, for urban drives (taxi or ambulances) the geometry-based map matching did not 
provide satisfactory results. This method attempts to identify road segments: It become clear 
that we should look for a method which detects the most probable route followed by the 
sensor. 

To solve this problem we used a modified Dijkstra shortest-path algorithm.  

1.3.5 Route-Based Map Matching 

In order to detect the route followed by a sensor, we start with all available readings sent by 
this sensor and execute first a geometry-based map matching, in which we identify, for each 
reading, all road segments (”edges”) within a certain distance.  

Recall that a normal Dijkstra algorithm works by associating some numerical values – 
“weights”, e.g. edge length or drive time –  to each edge in graph and then proceeds 
by looking for a path with minimal sum of weights between two given nodes. This 

Figure 1-3: Typical ambulance drive. 
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algorithm can be easily modified to look for shortest paths between two given edges. 
(Although the term “shortest path” applies literally only when the weight is a distance 
measure, we will use it in our presentation regardless of the nature of this weight.)  

The edge weights, in our algorithm, are adjusted according to how well they fit the readings: 
If, in the first step, an edge was found to be close to a reading, then the weight of this edge 
will be decreased, proportional to its distance to the coordinates of the reading, and to the 
angular difference with the reading’s heading. 

Since the first and last reading can match to more than one road segment, our algorithm 
works with multiple start and end edges. When an end-edge is reached, a shortest path from 
a specific start-edge has been found. The algorithm computes first paths to every end-edge. 
During this computation, edges where readings can be mapped are considered and the 
corresponding readings are marked. 

If the computation of start-end paths finishes but too few readings are marked, our algorithm 
continues by looking for shortest paths between the start edges and edges matching some of 
the unmarked readings. The computation stops when enough readings are marked (currently 
we need 2/3 marked readings). 

The main result of this computation is essentially a data structure that offers fast access to 
shortest paths between start edges and edges on which readings are map-matched. 

In the next phase, we effectively compute the best matching route (or routes) for our set of 
readings. This takes place incrementally, by counting the number of readings that can be 
mapped on the shortest path between the first reading and the third, then between the first 
reading and the fourth, and so on. 

If, at such a step, the number of mapped readings decreases, we stop the process and split 
the set of readings: Somewhere along the way the vehicle has made a turn, and has reached 
a point with a different shortest path from the first reading. We record the last path that we 
found, isolate the mapped readings, and continue the whole process with the remaining 
readings. 

Figure 1-4: Route-based map matching. Figure 1-4: Geometry-based map matching. 
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The algorithm ends when there are no more readings to consider. The output is a partitioning 
of the original readings, and for each part, a route containing the best matching edges. 

The difference between the geometry-based and route-based map matching is evident from 
the above images: In Figure 1-, the geometry-based approach identifies (correctly, in this case) 
the driven edges, but there is no information on the road-segments in between. Figure 1-4, 
on the other hand, shows that the route-based approach has been able to identify two routes 
from the given readings. 

1.3.6 Traffic Velocity from FCD 

Once the routes driven by sensors are identified, computing the average velocity along them 
is immediate. From each such route we get an average velocity value on each of its road 
segments; we use this average also for road segments, belonging to the route, that are not 
hit by any FCD.  

Eventually we are provided with a set of velocity values for each driven road segment (in 
cities, it is very often the case that routes driven by different sensors overlap, and hence road 
segments common to two or more routes get more than one velocity value). From this, we 
compute the velocity either as maximum, or by following the “85%” rule: We sort the values, 
discard the smallest 84%, and take the minimum of the remaining set. 

The second problem mentioned at the beginning of this chapter, the velocity uncertainty, 
loses its importance: Indeed, zero-velocity readings can now be ignored if the average velocity 
along the route followed by the respective sensor is significantly greater.  

1.3.7 Addressing Simulation Deviations 

The treatment of differences between simulated traffic and readings from vehicle counters 
was mentioned in our paper [3], with an addendum in the next section.  

Now that we have reliable traffic data on road segments spanned by FCD, we can analyze the 
simulated traffic on these segments and try to calibrate the simulation, if the discrepancies are 
too flagrant: We add or remove vehicles into, respectively from the simulation, on the 
corresponding lanes. The number of such vehicles is proportional to the speed difference.  

1.4 Dense Networks of Vehicle Counters 

Ever since we began receiving real-time data from the highway authority Asfinag, we noticed 
that the number of vehicles inserted into the simulation increased by an order of magnitude: 
At the beginning of each leg of simulation run (see [2] for a description of the interplay 
between TOMS and SUMO), between 2 000 and 10 000 new vehicles were generated. 
Without these counters, the number of new vehicles did not exceed 800.  

The reason is that the Asfinag vehicle counter network is quite dense (see Figure 1-5) and lots 
of vehicles were read by more than one counter. By neglecting this, we artificially overloaded 
the simulated traffic on monitored road segments. The outcome was an increase in simulated 
traffic jam occurrences on highway segments. 
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In order to solve this problem, we created from our 
internal road network a dedicated graph structure 
which reflects transfer possibilities from one vehicle 
counter to another. Basically, each node in this 
graph represents a counter. Two nodes A and B are 
connected if the counter at B is the first one that 
can be reached from A by a vehicle running along 
the highway, from the road segment containing A 
to the road segment containing B. This transfer 
graph is thus a directed graph, non-transitive (if the 
graph contains edges [A,B] and [B,C], then edge 
[A,C] is not contained) and in Upper Austrian case 
has no loops.  

We adapt the number of vehicles inserted into the simulation by taking into account the 
number of nearby nodes – i.e., reachable by a vehicle in a given amount of time – in the 
transfer graph. In our current approach, we divide the difference between the measured and 
the simulated traffics by the number of nearby nodes that come “before” the current node.  

The results were more than satisfactory. The artificial traffic jams did not occur anymore, and 
the calibration values became less and less dramatic. 

1.5 Handling Multiple Simulations 

Besides the main goal of the project – providing reliable traffic information – we wanted to be 
able to study various exceptional scenarios, like accidents on specific road segments, or road 
works in sensitive areas (e.g. bridges). A possible solution was by running in parallel more 
traffic simulations, each with its own scenario (road network, demand model, calibration 
methods). 

Our system currently provides mechanisms for starting and communicating with traffic 
simulation applications, on more than one computer: 

 A small software component needs to be installed on each remote computer. It is 
responsible with starting/stopping the simulation and configuring its communication 
with TOMS, which takes place over a TCP/IP channel. It acts as a server, handling 
requests received from TOMS. 

 A traffic simulation program (e.g. SUMO) must be installed on each remote computer. 
The road network, as well as the demand model, need to be there as well. In SUMO 
case, TraCI is locally configured to communicate with TOMS. 

 TOMS centrally manages the remote simulations: 

o It connects via TCP/IP to the remote machines able to run simulations; 

o Via TOMS, the user can start and stop the remote simulations; 

o TOMS connects to running remote simulations and communicates with them 
using the same principles as with the local simulation; 

 

Figure 1-5: Asfinag VDL in Linz Area. 
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o If calibration of a remote simulation is enabled, TOMS uses the same 
mechanisms as for the local simulation; 

o Remote simulations’ output can be integrated in specific WMS layers, thus 
ensuring that visual inspection is always possible. 

1.6 Microscopic vs. Mesoscopic Traffic Simulation 

The standard simulation engine for SUMO is microscopic: It simulates every car in detail, with 
breaks, accelerations, lane changes, turns, etc. It provides a faithful modelling of the reality, 
but it requires both road models and demand models to be very accurate. Small errors in the 
road network can have catastrophic effects for the whole simulation. Moreover, the 
computation effort is considerable: As mentioned in our paper [2], the rush hour traffic 
cannot be simulated faster than real-time, even on powerful machines (we work with 
computers having Intel Core I7 processors, running at 3.4 GHz).  

Due to these reasons, we tried the mesoscopic simulation engine of SUMO (not open source), 
which handles the traffic in priority queues. The benefit is enormous: It speeds up the 
simulation with a factor of 50 to 100. The input data for the microscopic SUMO can be taken 
as-is as input for mesoscopic SUMO; some functions and outputs for vehicles are missing, as 
well as the treatment of some TraCI commands, but with the support of SUMO developers 
we were able to provide the required implementations.  

The offline calibration of the demand model, for which the microscopic core needs several 
months, took less than two weeks with the mesoscopic. In online mode, where we always 
simulate the traffic for the next 5 minutes at a time, even during the rush hours it takes meso-
SUMO less than 20 seconds to perform. 

We have to mention, though, that the demand model calibrated with the mesoscopic 
simulation engine is not appropriate for the microscopic simulation: Traffic jams occurring at 
rush hours tend to persist for days (simulation time) with the microscopic SUMO, although in 
the mesoscopic simulation they dissolve easily.  

We adapted all our systems to work with meso-SUMO: For our purposes, where we have to 
handle very large scenarios (see the numbers in the first section of our paper), this was the 
only acceptable solution. 

1.7 Conclusions and Future Work 

We are now in a phase where the real time and the static data are very well processed with 
our described methods. We can generate a realistic traffic situation with the real time data 
and the simulation provides a good illustration of the Upper Austrian traffic.  

Statistically, the simulated traffic is still “not close enough” to the values collected from 
sensors. We plan to work on intelligent mechanisms for continuous on-line calibration of the 
demand model, so that eventually we can reach a point where the adjustments are negligible. 

We currently ensure the anonymity of our data providers; however, in order to be prepared 
for all possible requirements our future providers may have, we plan to strengthen our 
anonymisation procedures. On the one hand, incoming data will be filtered, in order to 
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reduce the possibilities of detecting specific drive patterns; on the other hand, there will be a 
delay in the data flow (latest readings will be kept for a minute or two before being saved 
into our databases, or sent to TOMS). 

We foresee significant negative influences of this floating-car data pre-processing, especially 
for the route-mapping algorithms; the consequence will be a decrease in the quality of our 
traffic situations. We are currently analyzing in detail all possible drawbacks, and are looking 
for ways to minimize them. 
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Abstract 
Various vehicular communities ranging from telecommunication to infrastructure are working 
on problems related to traffic congestion, intelligent transportation systems, and mobility 
patterns using information collected from a variety of sensors. In order to test the solutions, 
the first step is to use a vehicular traffic simulator and an appropriate scenario. Many mobility 
simulators are available, but a common problem is finding a realistic traffic scenario. The aim 
of this work is to provide a scenario able to meet all the common requirements in terms of 
size, realism and duration, in order to have a common basis for the evaluations. In the interest 
of building a realistic scenario, we decided to start from a real city with a standard topology 
common in mid-size European cities, and real information concerning traffic demands and 
mobility patterns. In this paper we show the process used to build the Luxembourg SUMO 
Traffic (LuST) Scenario, and present a summary of its characteristics together with an overview 
of its possible uses.  

Keywords: Vehicle-to-X Simulation, Infrastructure-to-X Simulation, Scenario Generation. 

2.1 Introduction 

This Many vehicular communities are working in a variety of areas that range from crowd-
sourcing of information to safety applications. They are also making structural studies 
concerning infrastructure communications, traffic light systems, and more generally intelligent 
transportation systems. In order to study mobility patterns, traffic congestion or new 
communication protocols, we need a vehicular traffic simulator and an appropriate scenario 
to evaluate new proposals. For the vehicular networking community, the behaviour of the 
single vehicle is usually important and needs to be modelled. For this reason a microscopic 
mobility simulator is generally chosen. In our case, we chose the Simulator of Urban MObility 
(SUMO) [1]. In this context, the common problem that we must face is the lack of properly-
working and freely-available scenarios for the community. 

In 2014, during the SUMO User Conference, realistic traffic scenarios from the city of Bologna 
[2] were released to the community. The scenarios, built in the iTETRIS [3] framework, give a 
very good starting point for the community, but they present some limitations such as the 
traffic demand, which is only defined over one hour; also, the size of the scenario is relatively 
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small. Alternatively, the SUMO community provides the TAPASCologne1 scenario package, 
which includes road networks imported from OpenStreetMaps (OSM) [4] and the traffic 
demand for the period between 6:00 and 8:00 in the morning. Unfortunately this scenario is 
usable only with difficulty, requiring a lot of work to be done to improve the network quality, 
and to verify how routes are mapped onto both the network and the traffic demand. 

In order to focus on car-to-X problems and solutions, the community needs a scenario that 
fulfils the following requirements: (1) It has to be able to support different kinds of traffic 
demand such as congested or free-flow patterns. (2) It should support different scenario 
dimensions. (3) It has to include different road categories (e.g. residential, arterial and 
highway). (4) It should allow multi-modal evaluations. (5) Is should describe a realistic traffic 
scenario over one day (i.e. avoid gridlocks and teleportations2). 

Due to the lack of scenarios that meet all these requirements, the usual approach is to build a 
simple scenario that fulfils the purpose of the application. This approach results in several 
problems that are well known to the community, the most prominent being the lack of 
repeatable experiments allowing the comparison of different solutions or approaches to 
solving the same problem. Another problem that may be encountered is the specificity of the 
scenario and the consequent lack of generalization or realism. 

We decided to use the road network of a real city as basis for our scenario in order to 
reproduce real traffic demand and mobility patterns. We chose the City of Luxembourg 
because its topology is comparable to that of many of European cities and because we have 
access to its traffic statistics. 

In this paper we present the process used to build the Luxembourg SUMO Traffic (LuST) 
Scenario, a summary of its characteristics and an overview of its possible uses. 

2.2 LuST Scenario 

Topology. In order to create a realistic scenario we decided to start from a real mid-sized 
European city. The topology of European cities consists of a central downtown area, 
surrounded by all its different neighbourhoods, which are linked by arterial roads [5]. Another 
important characteristic is the presence of a highway in the outskirts that surrounds the city. 
The size of the city is another very important property: the scenario must be big enough to 
show the standard congestion pattern visible in modern cities, but it must be small enough to 
permit simulations in a reasonable amount of time. The City of Luxembourg meets these 
requirements. 

After choosing the city, we used OpenStreetMap (OSM) to extract its road topology. An OSM 
file contains all the necessary information about the environment and is trustworthy [6]. We 
used JOSM3 to extract and manually select and change points of interest and road segments. 
In this phase we returned information about roads (of any kind), traffic light, locations and 

                                            
1 This scenario can be found at http://sumo.dlr.de/wiki/Data/Scenarios/TAPASCologne. 
2 In SUMO a teleport occurs when a vehicle is blocked for too long in front of an intersection or collided with 
another vehicle. 
3 The JOSM Editor is available at https://josm.openstreetmap.de/ 
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names of bus stops, and we also saved information about schools (i.e. location and kind) to 
be used in the activity generation process. 

As the aim of this scenario is to have a working SUMO simulation, all the intersections were 
checked manually for correctness using an iterative process with JOSM, netconvert4 and 
SUMO to ensure that they did not represent an unrealistic bottleneck for the traffic flows. 

To provide more flexibility, we decided not to impose any vehicle restrictions on any edge or 
lane. In order to maintain the traffic patterns close to reality, we modified the number of 
lanes in some segments of the roads. We tried to standardise the roads in order to obtain a 
scenario that could easily be modified in the future. 

 

Figure 2-1: LuST Scenario Topology. 

Figure 2-1 shows the topology of the LuST Scenario, with streets coloured by type. The 
highway is depicted in blue, the main arterial roads in red and the residential roads in black. 
The static information contained in the net.xml file is summarised in Tables 2-1a and 2-1b. 
The scenario covers an area of almost 156 km2 with a total of 931 km of roads of different 
types. In the SUMO network file an edge is defined as a segment between two nodes, it may 
have a shape, and it is divided in one or more lanes.  
                                            
4 See the netconvert wiki page at http://sumo.dlr.de/wiki/NETCONVERT 

Residential roads

Arterial roads

Highways
0 1km



2 LuST: a 24-hour Scenario of Luxembourg City for SUMO Traffic simulations 

14 

Demographics. In order to achieve realistic traffic patterns we used the data published by 
the government, which is available on the Internet site of the Luxembourg National Institute 
of Statistics and Economic studies (STATEC5) (e.g. population, age distribution) to generate 
the activity demand for the ACTIVITYGEN6 tool. The activity demand required by the tool 
must contain information concerning schools, workplaces and residential areas. All of these 
are retrieved from OSM and STATEC. 

Table 2-2a: LuST Scenario in numbers. Topology information. 

Topology 

Area 155.95 km2 

Total nodes 2,376 

Total edges 5,969 

Total length edges 931.11 km 

Total length lanes 1,571.4 km 

Edges with 1 lane 3,944 

Edges with 2 lanes 1,188 

Edges with 3 lanes 764 

Edges with 4 lanes 78 

 

Table 2-1b: LuST Scenario in numbers. Intersections information. 

Intersections 

Roundabouts 39 

Total junctions 4,341 

Traffic lights 203 

Unregulated 16 

Priority 1,914 

Internal 1,969 

Dead end 239 

 

Mobility. We used a mobility study that describes traffic characteristics over recent years7. 
Based on this report we decided to tune the traffic demand around 140,000 vehicles per day. 
The public transport database was used to retrieve the information about bus routes8. A total 
of 563 bus stops was added to the scenario. As shown in Table 2-2, we added 38 bus routes 
inside the city for a total of 2,336 night and day bus movements per day. The location of the 
bus stops in the LuST Scenario is not the same as the one in the OSM file, although we tried 
to keep it as close as possible. For this reason, we had to rebuild the bus routes to match the 
new bus stop locations. Figure 2-2 shows an intersection located in the city centre; the yellow 

                                            
5 The STATEC internet site is https://www.statistiques.public.lu 
6 See the ACTIVITYGEN wiki page at http://sumo.dlr.de/wiki/ACTIVITYGEN 
7 The LuxTram Internet site is https://www.luxtram.lu 
8 The Mobility Internet site is https://www.mobiliteit.lu 
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squares are the inductive loops positioned 5m [7] from the intersection and the green boxes 
annotated with an H are the bus stops. We positioned the inductive loops at every 
intersection with a traffic light, on the highway, and on the on and off ramps (see Table 2-3). 
We fixed the location of each inductive loop close to the intersection to allow dynamic 
adjustments of the traffic light system using the information provided by the detectors. 

Table 2-2: Bus information. 

Buses 

Number of lines 38 

Bus stops 563 

Buses per day 2,336 

 

 

 

Figure 2-2: Intersection with bus and inductive loops. 

 

Table 2-3: Inducrive loop information. 

Inductive Loops 

Total number 3,161 

Highways 94 

Highway ramps 225 

Intersections 2,842 

 

Traffic demand. The ACTIVITYGEN tool utilises the definition of a network and the 
description of the population. It uses an activity-based traffic model that relies on a multi-
modal trip planner including buses, cars, bicycles and pedestrians to derive the daily activities 
such as work, school, and free time. The output represents the traffic demand for the 
scenario. We separated the routes provided by the tools between vehicles and buses and 
optimised them using the SUMO duarouter tool. In order to allow the buses to wait at each 
stop, we added the stop tag to the routes proposed by ACTIVITYGEN.  
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Table 2-4a: LuST Scenario simulation in numbers: SUMO simulation short report. 

Simulation Information 

 Total Percentage 

Inserted vehicles 138,361  

Teleports 39 0.0282 

Collisions 3 0.0022 

Jam 5 0.0036 

Yield 10 0.0072 

Wrong lane 21 0.0152 

Emergency stops 7 0.0051 

 

The short report provided by SUMO at the end of the simulation is shown in Table 2-4a. In 
the percentage column we see that all the issues (e.g. teleportation, collisions, emergency 
stops, etc.) that may be experienced by a vehicle during the simulation are lower than 0.05%, 
allowing us to assume that the scenario is running smoothly without bottlenecks and 
gridlocks. The traffic demand over the entire day is depicted in Figure 2-3. We can clearly see 
the morning rush hour peak at 08:00. Two smaller peaks are visible around lunchtime and in 
the evening, this being typical for city traffic scenarios. Figures 2-5a and 2-5b show 
respectively the traffic situation in the city centre during morning and evening rush hours.  

Table 2-4b: LuST Scenario simulation in numbers: SUMO trip information report. 

Trip Information 

 Total Average 

Total vehicles 138,259  

Departure delays [s] 9,101,390 65.81 

Waiting time [s] 39,744,745 287.47 

Travel time [s] 98,070,337 709.32 

Travel length [km] 1,016,033.78 7.35 

Vehicle travel speed [m/s]  10.36  

 

 

Figure 2-3: Traffic Demand over a day. 
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In Table 2-4b we present the data processed from the tripinfo.xml file. Here we see that the 
average length of a trip is around 7 km and that the average vehicle speed is around 10 m/s. 
Figure 2-4 present the distribution of average speed of each trip. In a mid-size city like 
Luxembourg, the average time required to move from a neighbourhood to the city center is 
around 10 minutes and this value is respected in the simulation. 

 

 

Figure 2-4: Distribution of average speed of the trips. 

 

 

Figure 2-5a: Street occupancy (lanewise) during morning and evening rush hours. Morning rush hour (8:00). 
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Figure 2-5b: Street occupancy (lanewise) during morning and evening rush hours. Evening rush hour (18:00). 

Buildings. In order to use the scenario with other network simulator such as NS3 [8] or 
OMNet++ [9] it is necessary to have information regarding the shape and position of the 
buildings. The information is extracted from OpenStreet Map and refined with JOSM to 
match the modified network topology. Table 2-5 summarize the polygons imported in the 
scenario. We decided to have only two different categories of polygons for the moment, the 
parking lots and everything else (ranged from apartments, houses and construction sites). In 
Figure 2-6 is possible to see the location of the buildings (in red) and the parking lots (in grey).   

Table 2-5: Polygons information in the LuST Scenario. 

Polygons 

Total 14,173 

Buildings 13,555 

Parking lots 618 
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Figure 2-6: Buildings and parking lots information in the LuST Scenario. 

2.3 Use Cases 

The LuST Scenario is a framework that provides realistic mobility patterns in a mid-size city. 
The mobility provided by this scenario can be used as an input for other types of simulators 
such as NS3 or OMNet++ in order to investigate network protocols. When the evaluation of a 
proposal requires the interaction between a traffic simulator and a connectivity simulator, it is 
possible to use the LuST Scenario in association with VEINS [10] to obtain a closed- loop 
feedback between SUMO and OMNet++. Using LuST in combination with those tools allows 
study of both the performance of VANET protocols and of related applications. Further, it 
allows evaluation of different multi-modal strategies for commuters. Using the SUMO toolset 
it is possible to simulate smaller traffic scenarios that only use a subset of the available road 
network, allowing testing of protocols and applications on different scales. Among the 
features provided by SUMO there is the possibility of providing an on-board routing system 
for the vehicles. In our case, we decided to provide to the 70% of the vehicles this routing 
mechanism, since the commuters are used to checking traffic information and are likely to 
modify their route when there is a serious congestion ahead. Using this on-board system, it is 
possible to change the percentage of cars that react to surrounding congestion, obtaining 

Parking Lots

Buildings 0 1km
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scenarios with different levels of congestion to test different routing strategies. In our urban 
area there are 203 intersections managed by the traffic light system. These intersections can 
be used to test optimisation algorithms for a main arterial road (e.g. green waves) or 
emergency protocols to allow firefighters, ambulances or the police to be prioritised. 

2.4 Conclusion and Future Work 

In this paper we have introduced a traffic scenario built for the research community, the 
Luxembourg SUMO Traffic (LuST) Scenario. This scenario meets all the common requirements 
needed to have a common basis for the evaluation of various protocols and applications. To 
build this scenario we started from a real mid-size city and with a typical European road 
topology and its mobility patterns. The LuST scenario covers an area of 156 km2 and 932 km 
of roads. There are 38 different bus routes with 563 bus stops. All intersections with traffic 
lights and all highway ramps are equipped with inductive loops. We used ACTIVITYGEN to 
generate the traffic demand using real information provided by various data sources. We have 
discussed several use cases for the LuST Scenario. Among them are the evaluation and testing 
of network protocols, and applications for intelligent transport systems. 

Future work consists mainly of the maintenance of the scenario with new versions of SUMO 
and the implementation of additional tools. As new features are provided by the SUMO 
simulator, the scenario can be enriched with other transportation modes (e.g. pedestrian, 
bicycle). At the moment the traffic light system uses a static scheduler; among the additional 
functionality we want to provide, is a dynamic version of the traffic light system. 

The scenario is freely available under the MIT licence to the whole community. The scenario is 
hosted on GitHub (https://github.com/lcodeca/LuSTScenario). Your contribution is highly 
appreciated! 
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Abstract 
This article describes the development process of tools aimed to simplify the creation of 
simulation scenarios for the Simulation of Urban Mobility (SUMO) package, based on the 
SCRUM agile software methodology. The SCRUM methodology allows incremental software 
development, meaning that the desired functionality of the product can be classified and 
prioritized so that it can be delivered in several software releases or sprints. The application of 
this methodology considering the re-engineering of open-source packages that led to 
TraCI4Matlab, sumolib4matlab and several modules for Network Editor for SUMO is 
described. Furthermore, the utility of these tools is demonstrated in a small case study in the 
city of Medellín.  

Keywords: Simulation of Urban MObility (SUMO), SCRUM, software re-engineering. 

3.1 Introduction 

There is an increasing interest on performing realistic traffic simulations for testing and 
validating new mobility models and traffic control strategies. One of the most popular 
packages is the SUMO [1] road traffic simulator. The remarkable features of SUMO, openness 
and reliable outputs, have allowed academics and researchers to achieve important results. 
Although SUMO has excellent documentation and support system, many users agree that the 
process for creation and edition of multimodal traffic scenarios can be improved, since it 
considerably depends on XML files and command line applications such as NETCONVERT [2] 
or DUAROUTER [3]. The SUMO project includes the NETEDIT [4] graphical network editor, but 
unfortunately it is currently not an open source tool. The lack of open-source user-friendly 
interfaces can result on a slow and strenuous learning curve.  

Despite several efforts made by the community in order to simplify the creation of such 
scenarios, which have been gratefully received by the SUMO developer team and have led to 
spaces such as the SUMO contributed tools and the annual SUMO conference, shortening the 
time for setting up simulation scenarios is still an issue to be resolved. Furthermore, many of 
these initiatives are under documented and got into an out-of-maintenance period. Reusing 
these packages and extending them in order to improve the creation of SUMO simulations 
can benefit the community, potentially save costs and support the creation of academic 
knowledge and human capital. For this reason, one of the main goals of the MOYCOT project 
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[5] is the development of a multimodal traffic simulation tool, based on existing open-source 
packages, that allows to validate new models and control strategies for traffic.  

The selection of the software methodology to be used took into account several 
characteristics of the team, the stakeholders and the project, including: 

 Initially, both simulation and control strategies were being performed in Matlab [6]. 
Thus, there was know-how on the use of this tool and the added value was on the 
control component. 

 Guarantee of open communication among team members and researchers. 
 Involvement of the research group, testers and developers (a small team size) for 

catching defects and making changes throughout the development process, instead of 
at the end. 

 The requirement to speed up the time spent on evaluations since each evaluation is 
only on a small part of the whole project. 

 The need to ensure changes quicker and throughout the development process by 
having consistent evaluations to assess the product with the expected outcomes 
requested. 

 There were regular and consistent meetings with the researchers. Additionally, there 
are systems that allow everyone involved to access the project data and progress. 

 Although there were requirements that demonstrated the desire of having into 
account multimodal scenarios and a rich Graphical User Interface, the tasks required to 
achieve them were unclear and there were no prior experience on estimating the 
related effort, including the required for open-source program comprehension and re-
engineering. 

The above characteristics supported the use of agile methodologies in the MOYCOT project. 
Agile methodologies have been successfully applied in small teams where requirements are 
not clear enough and it is not necessary to strictly follow the traditional plan-based project 
management approach. Hence, agile methodologies reduce the effort spent on planning, 
thus favoring productivity, as stated by Dyba and Dingsoyr [7]. In the same review, Dyba and 
Dingsoyr [7] mentioned some limitations of agile methodologies. For example, in one of their 
reviewed papers, the authors mentioned the “lack of attention to design and architectural 
issues”. This issue was overcome in this project by establishing a pre-process of design and 
architecture previous to the developing phase. Additionally, Dyba and Dingsoyr [7] 
highlighted the difficulty of accomplishing the customer´s on-site role. Finally, an important 
finding of their investigation is that empirical studies suggest that agile methodologies “can 
be combined with overall traditional principles”.  

This article presents results and lessons learned on the application of the SCRUM agile 
software methodology for the development of three tools that support the setup of 
simulations in SUMO, namely TraCI4Matlab, sumolib4matlab and an extension of the 
Network Editor for SUMO. Unlike most reported cases in the literature, the influence of 
reverse engineering and re-engineering of existing open-source packages is taken into 
account. TraCI4Matlab allowed migrating the simulation component from Matlab without 
migrating the control component. sumolib4matlab allows reading SUMO networks and 
generating traffic demands using the Matlab command line. Finally, the extensions made to 
Network Editor for SUMO allow to import maps and to insert traffic lights to a SUMO 
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network through a Graphical User Interface made in Qt/C++ [8]. Furthermore, design artifacts 
and refactoring tasks are presented for each of these tools. 

This article is organized as follows: Section 3.2 describes SCRUM methodology. Section 3.3 
describes the SCRUM and design artifacts achieved in the development process of 
TraCI4Matlab, sumolib4matlab and the extensions made to Network Editor for SUMO, based 
on the re-engineering of existing open-source tools. Section 3.4 demonstrates the usefulness 
of these tools in a small case study in the city of Medellín. Finally, section 3.5 presents 
conclusions. 

3.2 The SCRUM methodology for software development 

SCRUM is an agile software methodology characterized by being simple, lightweighted and 
being able to work well in projects with high complexity and uncertainty, requiring creativity 
and adaptability. Moreover, SCRUM allows the involvement of the customer in periodical 
meetings, called sprint meetings, and potentiates the incremental software development 
approach, thanks to the prioritization of functional requirements, organized in a list called the 
Product Backlog, which favors software releases.   

Three main roles can be clearly distinguished in the SCRUM methodology:  

 The scrum master, who acts similarly to a project manager, coordinates the sprint 
meetings (which are normally carried out monthly) and daily meetings, called SCRUMS.  

 The developer team is a self-organizing and autonomous entity, as explained in [9]:  

“No one (not even the Scrum Master) tells the Development Team how to turn 
Product Backlog into Increments of potentially releasable functionality;” 

 The product owner: A person in charge of providing the requirements and supporting 
the prioritization of the product backlog. He/She can be a customer representative or 
any person interested in the software product.  

People exerting these roles are in charge of executing the SCRUM main activities, being: 

 Defining the Product Backlog, which as stated before, is a prioritized list of tasks 
required to fulfill the software requirements.  

 Defining Sprints: In the sprint meetings, the team selects a subset of tasks of the 
product backlog to be completed within a Sprint: a software increment to be 
completed within a time period, which is normally defined as one month, but can also 
be defined in terms of one or more weeks. 

 Carrying out the daily SCRUMS: Short time meetings (15 to 30 minutes) aimed to track 
the progress of the development process.  

3.3 SCRUM in the MOYCOT[5] project 

Table 3-1 shows the initial requirements set up in a workshop held in the International 
Seminar in Transport and Traffic in the city of Medellín-Colombia [10], where parties from the 
academic and the government sector showed their interest in developing software products 
to support the assessment and improvement of mobility in the city. These requirements were 
refined and organized by priority, according to the SCRUM methodology.  
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Table 3-1: Initial requirements for the MOYCOT simulation software. 

Requirement ID Type Description Priority 

H1 Integration Users can import maps from Open Street Maps 
(OSM) format. Additionally, users can define 
traffic lights‘ control programs using Matlab 

1 

H2 Network design Users can create graphical elements that 
comprise the network including road sections, 
nodes, detectors, Variable Sign Panels and 
public transport stops 

2 

H3 Network 
parametrization 

Users can define a control plan for traffic lights, 
public transportation plans, traffic state, 
centroids 

2 

H4 Network design Users can choose in the network, the following 
road types: arterial, highway, on and off ramp, 
pedestrian zone, ringroad, two-lane roadway, 
roundabouts. Additionally, urban and rural 
roads can be distinguished and  properly 
signalized. Finally, users can define if a lane is 
exclusive 

3 

H5 Traffic demand Users can define the following types of traffic: 
car, public transport (bus, BRT, etc.), motorbikes 
and bycicles. Also, users can generate demand 
using O/D matrices and probabilistic definitions 

4 

H6 Other Users can measure traffic state 4 

 

Thus, the software required in the MOYCOT project belong to the scientific software 
application domain: a kind of specialized software frequently used in research tasks to 
simulate complex systems, which typically involves high computational power. 

Three important facts to be taken into account in the development of the software were: 

 Instead of developing the software package from scratch, it should be based, as far as 
possible, in existing open-source packages. Additionally, software should be  user-
friendly, i.e. it should be based in a Graphical User Interface (GUI) with editing 
capabilities. 

 There is a strong knowledge in simulation and control using Matlab and Simulink. 
Therefore, the highest priority was assigned to the integration of Matlab and the road 
traffic simulator so that Matlab could act as the Traffic Control Center and the traffic 
simulator as the plant, in terms of control theory 

 It was equally important to be able to import maps from Open Street Maps, since the 
final aim of the MOYCOT project is to achieve a simulation scenario that represents 
the city of Medellín. In this sense, Open Street Maps, along with the open-source 
editor JOSM [11], can offer enough simplicity and openess so that maps can be easily 
obtained and edited to achieve the desired accuracy 

It was found, in a benchmark study, that SUMO satisfied almost all the requirements listed in 
table 3-1. Additionally, SUMO can be integrated with other platforms through the TraCI API 
[12], but an implementation for the Matlab programming language was missing. On the 
other hand, although the SUMO team has developed a graphical network editor, namely 
NETEDIT, it is currently not an open source tool, then it was necessary to extend  SUMO in 
order to achieve the graphical editing capabilities. In this regard, SUMO includes the sumolib 
library, which is a python module that allows to parse a SUMO network, storing the 
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information in an object-oriented hierarchy and including methods for adding nodes, edges, 
connections and traffic lights. Therefore, the initial idea was to build a GUI on top of sumolib 
that compliments the editing capabilities of JOSM and preserves familiarity with Matlab. This 
GUI could be incrementally extended so that the dependency on JOSM is reduced. 

Thus, the process of building simulation scenarios for SUMO would follow a sequence shown 
in figure 3-1. Note that this process is similar to the explained in the SUMO user  
documentation [13] except for the final step where, instead of editing the SUMO network 
using the command-line tool NETCONVERT, the proposed graphical editor is used. 

Having this in mind, the major tasks to accomplish the requirements took the form showed in 
table 3-2, where the resulting product´s name is showed in parenthesis. These tasks are 
related to different SCRUM sprints, which are explained in the following subsections. 

 

Figure 3-1: A general methodology for creating simulation scenarios for SUMO, using information from Open 
Street Maps (OSM). 

Table 3-2: Tasks required to accomplish requirements listed in table 3-1. 

Item description Available in sprint 

Develop an implementation of TraCI for the 
Matlab programming language (TraCI4Matlab) 

1 

Develop an implementation of sumolib for the 
Matlab programming language 
(sumolib4matlab) 

2 

Build a GUI based on sumolib4matlab to 
visualize and edit (including creating elements) 
SUMO networks, and include a tool for 
importing maps from OSM 

3 

3.3.1 Sprint 1: TraCI4Matlab 

The first sprint was focused on taking advantage of the existing knowledge around the traffic 
control strategies developed in Matlab so that the simulation component could be performed 
in SUMO. After identifying that this could be achieved through the TraCI interface, which is 
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part of the SUMO package, an implementation of TraCI for the Matlab platform was 
developed, thus giving birth to TraCI4Matlab.  

It is worth noting that a considerable effort was assigned to a re-engineering process that 
included enough comprehension of SUMO at a user level and at a developer level. The 
successful achievement of the first sprint that led to TraCI4Matlab, has been documented in 
[14, p. 4]. 

3.3.2 Sprint 2: sumolib4matlab 

Following the re-engineering experience acquired in the first sprint and after identifying the 
sumolib tool, which is a python library of the SUMO package that allows to read SUMO 
networks, it was concluded that, continuing the integration of SUMO with Matlab, the 
second sprint should focus on implementing sumolib in Matlab and performing a suitable re-
engineering process to develop a Graphical User Interface on top of it for editing tasks. 
Because sumolib is based on a SAX parser [15], which has not been comprehensively 
implemented in Matlab to date, the component was developed in java and added to the 
Matlab Java path. Additionally, an object-oriented component was developed for the 
generation of traffic demand that wraps the DUAROUTER application using turning ratios. 
The demand component accepts a Matlab vector representing the demand in vehicles and 
distributes it along a user defined interval, thus allowing to define variable demands. Figure 3-
2a, shows the sumolib4matlab package UML diagram, note its dependency on the java sax 
implementation. Figures 3-2b and 3-2c show the UML class diagrams corresponding to the 
net and the demand sub-packages, respectively.  

 
(a) 

 
(b) 

 
(c) 

Figure 3-2: Components of sumolib4matlab. (a) Packages, (b) net module class diagram and (c) demand module 
class diagram. 

3.3.3 Sprint 3: Extending network editor for SUMO 

As stated previously, the objective was to develop a GUI for sumolib4matlab that allows to 
visualize SUMO networks and edit objects interactively, featuring suitable dialog boxes and 
drag-and-drop functionalities. These features are closely related to the Model-View-Controller 
(MVC) software pattern [16], which consists in separating the way data is represented (Model) 
from the way it is displayed (View), and providing an interface between them and the user 
(Controller).  

The MVC pattern has gained increasing popularity in the last two decades, both in desktop 
and web applications. Many software libraries for GUI development (i.e. GUI toolkits) have 
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adopted the MVC pattern along with widget classes that greatly simplify the development 
process. However, it was found that Matlab lacks from a native MVC implementation and the 
development of interactive graphs with drag-and-drop capabilities is quite difficult. Therefore, 
it was necessary to find alternative approaches to satisfy the requirements of sprint 3. Such 
approach could be found in Network Editor for SUMO (NES) [17], an open-source effort 
developed in Qt/C++, released in 2014. 

By testing NES, it was found that its main features are: 

 Visualization of SUMO networks. As showed in figure 3-6(b), NES can display the 
main SUMO elements: junctions, edges, lanes and connections in a main graph view, 
taking into account their geometry. These elements can be selected so their properties 
are displayed in the “Properties View”.  

 Some editing capabilities. Graphical editing capabilities include the modification of 
junction, edges and lane shapes. One also can edit the element’s  properties in the 
“Edit View”.   

Thus, NES had to be extended to incorporate the creation of new elements and a component 
for importing maps from OSM, according to sprint 3 (see table 3-2).  

Again, a re-engineering process was performed on NES in order to understand its design and 
implement the new components adequately.  

Figure 3-3 shows the extracted class diagram of NES, resulting from a reverse engineering 
process. Note that the Qt framework provides the MVC pattern, due to the presence of a 
Model class and several views in the MainWindow class. In this case, the model has a 
Document Object Model (DOM) instance that represents the XML definition of the SUMO 
network, where XML elements are, in turn, instances of a node class.  Furthermore, NES 
follows the typical way of a MVC implementation in Qt using an item-based model class, 
which can be used to represent hierarchical data structures, and the corresponding Tree View.  

The Model class, which inherits from Qt’s QAbstractItemModel, requires the 
implementation of an Item class, which in this case aims to represent a Node instance, 
including the XMLNode and XMLSubnode attributes for its location in the DOM. Additionally,  
its important to note that the NES model implements its own methods to build the item 
hierarchy, being loadModel(), loadJunctions(), loadEdgesAndLanes(), 
loadConnections() and loadSignals(). This approach differs from the one 
described in the Qt documentation [18], where the item hierarchy is built by taking advantage 
of the Model’s index() (which is called for each item) and rowCount()methods. 

Figure 3-4 shows the class diagram resulting from a forward engineering process performed 
on NES, taking into account the requirements of sprint 3. It can be seen that the requirement 
related to the creation of SUMO elements (junctions, edges and so on) was initially addressed 
through the creation of traffic lights. This functionality had the highest priority in the 
MOYCOT project. Thus, a wizard and a dialog box were developed for importing maps from 
OSM and building traffic lights, respectively. Basically, both components take advantage of 
the NETCONVERT command-line application, which is part of the SUMO package, by calling it 
through the netconvertProcess attribute. netconvertProcess is an instance of the 
QProcess class, and is executed whenever the accept()method is called (i.e. when the 
user clicks the ‘Accept’ button).  
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Figure 3-3: Network Editor for SUMO (NES) class diagram obtained from a reverse engineering process. Methods 

inherited from Qt’s QAbstractItemModel interface are showed in italics. 

 

 
Figure 3-4: Class diagram showing the extensions made for NES through a forward engineering process. 

Methods inherited from Qt’s QAbstractItemModel interface are showed in italics. 

In the Model class, the methods insertRow() and setData()were implemented in  
order to refresh the tree view after inserting or editing traffic lights. These methods rely on 
the implementation of the insertChild and setData methods in the Item class, 
correspondingly.  

The following section demonstrates the capabilities of TraCI4Matlab, sumolib4matlab and the 
extensions made to Network Editor for SUMO in a small case study. 
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3.4 Results  

Following the methodology proposed in figure 3-1, TraCI4Matlab, the demand generation 
component of sumolib4matlab and the modules developed for NES (Importing Wizard and 
Traffic Lights  Editor) were tested in the scenario showed in figure 3-5(a), which corresponds 
to the first kilometer of Via las Palmas: an important road in Medellín-Colombia that connects 
this city with the José María Córdova’s airport. In this section of the road, two traffic lights 
have been built in the last year to allow the crossing of pedestrians. 

 
(a) 

 
(b) 

Figure 3-5: Vía las Palmas, 1st kilometer. (a) In Open Street Maps, (b) In the JOSM editor. 

In this case, the area of interest was extracted directly from the Open Street Maps site, then 
the number of lanes was verified against Google Street View through the JOSM editor, as 
showed in figure 3-5(b). 

The next step was to use NES and the Importing Wizard described in section 3.3.3, to convert 
the map from OSM to the SUMO format (.net.xml), as showed in figure 3-6(a). The resulting 
SUMO network can be seen in figure 3-6(b). Note the successful importing of traffic lights, 
thanks to NETCONVERT. Figure 3-7(a) shows one of the traffic lights program automatically 
generated in the importing process, using SUMO GUI. This program was modified using the 
Traffic Lights Editor developed for NES, as showed in figure 3-8. The new traffic lights 
program was verified, again, in SUMO GUI, as showed in figure 3-7(b). 

 
(a) 

 
(b) 

Figure 3-6: Importing a map from OSM to SUMO in Network Editor for SUMO. (a) Importing Wizard, (b) 
Resulting SUMO network.  
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(a) 

 
(b) 

Figure 3-7: Verifying one of the traffic lights program in Las Palmas scenario. (a) Traffic Lights program 
generated automatically during the importing process. (b) Modified traffic lights program, using the Traffic Lights 

Editor implemented for Network Editor for SUMO. 

Finally, some traffic demand was generated for Las Palmas scenario, using the demand 
package of sumolib4matlab, then the simulation was set up in order to test TraCI4Matlab. 
Particularly, the traci.edge.getCO2Emission was used for obtaininig and plotting the 
generated CO2 emissions in Las Palmas road in both directions. Figures 3-9 and 3-10 show a 
screenshot of the Las Palmas simulation and the obtained CO2 emissions, respectively. 

 

 
Figure 3-8: Modifying a traffic lights program using the Traffic Lights Editor developed for Network Editor for 

SUMO. 
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Figure 3-9: Screenshot of the Las Palmas simulation scenario. 

 
Figure 3-10: CO2 Emissions obtained for Las Palmas road in both directions using TraCI4Matlab. 
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3.5 Conclusions 

This article presented the development process of tools aimed to simplify the creation of 
simulation scenarios in SUMO, based on the SCRUM agile software methodology and the re-
engineering of existing open-source packages. The effort required to accomplish the 
requirements stated in the MOYCOT project was divided in three sprints, resulting in three 
software products: TraCI4Matlab, sumolib4matlab and two modules for Network Editor for 
SUMO that allow importing maps from OSM and editing traffic lights programs. These tools 
were incorporated in a methodology for setting up simulation scenarios in SUMO that 
includes open tools such as those offered by the Open Street Maps project and the JOSM 
editor, so that their functionalities are complementary. Finally, the proper functionality of 
these software products was demonstrated in a small scenario in the city of Medellín.  

For future work, Network Editor for SUMO (NES) could be extended further to allow the 
creation and edition of any SUMO object. Additionally, the graphical demand generator 
should be implemented in NES and improved to define multimodal traffic and incorporate the 
different strategies for demand generation allowed by SUMO such as O/D matrices and Traffic 
Assignment Zones. 

The development of MOYCOT project plans to deploy the entire solution in a parallel 
execution. The proposal is to allow multiple chained simulations, dealing with complex and 
high concurrent scenarios that involves an entire traffic congestion in the metropolitan area. 
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Abstract 
This paper presents an approach for coupling traffic simulators of different resolutions in 
order to conduct both large scale and high fidelity virtual evaluations of Advanced Driver 
Assistance Systems based on Vehicular Adhoc Networks. The emphasis is put on the need for 
such an attempt to satisfy the constraint of performing simulations in real time. Both, the 
methods to accomplish this as well as the resulting performance are described. 

Keywords: V2V Communication, ADAS, Multi-Resolution Simulation 

4.1 Introduction 

Vehicular Adhoc Networks (VANETs) have attracted a lot of research attention over the last 
years due to the potential improvements in traffic safety, efficiency and driver comfort. A high 
variety of applications, commonly referred to as Advanced Driver Assistance Systems (ADAS), 
such as cooperative driving and subsequently automated driving, can only be enabled 
through wireless communication between the vehicles on the road. 

Before deployment of such systems, which often exhibit safety-critical features, in series 
production on a large scale a lot of effort has to be put into testing and validation. Although 
real test drives using physical testbeds of prototype vehicles offer the highest degree of 
realism, the large amount of financial, material and human resources needed to perform 
large-scale and extensive testing of vehicular networks render their use rather impossible. Due 
to this, simulations are employed for obtaining a view of the performance of such solutions in 
large-scale virtual environments. As well, simulation-based evaluation techniques particularly 
allow testing of those complex systems in a wide variety of dangerous and critical scenarios 
without putting humans and material at risk while at the same time being less resource-
intensive. 

In the automotive industry the use of simulation is well established in the development 
process of traditional driver assistance and active safety systems. However, the current 
emphasis is primarily on the simulation of individual vehicles at a very high level of detail [1]. 
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When investigating and evaluating the performance of ADAS based on vehicular 
communication, this isolated view of a single vehicle alone or a small number of vehicles in 
the simulation is not sufficient anymore. Potentially every vehicle equipped with wireless 
communication technology is coupled in a feedback loop with the other road users 
participating in the vehicular network and therefore the number of influencers which need to 
be taken into account is drastically increased. 

These considerations lead to a trade-off between the accuracy in terms of the simulated level 
of detail of each vehicle and the scalability in terms of the number of vehicles that can be 
simulated with the computing resources available. In this paper we present an approach on 
how to solve this trade-off by coupling multiple resolutions of traffic simulations to get highly 
accurate simulation results where it is necessary and simultaneously achieving an efficient 
simulation of large scale scenarios. 

The rest of this paper is organized as follows. The testing and evaluation of real-world 
implementations of ADAS imposes a certain set of additional requirements, which are 
discussed in section 4.2 before giving an overview of the related work. Section 4.3 describes 
the concept of our multi-resolution traffic simulation approach. In section 4.4 we evaluate the 
performance by means of an exemplary scenario. In section 4.5 we discuss the limitations of 
the approach and conclude the paper in section 4.6. 

4.2 Background and Related Work 

Before we proceed to the discussion of related work, it is essential to illustrate our scope and 
area of application. In order to evaluate and validate real implementations of ADAS in a 
simulated, virtual environment, both state and behavior of the vehicles must be modeled and 
simulated in high fidelity. We define the term high fidelity as a three-dimensional problem:  

To substitute the real vehicle by its simulated counterpart, the virtual vehicle must provide its 
state variables in a sufficient range, in sufficient precision and in a sufficient temporal 
resolution. The concrete manifestations of these three requirements depend on the respective 
use case. For example a Cooperative Adaptive Cruise Control (CACC) system will need, 
among others, the dynamic state of the vehicle (e.g. speed, acceleration, position), powertrain 
state, RADAR sensor values as well as the input from the wireless communication channel at 
different sampling rates [2]. If any of these requirements is not met, e.g. a necessary state 
variable is not covered by the simulation model, simulative testing can not be performed. 

Since the range of wireless communication technology is higher than what can be achieved 
through conventional sensors, even vehicles which are farther away can act as relevant 
information sinks and sources and therefore influence the driving assistance system as well as 
the road traffic system as a whole. In order to capture these effects in the simulation, a naive 
approach would be to simply scale existing, high detailed simulations by increasing the 
amount of vehicles in the simulated area. However, these high-detail simulations are 
extremely computationally intensive and hence are not suitable to perform evaluations of 
large-scale scenarios in a reasonable amount of time. This also prohibits their use in 
hardware-in-the-loop simulations where a real time constraint must be fulfilled [1]. 

This additional timing requirement conflicts with the aforementioned three dimensions of 
simulative high fidelity. There are numerous references that deal with similar issues in the 
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fields of traffic simulation, VANET simulation and multi-resolution simulation. In the following 
we give a brief overview of those research areas in order to state the fundamentals of this 
investigation: 

4.2.1 Traffic Simulation 

Road traffic simulations can generally be subdivided into the following four categories 
according to the level of detail [3,4]: Macroscopic, mesoscopic, microscopic and nanoscopic. 
While macroscopic flow models describe traffic at a high level as aggregate flows, 
microscopic simulations model the behavior and interactions of each simulated entity 
individually with specific state variables such as position, speed and acceleration. Mesoscopic 
models are medium-detailed models where traffic is usually represented by queues of 
vehicles. In nanoscopic models, which are also referred to as submicroscopic models, an even 
higher level of detail is achieved through the subdivision of each vehicle in multiple subunits. 
This allows to model for example the vehicle dynamics, complex decision processes of the 
driver or the interaction with the vehicle surroundings more accurately. The necessary amount 
of computation time for the traffic simulation rises considerably with the increasing degree of 
detail. 

4.2.2 VANET Simulation 

VANET SimulationThe usual strategy to simulate VANETs found in literature is to 
bidirectionally couple a network simulator and a microscopic traffic simulation. Following this 
approach the interactions between road traffic and network protocols are represented and 
the mutual impact can be explored [5,6]. The majority of research publications focuses on the 
investigation of low level networking subjects such as medium access [7] or rather high level 
concepts of applications such as reducing CO2-emissions [8]. For this kind of studies it is 
sufficient to apply realistic mobility patterns originating from the microscopic traffic 
simulation. In this bird’s eye view of the overall system it is not necessary to model individual 
cars in the high level of detail mentioned above because the accuracy of the vehicle 
representation has a negligible influence on the simulation results of the vehicular network. 
Therefore the three requirements of high fidelity in terms of modeling and simulation 
individual vehicles need not be considered when simulating VANETs on such an abstract level. 

4.2.3 Multi-Resolution Simulation 

Multi-Resolution Modeling (MRM) is defined as the combination of different models of the 
same phenomenon at different levels of resolution which are then executed together [9]. This 
methodology allows to find a good balance between simulation accuracy and computing 
resources. High resolution models, which provide accurate simulation results at the cost of 
high computational efforts, are only applied in limited areas of interest whereas the major 
part of the simulation is handled by less acurate but also less resource consuming low 
resolution models. However, not only the difference in execution speed can be exploited but 
also the fact that low resolution models tend to give a better overall understanding of the 
system under examination because of their rather abstract view of the big picture. 

MRM has been successfully applied in road traffic simulation. In [10] a combination of a 
microscopic simulation modeling the inter-vehicle interactions and a computationally less 
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expensive macroscopic simulation applied to freeways is described. This allows a scalable, yet 
accurate investigation of traffic flow in large scale networks. This approach is not applicable 
for VANET simulations since due to the flow-based simulation in macroscopic models accurate 
vehicle positions are missing which is crucial when simulating vehicular networks. In [11] a 
coupling of two different microscopic traffic simulators of different accuracy is implemented 
for VANET simulation to exploit the difference in execution speed. In [11] and in [12] the 
areas of interest are fixed throughout the simulation, for example road intersections are 
simulated at a higher level of detail than freeways. In contrast to that, the areas of interest are 
not statically fixed in [13] but rather depending on the simulation context. 

4.2.4 Combining Traffic and Driving Simulation 

A rather recent research direction is the combined simulation of both traffic and driving 
simulation. A co-simulation of a microscopic traffic simulation and a driving simulator [14] 
respectively a robotics simulator [15] has been investigated. In these approaches the behavior 
of a fixed subset of all vehicles is remote controlled through an external simulator, which 
allows to have a predefined number of detailedly simulated vehicles to be surrounded by a 
large number of microscopically simulated vehicles. 

4.3 Novel approach for Multi-Resolution Traffic Simulation 

4.3.1 Dynamic Spatial Partitioning of Simulated Area 

Our approach aims to couple traffic simulation models of different resolutions at dynamic 
regions of interest. Contrary to conventional traffic simulation we are not interested in 
investigating a large number of vehicles from a bird’s perspective but the focus is rather on a 
single vehicle or a limited number of vehicles which are used to conduct a test drive in a 
virtual environment. In the following we will refer to this kind of vehicle as the EGO car. The 
ADAS under investigation is imagined to be on board of such an EGO car. The simulated 
measurements and sensor values are fed into the ADAS. Depending on its type and its use 
case, the respective ADAS directly or indirectly influences the vehicle’s state and behavior. 

As stated before, all surrounding vehicles both near and far away from the EGO car need to 
be taken into consideration because of the wide range of transmission on the wireless 
communication channel. However, we can distinguish between highly relevant and less 
relevant vehicles. This distinction is based on the criterion of the respective distance between 
the vehicles to the EGO car. Nearby vehicles are inherently of more relevance because they 
pose a higher danger in terms of possible collisions and because their messages transmitted 
on the vehicular network are of higher importance due to the vicinity of their origin. 

Based on this distance criterion an area of interest is defined which is centered around the 
EGO car and in which the defined simulative high fidelity requirements must be fulfilled. Since 
the EGO car is driving continuously through the virtual environment, this area of interest is 
being moved along likewise. We therefore partition the global area of the simulation 
dynamically into a High Resolution Area (HRA) and a Low Resolution Area (LRA). Figure 4-1 
shows a schematic view of the dynamic spatial partitoning. There the HRA is defined as the 
area of a circle which is centered around the EGO vehicle. Red vehicles are within that circle 
and are therefore simulated in high resolution by the nanoscopic simulator, whereas the 
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green vehicles are outside of the circle and are consequently simulated in low resolution by 
the microscopic simulation. All vehicles exist in the microscopic simulation but in the 
nanoscopic simulation only the high resolution vehicles are contained and their movements 
are applied to their proxy counterparts in the microscopic simulator. 

Due to the dynamic nature of road traffic the EGO car, the high resolution vehicles as well as 
the low resolution vehicles are permitted to move continuously. The classification of the 
assigned resolution mode is therefore performed after each time step of the simulation. 
Vehicles for which the classification has led to a change in resolution are transferred to the 
appropriate simulator. This change of resolution is possible in both directions at every time 
step. However, since the HRA is defined to be centered around the EGO car, it is always 
simulated in high resolution. 

  

In order to prevent vehicles which are close to the boundary between HRA and LRA from 
oscillating very frequently between the two resolution areas, a hysteresis controller as 
depicted in figure 4-2 is applied in the classification process. As shown in figure 4-1 the two 
thresholds 	 	and 	 	 are defined. A vehicle is transferred into the high resolution 
simulation only if its distance to the EGO car falls below the value of	 . The exchange back 
to the low resolution simulation is carried not out until the threshold 	 is exceeded. 

  

The difference in simulation resolution switching is shown in figure 4-3 by an exemplary 
trajectory. Without the hysteresis the change in resolution is performed multiple times, 
whereas when applying the hysteresis controller the vehicle stays in the high resolution model 
while being close to the boundary. 

The extent of	 	defines the circumcircle in which vehicles are simulated by the nanoscopic 
simulator. This value needs to be determined separately for each application scenario, for 

Figure 4-1: Dynamic Partitioning of Simulated Area

Figure 4-2: Hysteresis control of the simulation resolution 



4 Multi-Resolution Traffic Simulation for Large Scale High Fidelity Evaluation of VANET Applications 

42 

example in an urban scenario due to the expected low traffic speed a lower value can be used 
than what is suitable for a freeway scenario. As an alternative to the definition of a fixed size 
the value of 	can be determined dynamically at simulation runtime, for example based on 
traffic speed, volume of traffic or even depending on the currently available computing 
capacities. 

  

The gap  defines the size of the hysteresis window for the dynamic change 
between the two simulators.  can be selected in both absolute and relative terms in 
relation to  and exhibits a lower dependence with regard to specific scenarios and traffic 
speeds. 

Our approach of dynamic spatial partitioning of the simulated area enables us to allocate the 
processing resources between the simulators. As the focus is only on a relatively small region 
of the simulated area we achieve both a simulative high fidelity in this region of interest and 
the simulation of large scale scenarios. 

4.3.2 Utilized Simulators 

In the following we describe the concrete manifestations of the simulators which we combine 
using the above described concept to achieve a multi-resolution traffic simulation. 

4.3.2.1 Microscopic Traffic Simulator - SUMO 

We chose to use Simulation of Urban MObility (SUMO) as the traffic simulator responsible for 
the simulation of the LRA. SUMO is a microscopic, space-continuous and time-discrete 
simulator. While it is employed in a wide range of research domains, its most notable use is 
shown in a high number of research papers regarding VANET simulations [16]. SUMO is well 
known for its high execution speed as well - being open source - its extensibility. In [17] it is 
reported that it can handle 200,000 vehicles in real-time when using timesteps of 1 second. 
Due to its efficiency, which is partly achieved through its simplified driver model [18], SUMO is 
ideally suited to simulate a high number of vehicles residing in the LRA. 

Figure 4-3: Comparison of simulation resolution switching
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4.3.2.2 Nanoscopic Traffic And Vehicle Simulator - VIRES Virtual Test Drive  

We employ the nanoscopic traffic and vehicle simulator VTD for the simulation of the high 
resolution vehicles. VIRES Virtual Test Drive (VTD) has been developed for the automotive 
industry as a virtual test environment used for the development of ADAS [19]. Its focus lies on 
interactive high-realism simulation of driver behavior, vehicle dynamics and sensors. VTD is 
highly modular, so any standard component may be exchanged by a custom and potentially 
more detailed implementation. Its standard driver model is based on the intelligent driver 
model [20], however an external driver model may be applied if necessary. The same concept 
applies to the vehicle dynamics simulation, where the standard single-track model can be 
substituted by an arbitrarily complex vehicle dynamics model adapted for specific vehicles. 
Each simulated vehicle can be equipped with arbitrary simulated sensors, for example a 
RADAR sensor, which is shown in figure 4-4. 

While VTD is designed for online operation, it is however not suited to simulate a large 
number (i.e. thousands) of vehicles with respect to real time due to the details and complexity 
of the simulation. Therefore only the EGO car as well as the vehicles residing in the HRA are 
simulated by VTD. 

 

  

4.3.3 Coupling concept 

4.3.3.1 offline preprocessing 

Both simulators rely on different data formats representing the modeled road network. In 
order to be able to run a co-simulation of both simulators the underlying data basis has to 
match. VTD uses the OpenDRIVE  format to specify the road network. This specification 
models the road geometry as realistically as possible by using analytical definitions. SUMO on 
the other hand approximates the road network by line segments. There are additional 
differences in the modeling of intersections and lane geometries. To achieve a matching 
database we convert the road network in an offline preprocessing step from OpenDRIVE to 
the file format SUMO supports.  

Figure 4-4: 3D visualization of a simulated RADAR sensor in VTD
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4.3.3.2 online coupling and synchronization 

The coupling of the simulators at simulation runtime is based on the master-slave-principle. 
Figure 4-5 shows this sequence of operations during a single simulation step, in which VTD 
und SUMO can operate with different temporal resolutions. 	is the length of a time step 
for the HRA, whereas 	is the length of a time step for the LRA. Typically, the nanoscopic 
simulation is run at a higher frequency than the microscopic simulation. 	respectively 

	denote the local simulation time in each simulator. At the beginning of each simulation 
step a new time step is simulated in VTD. If the next time step has been reached for SUMO 
and therefore the condition 	 	is fulfilled, the state of the high resolution 
vehicles is sent to SUMO through a gateway. It then triggers the simulation of the next 
timestep in the low resolution model and as a result the positions of the low resolutions 
vehicles are passed back. These vehicles are now classified according to section 4.3.1 and, if 
applicable, the change of resolution is performed for individual vehicles. When an exchange 
of a vehicle between the simulators happens, the previously mentioned inherent difference in 
the underlying road network may cause problems if a vehicle can not be mapped based on its 
position on a specific lane due to difference in accuracy. This is especially true for complex 
intersections which are modeled quite differently.  

After all resolution changes have successfully been completed the simulation is unblocked 
again and the next time step can be simulated. This synchronization is very important to 
ensure reproducible simulation results across multiple simulation runs. 

  

4.3.4 Implementation 

The gateway depicted in Figure 4-5 is implemented as a dynamic plugin for VTD written in 
C++. It uses the TraCI network interface [21] provided by SUMO to control the vehicles of the 
microscopic simulation. 

Figure 4-5: Synchronization 
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4.3.5 Generalization of the Approach 

While the description in section 4.3.1 focuses on the simulation of a single EGO car, the 
concept can be generalized as follows. Generally speaking multiple EGO cars can be 
simulated analogously and can exist either in separate or in joined areas of high resolution. 
The dynamic spatial partitioning concept is not necessarily limited to having only two different 
simulators forming the multi-resolution simulation but even more simulators could be added 
to the synchronization scheme in figure 4-5. 

The definition of the area of interest is also not limited to a circle. The circle was chosen due 
to its simple definition and fast distance calculations in the classification process, but the HRA 
could be represented by arbitrary complex shapes. As another generalization, the 
classification process need not only be based on pure geometrical calculations but could also 
be enriched with logical conditions, for example on a freeway vehicles driving on oncoming 
lanes could be excluded due to their limited relevance to the EGO car. 

4.4 Evaluation 

4.4.1 Scenario and Simulation Setup 

A synthetic scenario was created for testing the coupling concept and evaluating its 
performance. It consists of a single straight road running west to east with a length of 50 
kilometers and two lanes, one for each direction. Each lane is configured to have a constant 
inlet of 1000 vehicles per hour heading either east or west. The EGO car is located near the 
start of the road. It drives from west to east and is followed by a traffic flow and heading to 
the oncoming traffic flow. This artificial road was first modeled in the OpenDRIVE format and 
was then converted to the SUMO road network format. 

We performed two series of experiments. In the first series, the nanoscopic traffic simulator 
VTD was applied to the whole simulated area. In the second series we used the described 
multi-resolution concept to partition the simulation area between VTD and SUMO. We chose 
a timestep of s 20	ms for the high resolution area in VTD and a timestep of s 1	s 
for the low resolution area in SUMO. The hysteresis thresholds which define the dynamic area 
of interest were set to R 500	m and R 550	m. 

Both simulators are executed on the same computer which is equipped with an Intel Xeon 
CPU E5-1620 at 3.60 GHz and 16 GB of RAM. The operating system is Ubuntu Linux 14.04 
with a 3.13 64bit kernel. We used VTD version 1.4.1 with 3D rendering disabled and a 
custom branch of SUMO v0.21 that incorporated an in-work version of the methods needed 
to exchange vehicles between VTD and SUMO. 

4.4.2 Performance Evaluation 

We measured the duration it takes to perform each simulation step over the simulation period 
of 1800 seconds while the number of vehicles is constantly being increased. Each series 
consists of five separate simulation runs to account for fluctuations in the measured execution 
times. To illustrate the trends of the measurements more clearly the moving average is also 
displayed in the following figures. 
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Figure 4-6 shows the performance development of the nanoscopic simulation while 
increasing the simulated vehicle count over the simulation period. The duration of each 
simulation step is almost constant up to a count of 70 vehicles. Until then, the duration is 
around 12 ms, which is less then the timestep length of 20 ms and therefore yet fulfills the 
real time constraint. At around 150 vehicles, the duration is beyond these 20 ms and real time 
simulation is not possible anymore. With increasing vehicle count the duration for each 
timestep also considerably increases and reaches 180 ms at the end of the simulation period. 
This results in an increase of factor 15 compared to the amount of computation time at the 
beginning of the simulation. The overall simulation took over 120 minutes to complete, which 
is 4 times more than the simulated time.  

Figure 4-7 shows the performance development of the multi-resolution simulation in the 
same simulation scenario over the same simulation period. While the total vehicle count is 
increased the same way as in the pure nanoscopic simulation, the separately plotted 
nanoscopic vehicle count illustrates the amount of cars which are within the high resolution 
area. It shows that reducing the nanoscopic model’s area of interest fulfills the aim of 
reducing the overall simulation time. After a local maximum of 11 nanoscopic cars is reached 
this count decreases slowly since slower vehicles are left behind the faster moving EGO car. At 
around simulation time 1350 seconds the two traffic flows from each end of the road meet in 
the middle of the road, which then increases the nanoscopic vehicle count. However, due to 
the limited extent of the HRA the nanoscopic vehicle count does not exceed a certain limit, 
which for the given configuration is at around 27 vehicles. The duration for the time steps 
stays on average constant around 12 ms, so it can be seen that the overhead resulting from 
the coupling of the two simulators is negligible as is the execution time of the microscopic 
simulator due to its less detailed yet much more efficient simulation model. The overall 
simulation took less than 18 minutes to complete, so the simulation is faster than real time by 
factor 1.66. The real time constraint is fulfilled throughout the whole simulation period. 

  

Figure 4-6: Simulation Performance - nanoscopic simulation only 
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4.5 Discussion 

The above shown performance evaluations state that the multi-resolution approach leads to 
the desired goal of a highly detailed simulation in the region of interest while maintaining a 
high overall performance. However, there are additional concerns, which we cover in the 
following. 

When switching between resolutions and simulators, maintaining simulation consistency is of 
utmost importance [22]. The change of resolution from high to low can generally be handled 
rather simply by losing information through a transformation function. The opposite direction 
though is problematic. The presented approach will face a consistency problem when using 
vehicle dynamics models with a higher level of detail. When switching from low to high 
resolution only a minimal subset of the state variables (position and speed) is available. The 
remaining state variables (pitch and roll angle of the car body, engine torque, current gear, 
etc.) must be somehow interpolated to reach a valid state in the simulation model. 

Additionally, simulating using the nanoscopic traffic simulator naturally requires a high 
resolution representation of the simulated area, especially the road network, but furthermore 
a 3D model of the environment if this is necessary for the employed sensor models. 
Microscopic simulation usually works with rather coarse road networks, which are available 
publicly from sources like OpenStreetMap. Nanoscopic simulation however has additional 
requirements, e.g. the continuity between road segments due to the vehicle dynamic 
simulation, which need to be satisfied. Obtaining the data basis in the necessary detail is not 
always directly possible and can cost an additional amount of time and money. 

4.6 Conclusion 

In this paper we proposed a concept for coupling traffic simulators of different simulation 
resolutions to achieve a multi-resolution traffic simulation which focuses on a dynamically 
determined area of interest. The presented methodology partitions the simulation area into a 
variable, highly detailed region of interest represented by a nanoscopic model and the 
surrounding area simulated at low resolution by a microscopic model. The evaluation shows a 

Figure 4-7: Simulation Performance - multi-resolution simulation
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dramatic reduction of computation time in comparison to a pure nanoscopic simulation of the 
same simulation dimensions, which even makes real time simulation possible. This divide-and-
conquer strategy enables accurate, realistic and large scale testing and validation of real 
implementations of driver assistance systems based on vehicular networks in a virtual 
environment. As the next steps, we are investigating the application of the multi-resolution 
simulation methodology for the other domains relevant for the simulation of vehicular 
networks, namely network simulation and application emulation, to model the whole system 
across all domains efficiently at high fidelity. 
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5 How does the traffic behavior change by using In-
Vehicle Signage for speed limits in urban areas? 

Laura Bieker; 
German Aerospace Center , Rutherfordstraße 2, 12489 Berlin, Germany 

Laura.Bieker@DLR.de 

Abstract 
The impact of In-Vehicle Signage (IVS) for speed limits via Car2Infrastructure communication 
was investigated in a test field in Tampere (Finland). The test field results show that IVS has a 
positive influence on the speed of the drivers of the equipped vehicle. Different scenarios for 
the estimated penetration rates of equipped vehicles were set-up to see the overall effects on 
the traffic efficiency by IVS. The effects on the traffic efficiency were simulated in SUMO. The 
simulation results show that no benefit in traffic efficiency for all traffic participants could be 
reached by IVS.  

Keywords: C2X, In-Vehicle Signage, Traffic efficiency 

5.1 Introduction 

The purpose of the In-Vehicle Signage (IVS) function is to display the traffic signs on an 
onboard unit inside the vehicle to improve the driver’s perception of the sign. The main idea 
was that many drivers would reduce speed if they would be more aware of the current speed 
limit. An implication of the reduced speed could be an effect on traffic safety and/or traffic 
efficiency.  

The IVS function is implemented via Car2Infrastructure communication (C2I). This means that 
the car is sending and receiving messages from/to a road side unit along the road. In this 
study the IVS for speed limits in urban areas was investigated. The onboard unit reminds the 
driver of speed limits and warns if he/she is violating it. The visual warning is given at the 
location of the traffic sign and was visible for 100-200 meters (depending on the relevance 
and physical environment). 

IVS informs the driver under the following circumstances: when driving just under (90%–
100%), just above (100%–110%) or significantly above (over 110%) the speed limit. Here, 
the purpose of this system is to make the driver aware of how he/she is driving with respect 
to the speed limit. The purpose of the IVS is to encourage the driver to slow down when 
exceeding the speed limit.  

5.2 Test field in Tampere (Finland) 

In the EU project DRIVE C2X 7 test sides have been built up [1]. A basic set for C2X-services 
has been tested at these locations, see Figure 5-1. 
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For this study the data from the test field in Tampere (Finland) were used, see Figure 5-2. The 
test-field has roads with different speed limits. VTT was operating the test-field and was 
supported by the city of Tampere. The test field includes 8 km of urban roads and normally 
1000-2500 vehicles per hour are driving on the streets. 

 

5.3 Analysed Data  

The data were collected from 24.April to 08.May 2013. The cars of the test drivers were 
equipped with Car2Infrastracture communication (C2I). Along the streets 4 road side units 
were installed to collect the data of the equipped vehicles and send information about the 
traffic signs. Two test drive scenarios exist: 

Figure 5-6: Test sides of DRIVE C2X [1]

Figure 5-7: Finnish test field
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(1) the baseline scenario: the vehicle is driving like a normal vehicle without IVS only 
the vehicle data is collected via C2I.  

(2) Treatment scenario: the vehicle is driving with IVS. The dataset includes 544 events, 
with equally 277 for baseline and treatment events being ready for the analysis. 

Indicator Mean (baseline) Std. Dev. (baseline) Mean (treatment) Std. Dev. 
(treatment) 

Average speed  

(km/h) 
54.551 3.988 53.738 3.607 

Average speed 34.651 4.402 33.144 3.819 

30km/h speed limit) 

(km/h) 

    

Average speed 
40km/h speed limit 

(km/h) 39.017 3.510 38.568 3.286 

     

 

The analysed data show that the speed limit warnings have a small positive effect on the 
driving behavior in terms of reduction of speed (of 4% at 30km/h speed limit and of 1% at 
40km/h speed limit). A reduced speed also implies often reduced fuel consumption and 
produced emissions. These positive results are only for the equipped vehicles, but it would be  
interesting to see how these results could influence the traffic behavior overall. 

5.4 Simulation 

To scale up the results of the equipped vehicles on a level of a whole vehicle population 
(including equipped and non-equipped vehicles) a simulation in SUMO was performed [2]. 

Simulation Scenario 

An urban road of 1 km length was used as simulation scenario, see Figure 5-3. The same 
scenario is simulated with a speed limit of 30 km/h and 40 km/h to analyze the difference on 
traffic efficiency in both cases. A road with two lanes was chosen so that all vehicles are 
driving in the same direction. The opposing traffic is assumed to have no effects on the 
driving behavior. Simulation runs with only one lane showed that the vehicles have to adapt 
their speed to the leading vehicle with the lowest speed because no overtaking is possible. 

Table 5-2. Data from the finish test field 
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IVS is not expected to have an effect on route choice. Hence it is sufficient to analyse corridor 
networks without route alternatives. In SUMO every driver has an own speed which is 
randomly computed for every street and the corresponding speed limit. For every vehicle type 
a speed factor and a standard deviation can be given. The desired speed of each vehicle is 
randomly given according to a lognormal distribution with the average speed and the 
standard deviation from the field test. Additionally, the standard deviation is also given for the 
field test data. Given these figures a lognormal distribution can be calculated and the desired 
speed of the vehicles is set according to the speed distribution 100 meters in front of the 
speed limit so the vehicle has time to adapt its speed. 

Penetration rate 

For the simulation different scenarios of penetration rates of the vehicle within the simulation 
were investigated within the DRIVE C2X project [3]:  

 a main estimate,  
 a pessimistic estimate and  
 an optimistic estimate.  

Figure 5-4 shows graphs of these estimates over time. Four cases will be considered for 
the penetration rates in the simulation scenarios. 

Figure 5-8: Urban scenario with speed limits 30 and 40 km/h, two lanes in the same direction. 
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Scenario Car penetration rate 

Baseline (2010) 0.00% 

Low (2020, Main) 10.39% 

Medium (2030, Pessimistic) 26.29% 

High (2030, Main) 90.84% 

Every simulation scenario was run 10 times with a high traffic demand (peak) and low traffic 
demand (off-peak). The results of the simulation runs can be found in the next section. 

5.5 Results 

For analyzing the results of the simulation 3 induction loops were included within the scenario 
to measure the local mean speed. The first speed detector was 200 meters before the speed 
limit sign, one was directly at the location of the speed limit sign and one was 200 meters 
after the speed limit sign. The travel time and the delay time was calculated for the whole trip 
of each vehicle within the simulation. 

Indicator Unit Baseline Low Medium High 

Travel time (av) s 94.01 93.65 93.76 93.99 

Travel time (std) s 12.88 12.52 12.56 12.23 

Delay (av) s 17.09 16.74 16.87 17.06 

Delay (std) s 12.88 12.52 12.56 12.23 

Speed detector 1 km/h 51.51 52.16 51.56 51.65 

Speed detector 2 km/h 38.79 38.89 38.99 38.69 

Speed detector 3 km/h 36.78 36.89 37.12 36.48 
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Figure 5-9: Fleet penetration rate estimates for all Drive C2X systems. 

Table 5-3: Fleet penetration rate

Table 5-4: Results of simulation scenario with off-peak demand 
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The differences in travel time, delay and speed are in almost all scenarios very small and not 
significant compared to the baseline scenario. Some strange behavior can be seen for 
example the average travel time decreases in the low scenario while it was expected to 
increase because a larger percentage of drivers would reduce the speed. An explanation could 
be that the measured speed differences in the test fields are too small to see the difference in 
a stochastic simulation. Namely the changes are 1.507 km/h for speed limit 30km/h, and 
0.449 km/h for speed limit 40 km/h. These small changes seem to be neglected in the 
simulation with many traffic participants. One way would be to have even more simulation 
runs to see whether it is possible to produce significant results. Another way would be to 
check whether significant results could be produced if the speed difference for equipped and 
non-equipped vehicles would be larger. In the full paper the simulation scenario is run also 
with artificial numbers of speed changes to see the effects on traffic efficiency then. 

Indicator Unit Baseline Low Medium High 

Travel time (av) s 94.15 94.23 94.24 94.10 

Travel time (std) s 12.91 12.60 12.99 12.07 

Delay (av) s 17.19 17.27 17.28 17.14 

Delay (std) s 12.91 12.60 12.99 12.07 

Speed detector 1 km/h 49.48 49.62 49.55 49.63 

Speed detector 2 km/h 38.71 38.57 38.60 38.45 

Speed detector 3 km/h 36.55 36.38 36.57 36.38 

5.6 Summaries 

The results of the test field indicate that IVS has positive effects on the speed of equipped 
vehicles. IVS can influence traffic efficiency by displaying speed sign information in car and 
thereby adapting the drivers’ desired speed. The effects found in the field trial were used to 
model the change in desired speed in the traffic simulations: for urban roads the desired 
speeds were lowered by 1% to 4%. The results are not significant. It could be presumed that 
the influence of IVS in Urban areas is too small to see benefits in traffic efficiency of the 
whole traffic. 
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Table 5-5: Results of the simulation scenario with peak demand 
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Abstract 
Two of the basic methods of traffic assignment being static assignment of link costs and a 
dynamic assignment based on microscopic traffic simulation results are combined to derive a 
good starting solution for the more precise microscopic approach from the coarse 
macroscopic solution. In addition a new tool from the SUMO suite and some first results of 
applying the schema to the city of Berlin are presented. 

Keywords: SUMO, Macroscopic Assignment, Dynamic User Assignment, Microscopic 
Traffic Simulation 

6.1 Introduction 

In the context of the VEU project a coupling between an agent based traffic demand model 
(TAPAS [3]) and a microscopic traffic simulation (SUMO [1]) is being developed. The objective 
of this connection is to give realistic feedback about the expected travel times to the agents 
of demand model. This allows for an iterative refinement of the planned activities as well as 
the expected mobility costs in terms of time but also emission. Since both models are based 
on the simulation of individual agents, which is a potentially time consuming task, and they 
should be applied to scenarios of larger cities like Berlin (3.5 million inhabitants), improving 
runtime performance is almost as important an issue as the quality of the solution. This paper 
will focus mostly on the runtime aspect by describing an approach to traffic assignment which 
differs considerably from the current state of the art in SUMO while retaining or even 
improving the quality of the user assignment. 

The next section describes the current state of dynamic user assignment in SUMO together 
with some drawbacks and limitations especially concerning large scenarios. Section 3 
describes the new MARouter tool recently introduced into the SUMO suite and how it can be 
applied to solve some of the limitations of the pure microscopic approach. Section 4 and 5 
describe the Berlin scenario and give some first results of the approach. 

6.2 Microscopic Traffic Assignment with SUMO 

The current microsimulation approach in SUMO involves the repeated execution of a routing 
step and a detailed microsimulation on the resulting routes leading to a new traffic situation. 
This traffic situation is measured edgewise mostly based on the single measurement of travel 
time but sometimes also on other measurements such as fuel consumption [2]. The resulting 
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edge costs are fed back into a router which calculates new route costs and probabilities 
(based on a model by Gawron[4]) trying to achieve a user equilibrium state, where no user 
can reduce its individual route cost by changing to a different route. As the description 
already indicates this process involves a large number of microscopic traffic simulations which 
in itself is already a time consuming task (simulating a city like Berlin for a whole day can 
easily take up to several hours). Usually there are constraints applied to limit the number of 
iterations either to a fixed amount or to some limit in the variation of the travel times among 
the available routes for each car. 

Still there are major complications in using this approach because it tends to give unstable 
results for large scenarios where after a relative period of stability later iterations show very 
different travel times (deviating in both directions). Furthermore it tends to recover only very 
slowly from iterations in which the network was completely jammed. For our scenario we 
took the most basic approach, evaluating an assignment as being successful, when the 
number of cars being locked (a car is considered locked when it does not move for more than 
five minutes) is below 5% of the total number of cars. In the conventional microscopic 
approach we failed to fulfil this criterion using the Berlin scenario described below, so we 
needed to plug in another method leading to two different strategies, one being the 
MARouter approach described in the next section. The other strategy is based on direct 
routing in the simulation and will be described elsewhere. 

The traffic assignment process itself is still subject to a number of improvements since it can 
for instance easily get confused if there are a lot of routes between an origin and a 
destination travelling the same jammed edge, because it stores by default only travel times for 
(a limited number of) whole routes and not for single edges. It is also expected that a 
macroscopic preprocessing can help in avoiding an early breakdown of the iterative 
assignment process due to such events. 

6.3 The Macroscopic Assignment Tool (MARouter) 

The MARouter (short for macroscopic assignment router) is a tool which was introduced into 
the SUMO suite starting with the release of version 0.22.0. It implements standard algorithms 
for macroscopic traffic assignment such as the iterative assignment algorithm and the 
stochastic user assignment based on Lohse. 

The input for a macroscopic assignment run is either an origin-destination matrix (O-D matrix) 
containing aggregated information about trip counts between traffic zones or a list of trips 
which is then aggregated internally but disaggregated before output. The routing is currently 
available for individual cars only so there is no public transport involved. 

The MARouter is (for large scenarios) much faster than the iterative microscopic assignment 
since it replaces the microscopic simulation step by a simple calculation of expected travel 
times based on the measured demand. This allows for a fast iteration but loses all the benefits 
of microscopic simulation as detailed junction modelling and interaction of traffic flows. In 
order to keep the microscopic advantages in the result, we coupled the approaches to start 
with a macroscopic assignment and then feed the results into the microscopic loop 
mentioned above. 
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6.3.1 Macroscopic Traffic Assignment 

The MARouter implements a traditional static approach to traffic assignment. The input 
consists of an input area (a SUMO network) subdivided into so called traffic analysis zones 
(TAZ) and an origin destination matrix (OD matrix) which is given for a fixed time interval 
(usually a day) and a mode of transport (e.g. passenger cars). This matrix has one entry for 
each pair of origin A and destination B defining the amount of vehicles which move (or rather 
start moving) from A to B. A second input into the modell is a set of capacity restraint (CR) 
functions which model how the travel time on an edge increases with the volume of traffic on 
that edge. The MARouter currently uses functions of the following form: 

∗ 1 ∗  

where  is the travel time in the empty network,  is the number of lanes and  is a constant 
depending on features like the road class (highway or urban road) and the maximum allowed 
speed. At the moment those functions are hard coded into the SUMO codebase and cannot 
be altered by the user (except by modifying the source code). They can be found in the file 
src/marouter/ROMAAssignments.cpp. The MARouter calculates from those OD matrices and 
functions an assignment which is a set of routes for each OD pair together with a number of 
vehicles driving this route. In order to do so several basic algorithms can be employed which 
calculate those mappings iteratively. The most basic approach called iterative assignment 
assigns a fixed percentage of the demand to the net, recalculates the expected travel times 
given the CR functions above and assigns the next part. For further algorithms we refer to an 
upcoming extended version of this paper or to the excellent descriptions in [5]. 

6.3.2 Input formats 

SUMO accepts OD matrices in different formats which originate either from VISUM or from 
the AMITRAN project [6]. An OD matrix in the standard VISUM format looks like the 
following: 

$V 
* From-Time  To-Time 
0.00 24.00 
* Factor 
1.00 
* 
* some 
* additional 
* comments 
* District number 
2 
* names: 
         1          2 
* 
* District 1 Sum = 100 
         0          100 
* District 2 Sum = 0 
         0          0 

 
All lines starting with asterisks are comments so the important information is the time span in 
the beginning, the number and names of the TAZ’ (districts) and then the real demand given 
matrix line by line. In the given example 100 vehicles drive from “1” to “2” during a whole 
day. In the AMITRAN format the same input looks like this: 
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<?xml version="1.0" encoding="UTF-8"?> 
<demand xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/amitran/od.xsd"> 
  <actorConfig id="0"> 
    <timeSlice duration="86400000" startTime="0"> 
      <odPair amount="100" destination="2" origin="1"/> 
    </timeSlice> 
  </actorConfig> 
</demand> 

 
In addition to the VISUM format the AMITRAN format contains information about the mode 
(or rather the vehicle class) it describes as well. This is encoded in the actorConfig which refers 
to an exisiting vehicle type for SUMO. Since the format only allows for numeric ids, the 
mapping from the actorConfig to the vehicle type is done in a separate input file. 

6.3.3 Output format 

The MARouter creates SUMO route files in the standard SUMO format describing the routes 
and the percentages of usage between the different OD relations. For the example given 
above the output would look like this:  

<?xml version="1.0" encoding="UTF-8"?> 
<routes xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/routes_file.xsd"> 
    <routeDistribution id=”0”> 
        <route cost="90.24" probability="100.00000000" edges="middle end"/> 
    </routeDistribution> 
</routes> 

 
MARouter can also directly output flows which can be fed into the simulation or the 
DUARouter / duaIterate.py procedure: 

<?xml version="1.0" encoding="UTF-8"?> 
<routes xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/routes_file.xsd"> 
    <flow id="0" begin="0.00" end="86400.00" number="100" fromTaz="1" toTaz="2"> 
        <routeDistribution> 
            <route cost="90.24" probability="100.00000000" edges="middle end"/> 
        </routeDistribution> 
    </flow> 
</routes> 

 
In this example MARouter determined only a single route between the source and the 
destination. The probability in the described output is not normed to 1 in order to allow for 
easy recalculation of the number of vehicles travelling each of the routes. 

6.4 The Berlin scenario 

The test scenario is the individual traffic demand (only passenger cars, no public transport and 
no delivery / goods traffic) for the city of Berlin consisting of approximately three million trips 
a day between 1100 traffic zones. The TAPAS model sets up a virtual population for the city 
of Berlin and determines its transportation demands for an average weekday. Each person has 
an assigned activity plan representing destinations like work and school places and the time 
they spent there. The input data is based on various sources mainly statistical data from the 
Berlin Microcensus and the “Mobilität in Deutschland” study. For a detailed desciption, see 
[3]. The model generates trips for all available modes of transportation, but in the current 
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implementation only the individual traffic is used for the later microsimulation. The input from 
the TAPAS simulation consisting of individual trips was aggregated on the traffic zone level 
for running the MARouter. The resulting edge loads are fed into the microscopic dynamic 
user assignment procedure as described in section 6.2. 

 

Figure 6-10. The districts of the City of Berlin together with the surroundings (courtesy Google Earth) Each of the 

depicted districts corresponds to roughly 20 traffic analysis zones. 

Afterwards a comparison between the raw microscopic process and the process with 
macrospcopic preprocessing could be performed. Unfortunately the whole process still takes 
in the order of a day to complete so that there are only preliminary results available yet. 

6.5 Conclusion and discussion 

The first results show a speedup of the user assignment runs. To reach a comparable result 
the runtime decreases in a range of 15%-20%. From the small sample set it is hard however 
to judge the final results especially concerning the quality of the solution. More detailed 
results are expected in further research and will be presented at the conference. 

While the speedups are currently not as high as expected the MARouter tool itself seems to 
be of high value because now for the first time we can directly compare macrospcopic and 
microscopic assignment strategies on the same dataset. Further results also on abstract 
networks will be presented in an extended version of this paper. 
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Abstract 
Autonomous vehicles will most likely participate in traffic in the near future. The advent of 
autonomous vehicles allows us to explore innovative ideas for traffic control such as norm 
based control systems. A norm is a violable rule that describes correct behavior. Norm based 
traffic control systems monitor traffic and effectuate sanctions in case vehicles violate norms. 
In this paper we present an extension of SUMO that enables the user to apply norm based 
control systems to traffic simulations. In our extension, vehicles are capable of making an 
autonomous decision on whether to comply with the norms or not. We provide a description 
of the extension, a summary on its implementation and an experimental evaluation. 

Keywords: Normative systems, distributed control. 

7.1 Introduction 

In the near future, smart roads with autonomous vehicles will become prevalent. Vehicles will 
no longer have a driver, but will drive themselves and communicate with the infrastructure 
and other vehicles. This allows, and gives rise to the need, for the investigation of new traffic 
control measures [11]. Traffic control systems can exert some level of influence on vehicles in 
order to improve traffic flow and safety. In this paper, we shall focus on control systems 
where the infrastructure instructs vehicles on how they ought to behave.  

Current control techniques include for instance ramp metering where a traffic light, or 
adaptive speed limit displays, can be used in order to control traffic flows. However, with new 
autonomous vehicles (see [14],[15],[16]) that have the ability to pursue goals, follow 
regulations, and perform an array of actions, we can give more individualized directives. We 
do not necessarily have to rely on drivers to observe road side units, but can communicate 
directly with vehicles, since the vehicles can communicate with their environment, reason to 
decide which actions to perform, and execute their decided actions. In the use case shown in 
this paper we can for instance assign target velocities to individual vehicles. Just like current 
traffic regulations, it is possible that vehicles  violate these regulations by speeding or driving 
on an emergency lane in order to arrive at their destination at an earlier time. We observe 
however that microsimulation platforms such as SUMO do not currently allow for vehicles to 
reason about regulations, the consequences of violations and their personal preferences.  

In this paper we present the implementation of a new traffic control system for SUMO. This 
control system is based on the notion of norms and is hence reffered to as a norm based 
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control system. Norms can be seen as violable rules that specify desirable behavior. Norm 
based control systems are a proposed technique for solving control problems where the 
subjects of the regulations are capable of making autonomous decisions on whether to 
violate the regulations. They lend themselves very well for the cause of traffic control. A norm 
based traffic control system is a more natural way of modeling roads with different properties 
and regulations [13]. We also provide a new vehicle driver model so that vehicles can reason 
about norms. Our implementation is a plug-and-play extension for SUMO. This allows 
researchers to use our extension out of the box.  

We illustrate our framework by applying it to the 
common example of merging traffic streams. For 
a schematic overview, see Figure 7-1 where two 
traffic streams have to be merged together. 
There is one main traffic stream and one 
secondary traffic stream that joins the main 
stream, resulting into a single output stream. The 
goal is to make optimal use of the output 
capacity of the network whilst not causing 
unnecessary traffic jams for the secondary traffic 
stream or compromising safety. A solid analysis of this scenario can be found in [11]. Our 
approach is to use a norm based control system that assigns individual norms to agents. In 
particular, agents are obligated to move or stay on a lane and/or adopt a certain target speed 
until they are released of this obligation. 

Our paper is structured as follows. We first give a brief introduction in the field of norm based 
control systems. We will then show how the norm based control system for SUMO is 
designed, and discuss an application. Following that, we describe how vehicles can reason 
about the norms that they receive. In the next section we evaluate our extension through a 
series of experiments that highlight different aspects of our contribution. After that, we 
briefly look at related work and see how our approach differs. Finally, we summarize the main 
points and contributions of our work.  

7.2 Norm Based Control Systems 

The theory of norm based control systems originates from the Multi-Agent Systems (MAS) 
community [17]. In the MAS paradigm, the main concepts and abstractions are the 
environment, agents, norms, and control system. The environment is the system in which 
agents can act. For our purposes we see SUMO without driver models as the environment. 
The agents in a MAS are autonomous entities that exhibit their own behavior. We see the 
drivers of vehicles as the agents in a traffic MAS. Norms specify how agents ought to behave 
under what circumstances. For instance, traffic regulations could be seen as norms. The 
control system monitors agents’ behaviors and the environment, and checks whether norms 
are violated. If a norm violation is detected, then the control system can impose a sanction to 
the violating agent. These sanctions are imposed on agents in order to discourage the agent 
to violate any traffic regulations. We refer to the agents that operate the vehicles when we 
refer to vehicles throughout this paper. 

 

 

Figure 7-11. Example setting where two traffic 

streams must merge 
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Background on Norm Based Control Systems 

Multi-agent systems consist of autonomous interacting agents whose behavior is not always 
predictable or controllable. In addition to reactively responding to environmental changes, 
autonomous agents are assumed to have their own objectives (goals) for which they 
proactively initiate actions in order to achieve them. The behavior of individual agents needs 
to be controlled and coordinated in order to ensure the desirable properties at the system 
level [17]. One approach is to design and implement hard constraints at both individual agent 
and multi-agent system levels. This approach may not always be desirable or feasible, since 
limiting the autonomy of individual agents can be costly or even impossible. For instance, 
consider future traffic on smart roads as a multi-agent system where vehicle drivers 
(autonomous cars) are modeled as individual agents and the road infrastructure is modeled as 
the multi-agent system environment. In such a scenario, it is undesirable, if not impossible, to 
fully control and determine the behavior of all individual autonomous cars, as these vehicles 
are designed to make their own decisions. 

Norm based control systems are widely proposed as an effective mechanism to control and 
coordinate the behavior of individual agents [4]. In norm based control systems, norms are 
considered as specifying the standards of behavior that can be used to govern the interaction 
between autonomous agents (cf. [10],[5],[2]). Across various theories and frameworks there is 
no general consensus on what a norm is. In this paper we use the term norm as a reference 
to both norm schemes and norm instantiations. With the concept norm scheme we refer to 
the specification of the circumstances after which a specific agent is obliged to achieve a 
system state, and the sanction that will be imposed should this obligation not be met before a 
certain deadline (cf. [10]). With the concept norm instance we refer to a specific obligation 
and sanction that holds for a specific agent. Norms can take the form of an obligation, 
prohibition or permission, but the scope of this paper concerns only obligation norms. The 
application of norms in multi-agent systems, called norm based multi-agent systems, requires 
continuous monitoring of the behavior of individual agents, evaluation of their behavior with 
respect to the specified norms, and assurance that norm violating agents are sanctioned. This 
approach maintains the agents' autonomy and can still promote desirable behavior. We 
observe that traffic regulations fit the normative approach. For instance one can represent the 
regulation “if you approach a ramp, then you ought to have a safe speed for merging into 
the traffic stream” as a norm. 

Finally, norm instantiations in norm based control systems are announced to autonomous 
agents, just like drivers are assumed to be aware of traffic regulations. Norm awareness 
allows an agent to reason and decide whether or not to comply with the norms (cf.[1],[7]). 
Norm awareness is crucial for future traffic on smart roads as autonomous vehicles need to 
know the consequences of norm violations before deciding whether or not to comply with 
the norms.  

A Norm Based Control System for SUMO 

A norm based traffic control system monitors vehicle behavior and reacts to it. In our 
extension of SUMO, the monitoring functionality of traffic control systems serves two 
purposes. The first purpose is to detect violations of norms, such as speeding, tailgating or 
driving on a priority lane without a permit. If such a violation is detected, then a sanction 
coupled with this violation will be issued towards the violating vehicle. The second purpose of 
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monitoring is to issue new norms. If the traffic control system continues to observe situations 
where either the throughput or safety of vehicles declines, then a norm might be issued to 
improve the situation. This norm might be global, or tailored to a specific vehicle. This allows 
the control system to be very adaptive to traffic dynamics. Furthermore, the severity of a 
sanction might be increased if the coupled violation either occurs an excessive amount of 
times, or seems to be the cause of problematic situations. In our framework for norm based 
traffic control, both autonomous vehicles and the control system show adaptive behavior 
towards the ever-changing traffic flow and enable the system to cope with difficult and 
dynamic traffic situations. An improvement might also be possible in common situations like 
ramp-merging. In this scenario, norms issued by the traffic control system are aiding in 
improving the throughput of vehicles.  

The structure of the presented norm based control system for SUMO is depicted in Figure 7-2. 
As stated before, we use the native SUMO application as the environment. However, we do 
not use SUMO’s driver models. Instead we communicate commands from our own agent 
model to the vehicles. We have also implemented our own sensor business logic. These 
sensors are connected to lane area detectors as implemented in SUMO. The communication 
between the extension software and SUMO is provided by the TraaS library. We use and 
provide a new version of TraaS. In addition to improved performances, the new version has 
some extra functionalities that are needed for our extension. 

The software in our 
extension is composed 
mainly of the agent 
models and the control 
system. The control 
system monitors 
vehicles through its 
sensors. It then checks 
the norms to determine 
whether new 
obligations hold for 
specific agents (if so, 
then they are also 
communicated to said 
agents) and/or whether 
norms are violated. The software executes in lockstep with SUMO, i.e. each simulation tick in 
SUMO is also a tick in the extension. 

We chose to provide our work as an extension to SUMO, rather than modifying the source 
code of SUMO directly. There are several reasons for this. First of all, vehicles in SUMO are 
goal directed only in a limited way. Their goal is to follow a certain route, as opposed to 
having a specific location as the destination. Second, SUMO agents are preprogrammed to 
follow a specific route. They only respond reactively to their environment, instead of 
deliberating on what action would best suit them. Third of all, vehicles in SUMO are not 
inherently capable of deciding to break the rules. For example, they always stop for a red 
light and they obey to the right of way. This is because vehicles in SUMO move according 
to specific car-following and lane-changing models and these models do not allow 

 

Figure 7-2. Overview of the presented extension. 
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reasoning about norms for action decision. The car-following model is not created with 
norm aware agents in mind. The most commonly used car-following model made by 
Stefan Krauss is designed purely to create realistic traffic flows in general, since in most 
traffic simulations individual movement on the microscopic level is not interesting [6]. In 
contrast, we aim at designing futuristic autonomous cars with a more fine grained sense 
of control and most importantly, the ability to violate norms.  

There are also pragmatic reasons to propose a SUMO 
extension rather than altering its code. For example, we can 
now support multiple versions of SUMO, starting from 
SUMO 0.20 and upwards. This also makes our extension 
more accessible to users, since it eliminates the need for 
users to recompile SUMO before they can use the 
framework. Our extension is thus usable out of the box. 

The framework is developed in Java since most norm-based 
autonomous agent frameworks are written in Java and Java 
programs are easy to use on a variety of platforms. We have 
designed the framework using the Model View Controller 
pattern, as can be seen in Figure 7-3. A multi-agent system 
can be specified in XML and is converted to a MAS-model. 
We furthermore use TraaS to retrieve the simulation state of 
SUMO. These models can be manipulated by the controller 
software (note that the controller is a control component in the software engineering sense; it 
is not the same as the conceptual control system for traffic). The agent framework simulates 
our driver models. The view of the system allows the user to see the state of the MAS side of 
the simulation. This decomposition allows other researchers to easily create their own front 
end by changing the view implementation. It is also possible to create a new data format for 
scenarios by changing the data model implementation, or to change the simulation package 
by providing a different simulation model implementation. Each part can be changed without 
the need to change other parts of the framework.  

7.3 Application of Norm Based Traffic Control in SUMO 

In our use-case scenario we illustrate a fairly simple norm based control system. On the 
control system side it is calculated when individual vehicles would arrive on the merge point 
of the traffic streams. The algorithm used is described in [12] and returns an ordering of 
vehicles. Next, the target velocity is calculated for each individual vehicle that ensures that it a) 
crosses the merge point at least two seconds after the vehicle that will cross the point before 
it, and b) the maximum safe velocity is still maintained. In case the main stream road has two 
lanes, then a vehicle can also instead be obliged to move to the left lane. This happens when 
target velocity of a vehicle on the main road is below a predefined threshold. The sanctions of 
violating norms are captured by a low or high fine.  

On the agent side of the system we model vehicles as individual agents with a target arrival 
time. Aside from this, an agent has a personal profile that specifies how desirable it is for the 
agent to be on time and how undesirable it is for the agent to receive a sanction. This can 
lead to different behaviors such as an affluent agent in a hurry opting to take a high fine by 

Figure 7-3. The Model-View-

Controller structure. 
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increasing its speed, in contrast to an equally hasty but poor agent not being able to afford 
the fine which then obeys its assigned target speed. Our main goal is to model future traffic 
on smart roads as norm based multi-agent systems and simulate such traffic scenarios in 
SUMO. In order to achieve this objective, we extended SUMO to simulate i) norm-aware 
autonomous cars, and ii) norm based traffic control systems consisting of monitor and control 
mechanisms.  

Scenario details 

In Figure 7-4, a schematic representation of the aforementioned ramp merging scenario is 
given. Triangles are vehicles that travel in the direction towards they point. White vehicles are 
the vehicles that have not yet received their obligation from the control system. In this case 
those are vehicles A, B, C and D. On the road there are lane sensors (s1 to s5) which can detect 
the status of vehicles that are residing on them. For the scenario to work correctly, it is 
necessary that either the sensors are sufficiently long, or the vehicles sufficiently slow, so that 
no vehicle can pass by undetected. The sensors should also be placed at a distance far 
enough from the merge point m, so that vehicles have enough time to comply to the 
obligation before the deadline. There are two important points on the road, point  where 
the two roads merge, and point  where the vehicles exit the scenario. Distances  and  
are agent’s A and C’s distances to m, and  is the distance from the mergepoint to the 
exit point, and  is the distance between vehicles that is deemed safe, the minimal gap. 
Ideally A and C traverse  and  s.t. they arrive at  with a distance and can 
accelerate to their maximum speed within the distance . 

Monitoring happens through interpreting the observations of sensors. In the case of SUMO 
we use lane detectors that can sense the vehicles that driving along the area they cover. 
Specifically, each sensor can detect the identity, velocity and position of each vehicle on the 
sensor’s area. Futher parameters such as the maximum velocity, acceleration and deceleration 
capabilities can be assumed within reasonable margins. The control system uses the sensor 
data to check given norm schemes whether new norms are instantiated, as well as checking 
whether instantiated norms are violated. If a new norm is instantiated, then the subjected 

Figure 7-4. Use case with two lanes. 
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vehicle is notified of the obligation that it has to fulfill, and the associated sanction that will 
be imposed if the obligation is not fulfilled. 

The standard traffic rule is that the stream that originates on the main road has priority over 
the ramp road’s stream. However, if the main road is busy, this may lead to large traffic jams 
on the secondary road. Therefore the organisation uses the traffic data from sensors 1 to 3 
calculate how fast vehicles must go so that on the merge point the traffic streams smoothly 
merge together. More specifically, the organisation tells vehicles passing sensor 1 to stay on 
the left lane. Sensor 2 and 3 are used by the organisation to coordinate the scheduling of 
vehicles on the merge point. If a vehicle passing sensor 2 has to slow down too much, i.e. to 
a velocity less than the threshold, then it receives the obligation to move to the left lane. 

In order to not overcomplicate the scenario we decided to simplify some aspects of the 
control system. The sanction that an agent can receive for violating a norm is modelled by 
either a low or high fine. In general the set of possible sanctions is , which for our scenario 
is: , . The set of possible obligations is . An obligation that a vehicle 
can receive is an obligation to be on the left or right lane of the main road at a certain target 
velocity. For instance ,  is read as the obligation to be on the right lane at 10 m/s. 
For our scenario the possible obligations are: , | ∈ .	A pair of an 
obligation with a sanction is called a norm instantiation. The set of all norm instantiations is 
denoted with . For each simulation step the new norm instantiations are created. 
Recall that the specification of how norms are instantiated is referred to as a norm scheme.  

Example Norm Scheme 

For our scenario, an organization instantiates a norm scheme into agent specific norms, so 
that two vehicles cannot arrive on the merge point at the same time, if they comply with the 
norm. This will cause vehicles to slow down considerably on the main road. If they have to 
slow down too much then they will be obliged to move to the left lane which is assumed to 
be more free flowing. The exact explanation of this norm is provided in Appendix A. 

We also have another norm scheme that obliges vehicles that enter on the left lane of the 
main road to stay on their lane at a preset maximum velocity v . We shall illustrate the 
different aspects of a norm scheme according to this scheme’s pseudo code that is given in 
Table 7-1. We assume that there is a current set of norm instantiations NI, a function sanction 
that given an agent and fine issues the fine for that agent, and a function read that returns 
the vehicles on a sensor’s area that have not been seen before by that sensor. Though not a 
forced pattern, we do encourage future users of our extension to use the same code structure 
as in Table 7-1. Every norm scheme has a specification of when norm instances are created, 
when they are retracted, and when a sanction should be issued. 

 The code in Table 7-1 is executed after every simulation tick. We begin with creating new 
norm instances (lines 0-3). In this case sensor 1 is read. In Figure 7-3 it can be seen that this 
sensor detects all vehicles that enter the scenario on the left lane of the road. Hence, we give 
each agent on the left lane the obligation to stay on the left lane, and also obtain a preset 
maximum velocity to ensure that the flow stays high (line 2). We then continue by checking 
sensor 4 (lines 4-10). Vehicles with instantiations of this norm that pass sensor 4 fulfilled their 
obligation to stay on the left lane. However, if their velocity is not optimal, then they get a 
low fine anyway (lines 6-8). After passing this sensor the vehicles are relieved of their 
obligation (line 9). The same holds for sensor 5 (line 16). However, if a vehicle passes sensor 5 
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then it means that it switched to the right lane. Hence, each vehicle that has received an 
obligation to stay left but  passes sensor 5 is fined (line 14). 

0: ←   

1: for each ∈  do { 

2: ← ∪ , , ,   
3: } 

4: ←   

5: for each ∈  do { 

6:  if , , , ∈ & .  then { 
7:   , ) 

8:  } 

9:  ← 	\ , , ,   
10: } 

11: ←   

12: for each ∈  do { 

13:  if , , , ∈  then { 
14:   , ) 

15:  } 

16:  ← 	\ , , ,   
17: } 

7.4 Norm-Aware Vehicle 

Our goal is to build autonomous norm aware vehicles that operate on smart roads where 
vehicles' behaviors are automatically monitored, evaluated with respect to some traffic norms, 
and possibly sanctioned. This means that individual vehicles have their own objectives (e.g., 
destination, arrival time, travel cost, etc.) and are able to deliberate on how to achieve their 
objectives. This implies that a vehicle can choose to obey/violate a norm, when this helps with 
achieving its objectives.  

A Norm-Aware Driver Model 

In Figure 7-5 the general Sense-Reason-Act 
cycle of an autonomous vehicle is illustrated. In 
order to model norm awareness we deviate in 
our scenario from the standard driver models 
that SUMO provides [6]. A vehicle perceives its 
road environment by processing the 
information it receives from SUMO. That 
information also includes which obligations are 
newly instantiated or retracted. Using its 
knowledge of the the road network, the vehicle 
then estimates the utility of each of its actions 
by balancing between the value of achieving its 
objectives and possible sanctions that will incur 
if it performs the action. For example, the 

Table 7-6. Pseudo code for the stay-on-lane norm scheme. 

 

Figure 7-5 The Sense-Reason-Act cycle of an agent 
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arrival time and additional fine payments are used to calculate the utility for each action. The 
action with the highest utility is chosen, using a priority based tie-break mechanism for ties. 
One autonomous vehicle differs from another through its personal profile. A personal profile 
states not only its goals and current norm norm instances, but also how severe sanctions are 
for the vehicle and how important it is to arrive on time at the goal location. Since each driver 
profile is unique, different emergent behavior can be observed between different drivers. For 
instance, a wealthy driver can at times choose to violate speeding norms, since it can afford 
the fines. However, a poor driver cannot afford the fines, so it will not break the speed limit.  

The required components and concepts for a norm aware agent in our system are: 

- A set of actions to choose from. 
- A description of the physical state of the driver’s vehicle.  
- A function that estimates the next physical state given a physical state and an action. 
- A personal profile that contains: 

o A goal location and time. 
o A function to calculate how good an expected arrival is compared to the goal 

time. 
o A function that grades how bad sanctions are.  
o The current norm instances of the agent. 

-  A function, called the obligation distance measure, that given a physical state of the 
vehicle and a norm instance, returns how likely it is that the sanction will be imposed 
upon the driver. 

- A utility function that given a possible actions, the current physical state and the 
personal profile returns the expected utility of the action. 

- An action selection function that picks the best action given the current physical state, 
and personal profile. 

Note that the personal profile and the 
obligation distance measure are not fixed. 
While it is recommended to let the 
functions have certain properties (e.g. the 
grade functions should be monotonic), our 
framework allows for arbitrary 
implementations of these functions. 

In the next section we give examples of 
each of these components. Before a 
simulation tick in SUMO each agent 
determines what the next best action is by 
calculating for each action the utility. This 
is done by determining for each action the 
next expected physical state and then look 
at how likely sanctions will be incurred in 
the future given that next state. If a norm 
instantiation’s sanction is severe, then 
moving away from its instantiated 
obligation will decrease the utility. Also if 

 

Figure 7-6 An UML overview of the Agent structure 
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the target arrival time is less likely to be met, then the utility also decreases.  

Norm Aware Driver Model for SUMO 

An UML overview of the agent structure is shown in Figure 7-6. Agents are an extension of 
physical objects since they occupy a certain space and have a certain position in the world. A 
Basic Agent is a prototype AgentProfile. The agent profile is specified by the SactionGrade 
and ArrivalTimeGrade functions which are the sanction and arrival time appraisal functions 
discussed in section 1.5.2. In the doAction function the obligation distance measure is used to 
calculate the utility for each individual action.  

In this manner, the agent profile of the agent together with the current state decides what 
action the agent will choose towards achieving its goal. These design choices were made to 
model the agents in such a way that new agent profiles can easily be created to model norm-
aware human or driverless autonomous vehicles, while still keeping the agents as simple as 
possible.  

With each deliberation cycle agents can pick the an action most suited to their goals and the 
current state, one of the actions listed by the AgentAction enumeration in Figure 7-6. The 
displayed changeRoad action is not used in the experiments, but is used to change a road in 
the current route of the agent. In our current implementation this action is used when the 
agent receives information about traffic jams at locations he still plans to visit. The agent can 
then plan a new route, make an estimation to check if the new route might be faster, and 
change its current route. This is one feature that show the pro-active attitude that the 
TrafficMAS agents possess.  

7.5 Application of Norm Aware Driver Models 

In this section we shall go into detail how norm awareness in achieved in our example 
scenario. 

Agent Specification 

For our application the set of actions are de-/accelerating a certain amount (denoted as a ) or 
switching a lane to the left or right (denoted as l , l ). More specifically, the set of actions 
A that a vehicle driver can possibly perform are: 

A a |x ∈ 0,0.01, 0.01, 0.1, 0.1,1, 1,5, 5,10, 10,20, 20,50, 50 ∪ l , l 	 

A vehicle’s physical state s is specified by 〈v , v, l, d〉, where v  is the maximum velocity, v is 
the current velocity, l is the current lane, and d is the distance from the startpoint of that lane. 
Finally, B is used to denote the set of all possible physicial states.  

An agent’s personal profile p is specified by 〈g , g , n〉, where g : S →  is the sanction grading 
function that returns how important it is to avoid a given sanction from S, g : →  is the 
arrival time grading function that returns how good it is to exit the scenario at a given time, 
n ⊆ N are the current norm instantiations. With P we denote the set of all possible personal 
profiles. 

Agents need to reason about the future in order to determine the utility of actions. We 
assume that there is a given function f: B →  that returns given a physical state an expected 
arrival time. This function reflects for instance the GPS planning tools that vehicles have 
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available. This function is uniform for all agents, but can be parameterized in the future in 
order to make more optimistic/pessimistic agents. We also assume agents have a local action 
effect function e: B A → B that returns given a physical state and an action the next expected 
physical state. For instance: if the current velocity is 20 m/s and a vehicle accelerates by 5 as 
an action, then it expects for the next simulation tick to be at 25 m/s if this is possible within 
its acceleration capabilities.  

Due to physical contraints, it may not be the case to adhere to obligations immediately after 
they are received. Hence, an agent must be able to deliberate whether an action will bring it 
closer or further away from fulfilling an obligation. To this end they use an obligation distance 
measure δ: B O →  which returns given a physical state and an obligation, a positive 
expectancy of whether the agent can fulfill the obligation in time before it is sanctioned. The 
precise definition of this function depends on the possible obligations and agent specifics in 
an application. However, a high distance should mean that it is likely that the sanction will be 
incurred in the future whereas a distance of zero should indicate that the current state fulfills 
the obligation.  

In the case of our scenario the factors that an agent considers to compute δ are the time it 
takes to fulfill the obligation when doing so as soon as possible (based on the vehicles 
acceleration, local traffic data etc), the current time and the latest expected time that the 
sanction will be issued if the obligation is not met. We have implemented vehicles in such a 
way that they expect that the control system will check whether an obligation is fulfilled 
somewhere between the current time t	and the current expected exit time t  for the vehicle. 
The minimal amount of steps needed to adhere to the norm is denoted δ . For instance, if a 
vehicle at time step t is being instructed to drive 25 m/s, and can accelerate to this speed in 
minimally 3 time units, then δ 3. If we need zero steps to adhere to the norm, the distance 
is zero. Otherwise the distance proportionally moves to 1 given the current time. If the control 
system will check obligation fulfillment before the agent can achieve adherence (i.e. t t

	δ  ), then δ should be 1.  

The exact function given the current time t, the expected exit time t  and the minimal 
number of steps needed for adherence δ  is: 

δ 〈v , v, l, d〉, l , v
min δ , t t

t t
 

Note that this means that the agents expect the control system to issue a sanction if an 
obligation is not met between now and t t time units after that. This distance measure 
can be modified easily in our framework. 

Agents use an action selection function α: B P → A that given a physical state and agent 
profile returns an action. This selection is based on the utilities of actions. For each action it is 
simulated what the new expected arrival time and physical state will be. The result is used to 
calculate how good a new state is given the distance to fulfilling obligations (and thereby 
avoiding sanctions) and also how good the new arrival time is. The utility function u: B P

A →  is: 

u b, 〈g , g , n〉, a g f b δ b , o ∙ g s
, ∈

 

where b e b, a . 
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Table 7-1. Example of a poor and affluent agent. 

    

Speed after 
action 20m/s 30m/s 10 m/s 

Norm speed 10 m/s 10 m/s 10m/s 

Exit time 
with this 
speed 54 36 108 

 0,67 1,00 0,33 

steps needed 
to oblige to 
norm 1 2 0 

 0,02 0,06 0,00 

 poor 
agent 0,30 -0,11 0,33 

 rich 
agent 0,66 0.99 0.33 

 

Example Utility Calculations 

For example, suppose we have two agents, a poor one and an affluent one in an identical 
situation. They currently drive 
20m/s, their maximum speed is 
30 m/s, they can accelerate or 
decelerate with 10m/s and 
their travel distance is 1080 
meters. Both are in a hurry, so 
their  is defined as 

/ . 
Here,  is defined by 
the minimal travel time, i.e. the 
time it would take the agents 
to travel the distance if they 
could go their maximum speed 
all the time. In this case, 

36.  

However, the road the agents 
travel on has a speed norm, 
with the maximum speed being 
10 m/s. Not obliging to this 
norm gives a . The 
poor agent cannot afford this fine, so it has 20. The affluent agent can 
easily afford this fine, so it has 0.2. Suppose for this example, that agents 
only can take the actions , 	and	 . In Table 7-2, we see the utilities for each of these 
actions and both agents. Here we see that the highest rewarded action for the poor agent is 
to indeed oblige to the norm, since it cannot afford the fine. The affluent agent is in a 
position to not decrease its speed to oblige to the norm, since it can afford the fine. In fact, it 
will even increase its speed, since it then maximizes its time grade, yielding a higher utility.  

7.6 Experimental Evaluation 

We tested the performance of our normative agent based traffic approach using three 
experiments. In each of these experiments variations of the ramp-merging scenario as 
explained in section 7.3 is used. The first experiment considers a ramp-merging scenario 
where the main road consists of a single lane, while on the second and third experiment the 
main road has two lanes. In the sec0nd experiment this second lane is accessible for all 
agents, but in the third experiment this lane is marked as an “emergency only” lane.  

The experiments were set up as follows. Each experiment has a length of one hour (3600 
ticks). The spawn rate shown in the tables of the experiments is defined as the chance of an 
agent spawning every tick. If there is not enough room to spawn an agent at a certain time, 
then SUMO puts the agent on hold and spawns it at the earliest possible time there is space 
avaliable. The maximum speed at the merge point, v ,was set to 80 km/h. Furhermore, all 
three experiments consists of comparing two scenario’s, both are run one hundred times. The 
values displayed in the tables are the averages over those hundred runs. The Throughput is 
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defined as the number of vehicles leaving the simulation every tick. Average speed is the 
average speed over all runs in m/s, and finally the Average gap is the average distance 
between two cars in meters. Also defined for each experiment is the maximum (expected) 
throughput, this is the expected throughput if each vehicle could keep driving its maximum 
speed thoughout the scenario and can be calculated by the following formula: 
throughput 60 ∗ p, where p is the total chance of a car entering the simulation on that 
tick. Since SUMO does not spawn vehicles when space is too limited, and this is the case 
when traffic jams occur, we believe a significant difference in throughput is a sufficient 
validation of improvement. 

Experiment 1: SUMO and TrafficMAS 

The first experiment illustrates the 
distinction in behavior between the 
default SUMO vehicles and the 
norm-aware agents implemented in 
the TrafficMAS extension. A single 
norm based traffic control system 
observes the vehicles in the 
simulation and communicates 
tailored norm instantiations to each 
vehicle. In this experiment a norm 
instantiation is simplified to only a 
target velocity since there is no 
choice of lanes on the main road. 
The expected result is that these 
personalized norms will result in a 
higher average velocity and a better 
throughput of vehicles since traffic 
jams will be prevented.  In this scenario a classic ramp-merging situation is implemented, 
where both the main road and ramp consist of a single lane. The spawn rate of the vehicle 
input stream will be slightly higher on the main road to resemble a realistic traffic situation. In 
the TrafficMAS scenario three sensors are placed on the road, one on the main road, one on 
the ramp and a control sensor on the output road. The traffic control system can only 
communicate (instantiate norms, remove norms or apply sanctions) when the vehicles are 
driving on said sensors. In the SUMO scenario the main road has priority over the ramp, 
comparable to an authentic merging situation. 

 

 

Table 7-3: results for experiment 1. 

 SUMO TrafficMAS 

Main road Spawnrate 20% 20% 

Ramp Spawnrate 15% 15% 

Throughput 16,16 21,01 

Average Speed 3 20,97 

Average Gap 13,81 101,821 

Max throughput 21 21 

Throughput % 76,95% 100,05% 
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As is clear from the results in table 7-2, there is an increase in both throughput, average 
speed and the average amount of space between the vehicles. This is the case since in the 
SUMO scenario a traffic jam instantly forms on the ramp, because of the relatively high 
density of cars on the main road. These results confirm our expectation of coordination by a 
norm-based traffic control system improving on classic ramp-merging scenarios. Note that the 
throughput % value exceeds a hundred percent, this is possible because the spawnrate is 
probability based and thus can 
exceed the maximum expected 
throughput.  

Experiment 2: Simple norms 
and Advanced Norms 

This experiment is a comparison 
which demonstrates the 
distinction between norm-based 
traffic control systems using 
simple or advanced norms. Each 
scenario is observed by a traffic 
control system, where the control 
system in the SingleNorm scenario 
observes and controls the same 
norm as in experiment 1. In the 
AdvancedNorm scenario the 
control system effectuates a more 
advanced norm, advanced in the sense that the obligation that the agent receives can consist 
of different goals instead of just a target velocity. In this case the other obligation that can be 
issued is for the agent to change lanes in order to relieve the rightmost lane traffic and 
prevent congestion. This lane change obligation will be given to an agent when its calculated 
velocity on the mergepoint is below a certain threshold. For this experiment the threshold was 
set to . Our expectation is that in this multi lane scenario, the control system with the 

 

Figure 7-7: Screenshot depicting the difference in performance in experiment 1. The top scenario uses our 

framework and merge norm. The bottom scenario uses the default SUMO driver models. 

Table 7-4: results for experiment 2 

 SingleNorm AdvancedNorm 

Main road 
Spawnrate 

30% 30% 

Ramp Spawnrate 20% 20% 

Throughput 20,38 29,91 

Average Speed 3,31 14,91 

Average Gap 14,2 61,49 

Max throughput 30 30 

Max throughput % 67,93% 99,7% 
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advanced norm can successfully cope with a higher input stream of vehicles; the traffic 
control system which effectuates the simple norm, will not. 

The setup for the SingleNorm scenario is almost an exact copy of the TrafficMAS scenario in 
experiment 1, the two distinctions are that the main road has two lanes instead of one and 
the input stream of vehicles of both roads are increased. The AdvancedNorm scenario also 
implements extra sensors on the sec0nd lane, but is exactly the same in every other aspect.  

As can be observed from the results, the simple norm cannot cope with the increased spawn 
rate of vehicles in this scenario. The average speed is has dimished severly, as well as the 
average gap between vehicles. This means congestion is abundant in the SimpleNorm 
scenario. However, the AdvancedNorm seems to cope very well with the increased input 
stream of vehicles. In this scenario the throughput approximates the maximum expected 
throughput by a factor 0.3%, which indicates that the vehicles move throughout the 
simulation without much congestion.  

Experiment 3: Sanction severity 

The third experiment illustrates that agents are able to reason about norms. Experiment 1 has 
shown that agents are norm-aware. However, TrafficMAS agents also have the capabilities to 
not comply with certain obligations if these are not of significant importance to them. In this 
experiment the leftmost lane is an emergency lane, reserved for certain traffic in order to help 
with accidents and other emergencies. Therefore regular agents will get sanctioned if caught 
driving on this lane. Since this lane remains mostly empty, this is a viable option for agents 
who greatly value a faster arrival time and are in a financial position which makes them 
willing to take a fine. We expect that the more affluent agents will choose to take a sanction 
and win some time, resulting in distinct behavior between the two groups of agents. 

 This experiment is set up in the same 
way as experiment 2, with the exception 
that the leftmost lane is reserved for 
emergencies and the spawn rates are 
lowered because of this. In the Poor 
Agents scenario, the input stream 
consists of agents who are hasty, but in 
a substandard financial position. The 
Affluent Agents scenario spawns agents 
who care about being sanctioned, but 
are willing to take a fine if by doing so 
they can arrive closer to their goal arrival 
time with a significant amount of time. 

 

With this experiment, the difference in throughput, average speed and gap is much smaller, 
and not significant enough to lead to any conclusions about improvement. However, a 
significant distinction in the number of sanctions can be seen. This indicates a difference in 
behavior between the groups of agents. On average about 133 affluent agents decide to 
drive on the emergency lane in an hour of simulation. This shows a clear difference in 
behavior from the poor agents, who never decided to change lanes, since no sanctions are 
given to them throughout the 100 runs.  

Table 7-5: results for experiment 3 

 Poor 
Agents 

Affluent 
Agents 

Main road Spawnrate 20% 20% 

Ramp Spawnrate 15% 15% 

Throughput 20,48 20,88 

Average Speed 12,95 14,42 

Average Gap 48,37 69,29 

Sanctions 0 133,12 
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7.7 Contributions and comparison to other work 

The contributions of our work are as follows. First of all, we have created a lightweight 
framework for autonomous norm-aware vehicles and norm-based traffic control system on 
top of SUMO. This framework is easy to extend with different types of driver profiles. It also 
allows for the easy usage of a different simulation package. Secondly, with our framework, 
we have created the possibility to conduct traffic experiments and measuring the impact of a 
norm-based traffic control system. Finally, we have improved the TraaS performance, yielding 
a performance increase of up to four times over the original TraaS library in certain scenarios.  

Our approach has some similarity with Baines et al [3] since they employ autonomous agents, 
and also use norms. However, Baines et al concentrate on agents' internal architecture and 
the communication between agents. Our driver model is deliberately kept simple in order to 
focus on the interaction between traffic control systems on the one hand, and between 
agents and traffic control systems on the other hand. Finally, our framework supports 
decentralized traffic control system while Baines et al. focus on a single, all knowing, 
institution. 

7.8 Future Work 

Our framework could be extended in a number of ways. First of all, one could add support for 
contrary to duty norms. Contrary to duty norms consist of a hierachy of norms. An agent 
should comply to all hierachies, but if it doesn’t comply to the first norm level (and thus 
incurring a sanction), it should at least comply to the second norm level, or get an even higher 
sanction. An example is the norm “You shouldn’t break the speed limit, but if you do, you 
should drive on the leftmost lane.” 

Another extension would be to include communicating decentralized traffic control, as 
described in [8] and [9]. In our current framework, multiple control systems are possible 
(though not shown in this paper). However, they cannot yet communicate information about 
vehicles and sanctions with each other. If this infrastructure is created, more complex norms 
and scenario’s can be implemented. 

7.9 Conclusion 

Our goal was to create a traffic simulation Multi-Agent System where agents should generally 
follow traffic regulations, yet are able to ignore these regulations in certain circumstances 
without implementing hard constraints on the agents themselves. We used norm based 
control systems, since they deal well with these kinds of situations.  

Our work is an extension to SUMO. It features a norm based traffic control system which 
monitors and possibly sanctions the vehicles, as well as deliberative pro-active drivers which 
make autonomous decisions according to their goal and received sanctions. The extension 
features i) driver profiles which model different types of behavior, ii) traffic control systems 
and norms to control these agents and iii) an easy way to add new driver profiles, control 
systems and norms.  This plug and play extension to SUMO can serve as a testing suite for all 
experiments concerning normative systems. 

We showed in our experiments that the performance of normative systems is be better than 
the default behavior in a ramp-merge scenario. Furthermore, we showed that complex norms 
allow for more fine grained steering of behavior in complicated scenarios. Finally, we 
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illustrated the autonomy of agents, by demonstrating a different in behavior between poor 
and affluent agents. 
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7.11 Appendix A: Merge Norm Scheme 

For the merge norm scheme we use the same pseudo code structure (Table 7-2) as for the 
stay-on-lane norm scheme. As in the other norm scheme we begin with the instantiation of 
the norm (lines 0-8). Initially we read sensors 1 and 3 and merge the readings according to 
[12] (line 0). The result is an ordered list of agents, which, if they continue as they are, will 
arrive at the merge point in the same order. We maintain a global variable  that indicates 
the next moment in time that the merge point is free. With  we calculate the 
optimal speed for an agent s.t. it will arrive at  on the merge point plus some safe 
margin, or later if the agent cannot make it in time physically (line 2). If the agent is at the 
right lane of the main road and the optimal velocity is below a predefined threshold, then it is 
obliged to move to the left lane (line 4), otherwise it is obliged to adapt its velocity to the 
optimal velocity and pass the merge point on the right lane (line 6). An agent is sanctioned if 
it is not passing the merge point on the correct lane (lines 12-13, and 19-20). Otherwise an 
agent can also be sanctioned if it did not achieve its predetermined velocity (lines 23-24).  

0: ← ,   

1: for each ∈  do { 

2:  ← ,  

3:  if . &  then { 

4: ← ∪ , , ,  
5:  } else { 

6: ← ∪ , , ,  
7:  } 

8: } 

9: ←   

10: for each ∈  do { 

11:  ← \ , , ,   
12:  if , , , ∈ then { 
13:   ( , ) 

14:   ← \ , , ,  
15:  } 

16: } 

17: ←   

18: for each ∈  do { 

19:  if , , , ∈  then { 
20:   ( , ) 

21:   ← \ , , ,   
22:  } else if , , , ∈  then { 
23:   if .  then { 

24:    ( , ) 

25:   } 

26:   ← \ , , ,  
27:  } 

28: } 

Table 7-6. Pseudo code for the merge norm scheme. 



 

 



 

83 

8 Extensions for logistic and public transport in SUMO 

Andreas Kendziorra and Melanie Weber; 
German Aerospace Center , Rutherfordstraße 2, 12489 Berlin, Germany 

{Andreas.Kendziorra, Melanie.Weber}@DLR.de 

Abstract 
Disasters or major events affect the efficiency of passenger and freight transportation. The 
project VABENE++ considers the question what happens when the road network is disturbed 
due such an event. Within this project, the German Aerospace Center developed a decision 
support tool that provides consolidated information and operation recommendations 
regarding individual motor car traffic based on traffic simulation performed by SUMO. 
Recently, it was aimed to realise simulation scenarios in which incidents impairing the road 
network occur, and that focus on multimodal transportation systems. To enable this, the 
implementation of public transport and logistics in SUMO were extended. The present paper 
presents these extensions in detail and outlines its usefulness in examples. 

Keywords: SUMO, Logistic, Transport, Public Transport, Railway 

8.1 Introduction 

Transport and traffic is one of the identified critical infrastructures in Germany [1]. A 
disturbance of the traffic network can have serious influences on passenger transportation, 
freight transportation and the supply of necessary goods and services. These disturbances can 
be manifold. They may be plannable, like major events, or unpredictable, like accidents, 
natural disasters (e.g. floods, earthquakes) or from human malevolence, such as acts of 
sabotage, terrorism or war. To support decision makers, like authorities and emergency 
forces, in such critical situation, the decision support system EmerT Portal was developed 
within the project VABENE [2]. Until recently, the system considered only motorised individual 
traffic. Due to the fact that not only this means of transport is affected by an extraordinary 
occurrence, this system was expanded by more means of transport. One part of this system is 
the traffic simulation software SUMO [3]. Public transport (bus, tram and train) and 
pedestrians were already a part of SUMO prior to the expansion, however in a basic fashion. 
The implementation of logistic transport is novel in SUMO. To set up a simulation scenario 
with a multimodal transportation system, SUMO had to be extended.  
The implemented extensions will be presented in this paper in the following order. In 
Section 8-8.2, the extensions regarding public transport will be presented. The 
implementation of the logistic concept will be explained in Section 8-8.3. In Section 8-8.4, 
some examples using the presented extensions will be shown. Finally, the conclusions and an 
outlook will be given in Section 8-8.5.  
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8.2 Public transport Extension 

8.2.1 Existing concept 

So far, simulating public transport within SUMO is possible, however, with limited capability 
(see [1, 2]). The most necessary concepts already implemented for this kind of simulations are 
persons, vehicles and stops. 

Persons are objects that can walk, use a vehicle (ride) and stop. Each person must have a plan 
which is a sequence of these stages. For walking, a person is following a given sequence of 
edges. Thereby, the walking behavior depends on the chosen pedestrian model. The most 
advanced pedestrian model implemented in SUMO so far is the model “striping”; a 2D-model 
that enables walking side by side on sidewalks and includes a collision avoidance algorithm 
for persons that walk towards each other [3]. For a ride, a person has a list of lines (vehicles 
can be assigned to lines which can be used particularly for buses, trams and trains) and ids of 
vehicles to use. At the beginning of a riding stage, a person is positioned at an edge. 
Whenever a vehicle that corresponds to a line or an id of the given list stops at this edge, the 
person will board the vehicle. When the transporting vehicle stops at the destination edge of 
the ride, the person will leave the vehicle and will proceed with the next step of its plan. 
Stopping can be used to simulate activities such as working, shopping or doing sports. For 
that, a duration or a fixed end time, as well as a lane, have to be defined. For example: 

<routes> 
    <person id="1" depart="0"> 
        <walk from="edge1" to="edge2" departPos="10.0" arrivalPos="20.0"/> 
        <ride from="edge2" to="edge3" lines="a"/> 
        <walk from="edge3" to="edge4" arrivalPos="30"/> 
        <stop lane="edge4_0" duration="20" startPos="40"/> 
        <ride from="edge4" to="edge5" lines="b"/> 
    </person> 
</routes> 

 
Vehicles have the capability to transport persons. For that, there exist no restrictions on how 
many persons a vehicle can transport. Moreover, there is no duration for a person to board a 
vehicle and any number of persons can board a vehicle in one time step. Also, there are no 
requirements regarding the distance between the vehicle and the boarding person. The only 
requirement is that both have to be positioned at the same edge. 

There exists a very particular procedure of departure for vehicles, called depart triggered. A 
depart triggered vehicle has no depart time but will depart when a person boards the vehicle. 
This can be used to simulate parking vehicles.  

As stated above, vehicles can be assigned to lines. This is in particular useful for buses, trams 
and trains. For example, buses that have the same route can be assigned to one line. 
Therefore, one can tell a person to use a bus of a certain line without choosing a particular 
bus. Moreover, it is possible to define flows of vehicles. That means, vehicles that have the 
same attributes, except their id and their depart time, are inserted periodically with a fixed 
frequency into the simulation. In particular, bus and tram lines can be defined via flows.  
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As already mentioned, persons can have stops as stages of their plan. However, stops can be 
used for vehicles and routes in general as well. In these cases, one can define further 
attributes. Amongst others, the start and end position at the lane can be defined. That 
means, a vehicle will stop within this interval. A more advanced concept of stops is a bus 
stop. The difference is a more elaborated approaching behavior of the vehicles (mostly buses) 
towards the bus stop. 

8.2.2 Person capacity and person number Extension 

To resolve the unrealistic fact that a vehicle can transport an unlimited number of persons, 
the parameters person capacity and person number were introduced. Person capacity is a 
vehicle type parameter that specifies how many persons (excluding an autonomous driver) a 
vehicle can transport. For every vehicle class, there exists a default value for the person 
capacity (see [7] for a list of the default values), but it can also be set in the definition of a 
vehicle type (e.g. <type vClass="passenger" id="pkw1" personCapacity="4"/>). The person 
number states how many persons (excluding an autonomous driver) a vehicle is actually 
transporting. If the person number of a vehicle is equal to its person capacity, no further 
person can board this vehicle.  

8.2.3 Boarding behavior Extension 

Some modifications regarding the boarding behavior of persons were implemented. As 
already mentioned, a person can board a vehicle only if the person number of the vehicle is 
smaller than its person capacity. Moreover, some restriction about the distance of the vehicle 
and the boarding person were incorporated. If a vehicle is stopping at a stop and a person 
wants to board the vehicle, the person’s position has to lie within the stop. That means, the 
person’s position on the lane has to be larger than the start position and smaller than the end 
position of the stop. For depart triggered vehicles, a person positioned outside of the stop of 
the vehicle can still board the vehicle if the person’s position has a distance of at most 10 
meters to the vehicle. 

Another enhancement is the implementation of the vehicle type parameter boarding 
duration. This parameter states how long it takes one person to board the vehicle. Only one 
person can board the vehicle at a time. Therefore, if  persons want to board one vehicle for 
an ∈ , and ∈  is the boarding duration of the vehicle, the time required to let all persons 
board the vehicle equals ⋅ . For example, if 12 persons waiting at a bus stop want to board 
a bus whose boarding duration equals 0.5 seconds, it takes 6 seconds until the last person 
boarded the vehicle. If the duration of the boarding of all persons exceeds the stop duration 
of the vehicle, the stop duration will be extended by the necessary amount of time. 

Due to the changes regarding the boarding behavior and the implementation of the 
parameters person capacity and person number, scenarios using public transport can be 
simulated more realistically. For example, bottlenecks due to low capacities of vehicles (e.g. 
buses and trams) or extended travel times due to long boarding durations can be considered 
or may be identified in simulations. 



8 Extensions for logistic and public transport in SUMO 

86 

8.3 Logistic Extension 

A concept for freight and goods was implemented to enable the simulation of goods traffic. 
This concept consists basically of the new objects called containers which represent goods of 
all kinds. For example, one can represent an ISO container, a tank container, an arbitrary 
amount of bulk material, an arbitrary amount of animals etc. as a container.  

The concept of containers is very similar to the one of persons. Containers are objects that 
can be transported by a vehicle (transport), stop and that can be transhipped between two 
places (tranship), e.g. to simulate the transhipping of a container from a rail station to an 
adjacent harbor (which can be represented as a stop at a waterway). The mode transport is 
equivalent to the mode ride for persons, and stop is equivalent to stop for persons. Tranship 
defines a direct transhipping of containers between two points. Thereby, containers do not 
move along edges. They move in a straight line with constant velocity, no matter if the line is 
crossing buildings or anything else (see Figure 8-12). Therefore, the time required for a 
tranship-stage depends on the Euclidean distance between the two points and the chosen 
velocity (default velocity is 5 km/h).  

 

As with the concept of persons, containers must have a plan which is a sequence of these 
stages. For example: 

<routes> 
    <vType id="DEFAULT_VEHTYPE" sigma="0" containerCapacity="1"/> 
    <container id="container0" depart="0"> 
          <tranship from="edge1" to="edge2" departPos="80" arrivalPos="55"/> 
          <transport from="edge2" to="edge3" lines="train0"/> 
          <tranship from="edge3" to="edge4" arrivalPos="30"/> 
          <stop lane="edge4_0" duration="20" startPos="40"/> 
          <transport from="edge4" to="edge5" lines="truck0"/> 
    </container> 
</routes> 

 
A complete description of all available parameters of the three stages of containers can be 
found at [8]. 

Similarly to the concept of bus stops, container stops were introduced at which containers 
can be loaded onto or unloaded from a vehicle. Vehicles use the same advanced approaching 

Figure 8-12. A container gets transhipped from container stop C1 to container stop C2; thereby, the container 

moves straight from its depart position on C1 to its arrival position on C2 
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behavior at container stops as at bus stops. They can be used to simulate transhipment 
stations, harbors and other places for transhipping and storing containers/goods. 

To enable a realistic loading behavior, analogously to the new boarding behavior of persons, 
the parameters container capacity, container number und loading duration, which correspond 
to the parameters person capacity, person number and boarding duration for persons, were 
introduced. 

8.4 Examples 

8.4.4 Public transport 

A scenario involving persons and public transport was used to test the enhancements 
regarding public transport. More precisely, it was examined if unfavourable relations between 
the amount of people using public transport and the capacity of the public transport system 
affect the state of the traffic. As expected, one could find situations in which bus stops get 
crowded due to low frequencies of bus lines such that the busses cannot transport the 
amount of people intending to ride a bus of this line (see Figure 8-13). This results clearly in 
longer travel times for persons. 

 

Other expected consequences are congestions due to blocking busses at bus station. This 
occurs when many people board a bus such that the bus blocks the corresponding lane for a 
long time. In Figure 8-14, a situation can be seen at which 80 people board a bus with a 
boarding duration of 0.5 seconds. Consequently, the bus blocks the right lane for 40 seconds, 
which results in congestion on the right lane, as all cars intending to turn right are blocked. 

Figure 8-13. A fully occupied bus leaving people behind at a bus station due to a too low capacity of the bus line 

with respect to the amount of people; travel time of people left behind extends accordingly 
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8.4.5 Logistics 

A scenario was developed to test and demonstrate the functionalities of the logistics 
extensions. The scenario considers the goods traffic around the harbor of Brunswick, 
Germany. Goods are transhipped, stored and transported by trains, ships and trucks within 
the scenario. An overview of the harbor area of the scenario can be seen in Figure 8-15.  

The harbor consists of seven landing stages, and for each landing stage there exists a 
corresponding goods station for trains, as well as a container stop for trucks next to the road. 
In this scenario, almost all the goods are transported by a vehicle (truck, ship or train) to the 
harbor area, where the container gets transhipped to another container stop, gets stored for 
a while and finally transported by another vehicle (see Figure 8-16 and Figure 8-17). 

 

Figure 8-14. 80 people boarding a bus cause the bus to block all right turning vehicles for 40 seconds, resulting 

in a congestion on the right lane 

Figure 8-15. The harbor of Brunswick in the SUMO-simulation; containers are displayed in red, vehicles in yellow 

and container stops in blue  
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8.5 Conclusion and discussion 

It was aimed to expand the existing public transport concept and to implement a first version 
of a logistic transport concept in SUMO to create the possibility to set up simulation scenarios 
with a multimodal transportation system. The enhancements allow simulations of public 
transport with a realistic boarding behavior. Buses block the traffic when many people to 
board them, and people also wait for the next bus when the current one is fully occupied. In 
addition, major events and disaster involving persons can be better simulated. For example, in 
the case of a major accident, replacement buses are often inserted. With the help of the 
simulation, one can identify bottlenecks due to a too low number of replacement buses. The 
implementation of public transport reached a quite elaborated state and only less essential 
extensions are thinkable. For example, an intermodal router for passengers could be 
implemented. 

The implemented concept for freight and goods enables the simulation of goods traffic. The 
concept is very similar to the extended public transport concept. Due to the implementation, 
intermodal logistic chains can be realised now. For the future, several extensions are possible. 
These include a goods router or the enhancement of the goods concept, such that not only 
container but also pallets or individual items can be transported. One could also enable that 
certain goods, such as food, bulk or liquids/gases, can be transported only by special vehicles. 
Furthermore, one could enable restrictions for the route of vehicles transporting hazardous 
material or heavy load. Another extension that is needed for more realistic freight transport is 

Figure 8-16. Stored containers at a landing stage (container stop) of the harbor

Figure 8-17. Containers get loaded/unloaded onto/from ships, trains and trucks
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the implementation of a rail signal concept. So far, trains behave on rail networks as cars 
behave on road networks. In reality, the rail network is divided into blocks and trains can 
enter a succeeding block only if they get signalised that there is no train in the succeeding 
block. 

It can be summarised that the extended SUMO is able to simulate logistic and public transport 
which was proven in example scenarios. Further expansions are possible, however, mostly 
with respect to logistic as the implemented concept for public transport is quite advanced. 
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Abstract 
This paper outlines the need of accurate vehicle and traffic simulation in the field of logistic 
and manufacturing planning. Requirements, existing solutions and their enhancements will be 
described and their abilities will be discussed. Finally the results of bringing together the 
planning software suite MALAGA with SUMO, in order to provide a logistic planning suite 
enabled with accurate vehicle movement, will be described.  

Keywords: MALAGA, SUMO, digital manufacturing, logistic planning, traffic jam, in-
house logistic, congestion 

9.1 Introduction to Simulation in Logistic Planning   

Planning of production systems and their logistic supply systems originates as one of the 
traditional disciplines and strongholds in the automotive industry. Developments in the past 
have led to the inevitable capabilities of digital manufacturing. Digital manufacturing, focuses 
on merging available information from the description of manufacturing processes and 
factory layout information. Yet being widely accepted in the field of production planning, 
methodologies of digital manufacturing also emerge into material flow and logistic planning.  

Continuous effort in developing standardized, high performing and user friendly software for 
layout based logistic and material flow planning has been carried out though the last ten 
year, leading to remarkable results. For instance from the cooperation between BMW, 
Daimler, VW and ZIP Industrieplanung has emerged the standard planning suite MALAGA, 
which dedicatedly  incorporates the needs of the automotive industry and provides versatile 
bidirectional interfaces e.g. between the CAD-System Microstation and the Simulation tool kit 
Plant Simulation. Layout based logistic and material flow planning utilizes technologies such 
as CAD and simulation; advanced visualization capabilities of the engaged software is a key 
factor, flanking and driving the planning process. 
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Simulation studies have emerged as an indispensable investigation method in the field of 
industrial planning and layout development. Simulation studies in manufacturing planning 
vary over a broad range in their detail granularity.  

Logistic layout planning in the automotive industry provides concepts and solutions for the 
organization of material transportation within manufacturing sites, e.g. planning how many 
vehicles are needed to reliably supply an assembly station in time with the needed 
manufacturing components. 

As logistic planning evolves early in the process of projecting new facilities, when only few 
reliable data is available, ‘static’ design models are frequently used for evaluating the required 
transportation capacity and effort. Nevertheless, simulation studies are used, typically in the 
later phases of planning for testing and evaluating the developed layout. 

Ongoing developments urge to bring the simulation into the planning process, becoming a 
constant tool in the workflow of a modern industrial planer. Enriching the static approach by 
ad hoc simulation studies, running in the background, validating dynamically the logistic 
model unveils planning discrepancies betimes. System inherent effects such as traffic 
densities, congestions and their recovering must be part of such a system. 

When simulating the logistical network of a manufacturing site, often simplified models for 
vehicle movements are applied, due to the high modelling and computation effort and even 
more due to the lack of available and suitable vehicle and network modules in the leading 
industrial simulator software. These simplifications usually do not sufficiently consider the 
dynamic interactions between vehicles and with their environment. 

When substituting the shortfall of embedded vehicle modules in industrial software, the 
desired module should provide a set network elements such as multi-lane road segments, 
controlled and uncontrolled intersection elements in arbitrary shapes and with complex 
turning relations. The behavior of the vehicle types must be realistic/natural and be compliant 
with standard traffic rules. Further it has to accurately resemble vehicle movements and 
driving maneuvers in pure car following or overtaking modes even when overtaking 
encounters intersections.  

Figure 9-1: Schematic Work Flow in MALAGA 
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With the simulation of traffic dynamics logistic planning gains the opportunity to identify and 
investigate (potentially) congested traffic and blockades due to an overload or partly a 
blockade in the transportation network.  

Investigations on accurate vehicle movement in logistic simulations carried out by ZIP, VW and 
DLR have fostered over the last three years to the development of an experimental software 
solution which leading to a deployable prototype in 2014. 

9.2 Simulation Tools and Software Landscape  

This paper is based on the developments that have been undertaken in a consortium of 
industrial partners and a research organization using the logistic planning and evaluation 
software suite MALAGA. 

MALAGA is a planning tool kit suite assisting the logistic planner to design the inhouse 
logistic system and material supply of a manufacturing site. MALAGA has continuously been 
developed since 1990.  MALAGA is a distributed software suite, enabling planers to 
cooperatively develop their projects. MALAGA’s core software components are backboned by 
an object data base (Oracle) server operating both in online or in mobile mode.   

The user interface is integrated into a CAD-software for layout design. MALAGA’s strength is 
to visualize the material flow of a production system, its interdependencies and planning 
related analyses directly in the CAD-layout.  

 
           Figure 9-2: Relations of Material Flow                       Figure 9-3: Type-specific Segment Occupation 

When setting up an inhouse logistic system with MALAGA, the required data must be 
imported first. Since MALAGA is integrated into a CAD software, existing facility layout 
documents and floor plans can be easily be utilized. 

The layouts shall be augmented with path elements and floor space information, e.g. about 
warehouses and productions facilities. The corresponding elements are placed directly into 
the CAD-layout. 

To assess the material flow relations, information about the quantitative structures can be 
imported from a broad range of supported BoM management system. Additionally MALAGA 
needs process information, which can either be automatically imported or manually amended. 
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   Figure 9-4: Information types used by MALAGA                   Figure 9-5: Planning Workflow in MALAGA 

Together with the layout information and the quantity structure, the material flow relations 
can be assessed and are displayed in the layout by arrows of different strength indicating the 
relation’s volume.  

Importing floor layouts or BoM into MALAGA is a rather automatic process, whereas defining 
processes, especially logistical processes, is the design task of the planner shaping and 
analyzing the new inhouse logistic system.  

Figure 9-6: Converting a facility layout into a simulation model 

For logistic supply planning, MALAGA breaks the variety of processes down into two main 
classes, indicating whether the process belongs to manufacturing entity (rectangular icon), or 
whether the process belongs to the logistic system (circular icon), e.g. certain parts need to be 
transported to the next machining center.   

As it is inevitable important for logistic planning to know where parts are needed spatially, 
every manufacturing process is linked to a corresponding element (area) in the CAD-layout to 
define its geographic position.  

Yet the transport processes must be assigned. Information sets about transportation 
processes consist of the transport action type, transport vehicle type, its route, part handling 
properties and others.  

MALAGA assigns shortest paths between manufacturing stations and warehouses when 
routing vehicles, respecting restrictions such as transport type restriction, one way limitations 
or geometric properties of the path.   
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Figure 9-7: Process Chart in MALAGA 

Based on the available data, MALAGA computes automatically the material flow and its 
characteristics. The results such as the visualization of the material flow, resource utilization 
and occupation rates for rolling stock and for the stores and area consumption can easy be 
displayed within the layout in a 3D fashion.  

When calculating the material flow, MALAGA performs both a static estimation of the 
material flow, based on statistical analyzes and heuristics and a set dynamic simulation 
studies, coping with the dynamic nature of logistic and manufacturing processes.  

Therefore since the early days, MALAGA is co-powered by a simulation engine, Plant 
Simulation, formerly known as Simple++ by AESOP. The simulation framework of the 
MALAGA Planning Suite is customized to runs on the same data. MALAGA automatically 
builds up the simulation model from the available data and performs the simulation runs 
autonomously in the background. Relevant events and data generated during the simulation 
are tracked and stored for post processing. Generally MALAGA’s simulation module is used in 
a computational manner and no interactive user input or specific simulation knowledge 
required. After terminating the simulations, the results are evaluated by MALAGA and 
information e.g. on the stock inventory fluctuation and order management can be visualized.    

Figure 9-8: 3D visualization of a Warehouse’s occupation 

The outcome of the planning step, the intermediate layout of the material flow system is 
directly visualized in the CAD layout, showing the transport network’s load, the material flow 
volume and the impact of measurement onto the logistic grid, highlighting stress zones and 
bottle neck areas for improvement in the next planning iteration. 
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9.3 Challenges in Embedding Aspects of a Road Traffic 
Simulation 

Investigations such as [4] and their use cases show that there has always been a drive of 
integrating 'real-world-traffic' in material flow simulation models. Often Plant Simulations 
internal interpreter language is used when developing an in-model traffic simulation. 

Yet no commonly used, widely spread, rich functionally equipped and even more, fast 
performing in-model solution could be found. Performance issues while handling intersection 
states and overtaking processes may have reduce the (re-) usability of the concepts in large 
scale simulation studies. 

When enhancing MALAGA with accurate vehicle movement, we have preferred the traffic 
simulation suite SUMO over the option of developing a single use or constrained intra-model 
traffic simulation module, for its rich abilities in simulating accurate vehicle movements, its 
mature and well tested development state and its large user community, to be coupled to the 
planning tool's simulation core. 

SUMO has been developed as scientific tool to simulate vehicles movements in a road 
network. SUMO provides fast and realistic road vehicle behavior. SUMO further provides all 
elements and traffic participants / user types of a real road network in accordance to most 
central European traffic rules.  

SUMO is a testified simulation environment for simulating and analyzing traffic scenarios and 
traffic management interventions.  

SUMO has been used in countless projects for the purpose in investigating mobility and 
transportation, as well as for researching traffic flow and traffic management concepts. 
SUMO’s stronghold is the proper representation of vehicles, their interactions with other 
vehicles and the 'world' in a coherent simulation suite. Nevertheless for various purposes its 
flanked with numerous tools providing solutions in traffic planning related tasks.  

Due to its flexibility and its rich interfaces, SUMO has been linked to other simulation software 
and science application, eg. tapas, ns3, vtd, various driving simulators and others more. Still 
so fare SUMO has not been used in a manufacturing context and no attempt ever, to our 
knowledge, has been undertaken to connect SUMO to one of the leading tools in industrial 
planning.  

Nevertheless it's well known, that linking two simulators can lead to performance draw backs. 

9.4 Separation of Logical Responsibilities between the 
Simulators  

In the existing Logistic Planning Software Suite MALAGA, Plant Simulation is used as a plug in 
to provide event driven simulation studies. Any simulation logic concerning the manufacturing 
processes, such as the dependencies among parts, process order, resource occupation and 
other are handled within Plant Simulation. Plant Simulation also keeps the sovereignty over 
the transport control logic. The transport control logic determines which parts need 
transportation at which time with constrains to the current state of the manufacturing 
system. It reserves vehicles, assigning transportation requests to transportation capacities, 
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directs milk-run organized vehicles and finally sends transportation units into their route or to 
their parking position.  

Figure 9-9: A Plant Simulation Model generated by MALAGA 

When MALAGA sets up the simulation model, it also provides layout information, the 
configuration of the transport network and production resources, process data and the 
production plan. The simulation network contains the transportation gird and the production 
stations, each maintaining its own registries on assembly orders, parts and the local storage.    

The Simulation is performed accordingly to the production plan, parts consumption is tracked 
at the production stations and once a critical amount of parts withdrawal has been reached, 
new part orders are released, leading to transportation requests. Transportation requests are 
handled by the Transport Control Module, providing and directing the vehicles in the 
simulation. If a transportation request had been scheduled, it must be assigned to a free 
transportation vehicle, fulfilling the transportation request restrictions. 

MALAGA provides different, usually coexisting, transportation strategies, such as exclusive 
and direct fork lifter supply, transporting homogenous parts, ‘Milk Run’ supply vehicles 
operating on a fixed schedule, which might be carrying containers with mixed or 
homogenous parts and finally taxi service vehicles, carrying order specific containers on a 
predefined relation. 

Depending on the transportation strategy, the transport control module gathers and merges 
transport requests and finally assigns new transport orders to the vehicles accordingly to the 
current available transportation capacities. 

In unison with Plant Simulation, SUMO keeps out of any production logic, but takes over the 
control of any vehicle in route. SUMO simulates the vehicles movement through network and 
all their interactions. For instance, SUMO receives from Plant Simulation information that a 
certain vehicle should move from its current position to the next manufacturing position. 
While moving the vehicle there, respecting traffic rules and other vehicles SUMO frequently 
resubmits the vehicle's motion state and its position. Traffic jams, local congestions or speed 
drops related to the occupation of traffic network are handled within SUMO - natively. The 
effects are reported either back to transportation control, which means to Plant Simulation, or 
directly to the evaluation components of the planning suite. 
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9.5 Requirements, Enhancements and Realization  

The task of integrating an accurate vehicle behavior into a highly specialized, mature and 
battle tested, industrial planning software suite, such as MALAGA, which is already in use at 
many customer sites, leaves no space for major changes in the principle software appearance, 
its interfaces or its fundamental functionality. Moreover the changes have to happen "behind 
the scenes". 

For finding the most suitable component alignment with reasonable few alternations to the 
existing planning work flow, we deemed firstly to develop a prototype, which provides all 
crucial components and covers the essential functionality of the simulator coupling up to early 
deployment.  The prototype should outline the interaction between MALAGA’s internal 
simulator and SUMO and even more should already include the main characteristics of the full 
featured interface between both simulators.  

In the prototype development phases we used a medium scale scenario, native in the 
automotive industry, as reverence with about 50 different manufacturing stations, 12000 
parts and variants, 20 different transport vehicle types for logistic services and a total network 
length of nearly 10km. 

The prototype and its functionality must be integrated into MALAGA’s toolkit environment, 
using MALAGA’s interfaces and providing access to the simulation data. Therefore it must 
contain a number of high level software modules: 

 
A module to convert available data to SUMO’s native formats 

When MALAGA builds up the simulation model for Plant Simulation, it must now in parallel 
configure the SUMO simulation, using the same information available. This mainly concerns 
the topology of the transportation network including the shape and properties of edges and 
intersections. Further must be provided the positions of manufacturing stations as input for 
OD-Matrices, as well as routes, paths sequences and vehicle types and classes with their 
dimensions and their restrictions in the network.  

 
A module synchronizing the two simulators  

Once properly initialized both simulators must perform their simulations synchronously. Hence 
a fundamental functionality of the prototype must be to provide synchronously the head beat 
stimulus to the simulators.  

Generally both simulators operate independently. Plant Simulation simulates any 
manufacturing events and handles all the processes logic and even orchestrates the logistic 
system. SUMO is supposed to focus on the vehicle movement simulation purely. The 
simulators are brought together in order to complement each other, each operating in its 
own, disjunctive sphere. But nevertheless, to a certain extend both may also simulate the 
same situations overlapping. It’s important to keep track of these parallel situations to make 
sure both simulators do find the same results or are aligned to each other properly. This 
situation can be found for example when a vehicle leaves a production facility and hence for a 
moment is in the sphere of both simulators.   
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A communication module 

Since both simulators do depend on each other’s simulation state and intermediate results, 
the exchange of information and the performance of the communication interface is crucial 
to the prototype.   

 
Enhancements to the Transport Control Module 

The control over the transport system remains the domain of Plant Simulation, but has strong 
effects in both simulations.  The transport control must be able to direct SUMOs vehicles 
between manufacturing stations and warehouses, accordingly to the transportation requests. 
Vehicles must be able to resume and pick up new transport orders or being sent to their 
parking position.  

Where possible specific behavior of vehicles should be resembled, e.g. certain types entering a 
manufacturing cell, whereas others don’t.  

As the Transport Control Module is already available for the vehicles in Plant Simulation, it 
hence must be enhanced to be compatible with SUMO. 

 
A data extraction module 

Both simulators, Plant Simulation and SUMO are designed to collect and evaluate data during 
the simulation run. 

Within the prototype development, SUMO must be enhanced to track specific simulation 
events, the same way as they would have been tracked within Plant Simulation. Further the 
tracked information must be consolidated and being provided back to MALAGA. Additionally, 
SUMO then does provide much more data and even more information which, yet could not 
have be generated by Plant Simulation, in particular concerning the vehicles motion and the 
dynamics in the road network. The software must be enabled to process this new data and to 
incorporate their evaluations into MALAGA’s visualization capacities. 

Besides the pure technical co-alignment of the simulators, certain traffic situations and vehicle 
behavior was deemed to be part of the prototype.  

The prototype’s main objective is to bring correct vehicle behavior into the material flow 
simulation. Therefore typical aspects of a traffic simulation where defined in order to find 
them in MALAGA’s vehicle visualization.  

First, vehicles should never run through each other while they are on the same track or lane. 
This must always be the case, regardless of the vehicles speed, the traffic density, the network 
topology. This can only be assured when vehicles know about each other, behave strategically 
and cooperatively and even do plan their behavior into the future, considering the movement 
of other vehicle, even if they are on different segments.  

Vehicles must properly respect traffic rules, and vehicles should not violate the right of way at 
intersections when other vehicles approaching intersection, regardless weather the 
intersection is unregulated, controlled or prioritized. The complexity of the intersections shape 
must not have any impact on the reliability and the compliance of the vehicles.  
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Intersections do reduce the free flow of a road network, we therefore deemed to find vehicles 
jamming up at over-crowed intersections. On the other hand congested intersection should 
never be completely blocked or dead locked by vehicles, leading to a collapse of the entire 
traffic system.  

Vehicles should block other vehicles, in situations where this can happen in reality too, e.g. 
when a unit is unloading in front of a manufacturing station, occupying parts of the road 
network. If the road segment is not sufficiently broad for other vehicles to pass, they should 
wait behind the blocking vehicle. 

Insertion of the vehicles should already consider the actual traffic density on the edge. 
Vehicles should only be inserted into the simulation, if there is enough space for them to 
enter, without causing collisions.   

The co-alignment of Plant Simulation and SUMO provides information about dynamic aspects 
of the vehicle flow within a production site, leading to congestions and in the worst case 
outlining disruptions or delays in the part supply of the inhouse logistic system. The prototype 
also provides information about the occupation of the network, its most stressed segments 
and critical intersections tending to be congested. Loss time can be computed individually or 
globally for the entire network.  

The evaluation emphasis of the prototype focuses on vehicles and parts, providing capabilities 
to analyze delay times of single vehicles and parts, the total delay of orders, individually or 
grouped, allowing to analyze the tradeoff between fleet size and utilization vs. delay of part 
orders.   

9.6 Runtime and Communication Efforts   

Existing models of extensive manufacturing sites can currently perform a simulation run for a 
complete production year within hours using static logistic planning approaches. 

It has been expected that the simulation of vehicle movements and their dynamics will 
increase the computational effort. Nevertheless serious real live and large scale models must 
still perform a simulation run within hours, the worst with in a working day, which is 
perceived as the user's run time threshold. 

When developing the prototype of the integrated SUMO for MALAGA, information exchange 
and synchronization between the simulators was found to be one of the major bottlenecks.  

Static information exchange, such as the layout of the network and it's and basic vehicle 
descriptions, their serviced area which will not be altered during the simulation run, can for 
ease, be converted into a SUMO-readable or SUMO-like xml-based file. Dynamic information 
exchange, such as new transportation orders, vehicle's motion state or task completion 
information can only be delivered during the simulation run and hence must use one of Plant 
Simulation and SUMO online exchange protocols.  

Within the prototype two pre-existing interfaces of Plant Simulation and SUMO have be 
utilized, but were found not to meet the performance criteria.  

For an early proof of concept, with no concessions towards performance speed, a purely file 
based approach for dynamic data exchange was implemented and immediately discarded. 
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Information was written into text files accessed by both simulators, the files lived in a ram-
drive. Besides the file handling overhead, performance also heavily suffered from the limited 
efficiency in Plant Simulation’s string parsing capacities. 

With the shift to encode information into a binary format, SUMOs native purely socket based 
interface TraCI was used to establish the communication interface to SUMO. Again TraCI 
comes with some overhead, leading to acceptable performance rates for medium scenarios. 
Large scale scenarios including multiple manufacturing sites, perform the simulation of a 
production year within 24h. Since the additional computational time SUMO needs is about 
20% of the total time consumption, still communication and synchronization remains the 
main bottleneck.  In order to overcome the communication time gap new customized and 
performance tweaked interfaces for both SUMO and Plant Simulation have been under 
developed and successfully tested.  

9.7 Outlook and Discussion 

With the development of the prototype for the integration of SUMO into MALAGA, ZIP, VW 
and DLR have proven on a technical level that both simulators may symbiotically be coupled. 
Yet not all obstacles have been removed, especially further investigation is needed in the field 
of handing unutilized vehicles and on manufacturing specific artefacts in the network and its 
elements.  

The prototype, even though yet not fully featured in all details the prototype has proven its 
usefulness already in real life consultant projects flanking the existing evaluations of milk run 
systems, leading to a reduction in the estimated vehicles fleet and containers.  

Moreover the ongoing development promises an industry rollout of the new technology in 
2015, becoming available to planners in early 2016. 
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Abstract 
Walking is the most natural way of human mobility. The microscopic simulation package 
SUMO has supported an intermodal person-based simulation including pedestrian  since 2010 
(version 0.12.0). However, movements along a road were resembled using a linear 
interpolation only and pedestrian dynamics at an intersection were not modelled at all. Within 
the scope of the COLOMBO project, SUMO was extended to simulate pedestrian dynamics in 
more greater detail. This includes extensions to the road network format, movement models 
and routing tools. 

Keywords: pedestrian dynamics, human locomotion, inter-modality. 

10.1 Introduction 

Especially in Europe, a long-term shift towards putting soft modes of transport, mainly 
bicycles and pedestrians, into the focus can be observed. Several reasons motivate this. First, 
these modes of transport are environment friendly. Second, they are healthier than using 
vehicles, both for the user himself as well as for other persons. Both circumstances do not 
only motivate individuals to change to non-motorized traffic. They are as well targeted by 
authorities and societies that try to avoid penalties for not keeping pollutant density 
thresholds and avoid long-term costs of an unhealthy population. On the other hand, 
pedestrians and bicycles require special care due to being more vulnerable than motorized 
traffic. 

Conventionally, traffic simulations are helping in the design and development of both, 
strategic actions as well as road infrastructure changes. Consequently, established commercial 
traffic simulations have incorporated pedestrian and/or bicycle dynamics in recent years. Until 
version 0.21.0 SUMO lacked a model of pedestrian dynamics. Albeit its inter-modal person 
routes [Behrisch et.al, 2010] include a “walking” stage, pedestrians were moved along roads 
with a constant speed and jumped over the intersections. No interactions between 
pedestrians or between pedestrians and traffic were modelled. 

Extending SUMO by pedestrian and bicycle dynamics was scheduled within the COLOMBO 
project. The main goal of COLOMBO is to develop traffic surveillance method and traffic light 
controls that use data from V2X-enabled vehicles assuming a low equipment rate. In this 
context, the dynamics of pedestrians was assumed to be necessary for two reasons:  
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• Pedestrians may deliver additional information that may be used by the developed 
traffic surveillance and, in case of a sparse connectivity, may be used as additional 
relay nodes.  

• Vehicles which turn left or right at an intersection typically have to yield to 
pedestrians. Thus pedestrians need to be included in a simulation to correctly 
model urban intersection capacity. 

• The development of environment-friendly traffic light controls should take 
pedestrians into account to allow research on control strategies which prioritize the 
environment-friendly transport modes. 

The remainder is structured as following. At first, the requirements for pedestrian dynamics 
are listed. Then, the implementation is described and finally some measurements from 
pedestrian simulations are given.  

10.2 Requirements 

As outlined, the major goal was to correctly replicate the behavior of pedestrians at (traffic-
light controlled) intersections. This implicates the following functional requirements: 

• vehicles need to wait for pedestrians which are crossing the road in front of them; 
• pedestrians need to cross the road in order to continue on the other side; 
• right-of-way rules observed normally between the different modes at different 

types of intersections should be respected; 
• pedestrians dynamics should be sufficiently detailed to model the time required for 

passing a pedestrian crossing including the following aspects: 
 width of the available walking space, 
 bidirectional movement, 
 positioning in front of the crossing while having to wait, 
 density of pedestrian traffic, 
 route choice when passing an intersection diagonally; 
 simulation outputs should allow tracking of pedestrians. 

The according adaptations had to be performed to the simulation modules (SUMO and 
SUMO-GUI). One should note that the implementation of the needed models and data 
structures has to be accompanied by according extensions in the used data files. As well, to 
match SUMO’s philosophy of offering a high level of user support, the supporting tools had 
to be extended. Thereby, regarding the implementation of pedestrians within SUMO, 
additional requirements relate to the application chain used in scenario creation:  

• The application for network building should be enabled to support the necessary 
networks structures for meeting the above functional requirements 
 by using explicit input specifications; 
 by using heuristics to generate the necessary structures from context. 

• The tools for demand generation should be able to support the creation of multi 
modal demand 
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Additionally, there were non-functional requirements related to the architecture of the 
simulation suite SUMO: 

• the implemented models should be modular enough to make them replaceable, 
• the applications should be backwards compatible with the input data formats of 

previous versions, 
• input data formats should be changed as little as possible, 
• the implementation should be fast enough to allow the simulation of city-sized 

scenarios (at least for some models), 
• the visualization of pedestrians should be sufficiently detailed to allow diagnosing 

the simulation behavior, 
• pedestrian dynamics should be included in the existing inter-modal trip chains. 

10.3 Implementation 

This section describes the implementation steps performed for obtaining the needed 
functionality. At first, the changed in representation of the infrastructure are given followed 
by a presentation of the implementation of the pedestrian dynamics themselves. Finally, 
additional work performed on the network and routes preparation modules is described. 

10.3.1 Infrastructure 

One of the most challenging work steps was to find a representation of the road 
infrastructure used by pedestrians that on the one hand is capable of representing complex 
intersections, but on the other hand fits well with the existing structures and is efficient 
enough for large simulations. Different alternatives for modeling intersections were tested as 
reported in [COLOMBO D5.2, 2014]. 

In the implemented architecture, road vehicles, bicycles and pedestrians move on separate 
network elements. Each mode only interacts with members of its own mode while traveling 
along a road and the interaction between modes happens at intersections only. 

SUMO simulates movements along unidirectional roads (also called edges) consisting of one 
or more lanes where each lane allows as many vehicles as it’s longitudinal length permits but 
only ever allowing a single vehicle in the lateral direction. At intersections (also called nodes) 
vehicles regard traffic lights and right of way rules before passing. To allow for pedestrians 
and bicycles, additional lanes are added to existing edges which represent sidewalks and 
bicycle lanes. Furthermore, “blind” lanes which do not allow any traffic can be added to 
model green verges between these mode-specific lanes. To model the paths of pedestrians at 
intersections, specialized edges (and lanes) are added for modeling pedestrian crossings and 
for modeling sidewalk corners where crossings and sidewalks meet (called walkingarea). 
Figure 10-18 shows the previous and the extended network model in the simulation GUI. 
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a)        b)  

Each crossing is defined to either give priority to the pedestrian or to the vehicle (The latter 
case is distinguishable in the GUI by having black/grey stripes instead of black/white). The 
connectivity among sidewalks, walkingareas and crossings is modelled using unidirectional 
connections as in the previous network model. However, these connections as well as the 
edges may be traversed by pedestrians in either direction. Edges of the type “walkingarea” 
have the unique property of being connected to edges in multiple directions so as to make 
the question of their direction ambiguous. Resolving this ambiguity is left to the pedestrian 
model (see 10.3.4). When drawing a walkingarea in the GUI its “shape”-attribute is 
interpreted as the polygonal border around the space, rather than as a polygonal line in the 
direction of the edge. 

Some features of real world traffic such as heterogeneous lane use and bidirectional lane use 
during overtaking cannot by modelled by this architecture. This is a consequence of keeping 
the existing vehicular model and only extending the intersection model. However, we expect 
the extended intersection model to be able to accommodate future extensions along these 
lines. 

10.3.2 Pedestrian Dynamics 

One of the initial goals of the traffic simulation SUMO was to support researchers in 
comparing and validating different traffic models. While this was mainly stated having car-
following models in mind, it should as well count for models of pedestrian dynamics. 
Therefore, not a single dedicated model of pedestrian dynamics was implemented, but rather 
an API (application programmer interface) for embedding different models. The interface is 
minimalistic to give the model developer a high degree of freedom. A pedestrian dynamics 
model has to support the following functionality: 

• Return whether a given lane is currently blocked by any pedestrians from being 
passed at a certain location (function blockedAtDist) 

• Add a new pedestrian and return a PedestrianState object which must be able to 
report on the position, angle and speed of that pedestrian 

Figure 10-18 a) Previous network model with “normal” edges labelled in orange and “internal” edges labelled in

cyan. The internal edges outgoing from edge “SC” are highlighted in magenta; b) 4-arm intersection with

bicycle lanes (brown), sidewalks (grey), walkingareas (blue), crossings (striped), green verges (green). IDs are

shown for all edges which may be used by pedestrians.  
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When adding a pedestrian to be controlled by the Pedestrian model, the following 
information must be supplied: 

• A sequence of (normal) edges to define the “skeleton” of the walking route 
• The starting position relative to the first edge 
• The destination position relative to the last edge 
• The maximum speed 

These attributes are all contained in the definition of a <walk> which is part of a person’s 
plan, just as in older versions of SUMO. It is the responsibility of the pedestrian model to 
select the sequence of walkingareas and crossings which are needed to connect the given 
normal edges when passing an intersection. 

Currently, two pedestrian dynamics models are included in SUMO. They are presented in the 
following subsections. 

10.3.3  Model “nonInteracting” 

The initial “dynamics model” where pedestrians move with a constant speed, disregard 
interactions with other pedestrians and “jump” across intersections can be selected using the 
option --pedestrian.model nonInteracting. It may be useful if the pedestrian 
dynamics are not important and a high execution speed is desired. One enhancement that 
has been made is that pedestrians may use edges in both directions. The walking direction on 
a given edge is computed based on the topology of the edge sequence. 

10.3.4  Model “striping”:  

The “striping” model implements detailed pedestrian dynamics according to the requirements 
in section 10.2. It is selected using the option --pedestrian.model striping and also 
serves as the new default model. In the following, the main functionalities of the model are 
described. 

Routing within an intersection 

When passing an intersection, a sequence of walkingareas and crossings must be used to 
reach the next “normal” edge in the pedestrians route. When there are multiple routes 
available, the PedestrianRouter described in 10.3.7 is used with its scope limited to the 
current intersection. The signal states of the traffic lights are used to select a path which 
avoids waiting when possible. 

Interactions of pedestrians with each other 

The model assigns 2D-coordinates within a lane (of type sidewalk, walkingarea or crossing) to 
each pedestrian. These coordinates which are defined relative to the leftmost side of the start 
of the lane are updated in every simulation step. This is in contrast to the coordinates of 
vehicles, which (generally) only have 1D-coordinates within their respective lane. Pedestrians 
advance along a lane towards the next node which may either correspond to the natural 
direction of the lane (forward movement) or it may opposite to the natural direction 
(backward movement). Thus, the x coordinate monotonically increase or decreases while on a 
lane. Once the end of a lane has been reached, the pedestrian is placed on the next lane 
(which may either be unique or determined dynamically with a routing algorithm).  
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The most important feature of pedestrian interactions is collision avoidance. To achieve this, 
the “striping”-model divides the lateral width of a lane into discrete stripes of fixed width. 
This width is user configurable using the option --pedestrian.striping.stripe-
width and defaults to 0.65 m. These stripes are similar to lanes of a multi-lane road are used 
by vehicles. Collision avoidance is thus reduced to maintaining sufficient distance within the 
same lane. Whenever a pedestrian comes too close to another pedestrian within the same 
stripe it moves in the y-direction (laterally) as well as in the x-direction to change to a different 
stripe. The y-coordinate changes continuously which leads to situations in which a pedestrian 
temporarily occupies two stripes and thus needs to ensure sufficient distances in both. The 
algorithm for selecting the preferred stripe is based on the direction of movement (preferring 
evasion to the right for oncoming pedestrians) and the expected distance the pedestrian will 
be able to walk in that stripe without a collision. 

During every simulation step, each pedestrian advances as fast as possible while still avoiding 
collisions. The updates happen in a single pass for each walking direction with the pedestrian 
in the front being updated first and then its followers sorted by their x-coordinate. The speed 
in the x-direction may be reduced by a random amount with the maximum amount defined 
as a fraction of the maximum speed, using the 
option --pedestrian.striping.dawdling <float> (defaulting to 0.2).  

As a consequence of the above movement rules, pedestrians tend to walk side by side on 
sidewalks of sufficient width. They wait in front of crossings in a wide queue and they form a 
jam if the inflow into a lane is larger than its outflow. 

The division into stripes in the lateral direction is straightforward for walking areas and 
crossings which have two main directions of walking. In contrast, walkingareas are used in 
multiple directions. To apply the above movement rules additional processing takes place. For 
every combination of sidewalk and crossing adjacent to a walkingarea, a unique path is 
computed at the start of the simulation. During the simulation each pedestrian uses the 
unique path which allows it to follow the sequence of walkingareas and crossings prescribed 
by the PedestrianRouter. Each of these paths is computed separately according to the above 
movement rules. To avoid collisions between pedestrians on different walkingarea-paths, the 
pedestrians from other paths are mapped into the coordinate system of the current path 
beforehand.  

The “striping”-Model can be seen as a compromise between space-discrete and space-
continuous pedestrian models due to combination of continuous positions and discrete 
stripes. The model captures qualitative dynamics when there are two main directions of 
movement such as is found on sidewalks and crossings but is not well suited to describe the 
dynamics in other cases (i.e. pedestrians cannot back up in order to clear space in a crowded 
area). As an advantage over other more detailed models it allows for a computation time 
which is linear in the number of simulated pedestrians. More specifically the running time for 
executing a single simulation step is in the order of O(n×k) with n being the number of 
pedestrians and k being the maximum number of parallel stripes for all lanes. This is achieved 
by using only a very limited set of surrounding pedestrians to compute pedestrian interactions 
(Since the coordinate-remapping on walkingareas only happens per path, the effort is linear 
in the number of pedestrians) . 
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Interactions between pedestrians and other modes 

In SUMO there are two concepts for modelling the influence of a conflicting traffic stream on 
a vehicle:  

a) Each vehicle registers its approach to an intersection along with an expected time slot for 
passing the intersection. A vehicle approaching the intersection must yield to any vehicle 
with higher priority which wants to use the same time slot. 

b) Each vehicle must cross certain set of “foe” lanes which are used by conflicting streams. 
The vehicle must yield regardless of priority whenever such a “foe”-lane is occupied by 
another vehicle (and the vehicles are not geometrically past the conflict point). 

Concept a) is used for modelling uncontrolled crossings. A pedestrian wishing to cross the 
street at an uncontrolled intersection can only do so if its expected time slot for using the 
intersection does not interfere with that of an approaching vehicle. It should be noted that 
the dynamics at unprioritized crossings are conservative in estimating the time required gap. 
In the simulation, pedestrians will only use such a crossing if the whole length of the crossing 
is free of vehicles for the whole time needed to cross. In reality, it can be observed that 
pedestrians start to cross while vehicles are still occupying the far side of the crossing. 

Concept b) is used for preventing vehicles from driving across a pedestrian crossing which is 
occupied by pedestrians. Pedestrians themselves never register for a time slot. While they 
have not moved onto the crossings, vehicles are free to drive. The influence on vehicles is 
implemented via the interface method blockedAtDist which is called to request whether a 
“foe”-lane in the vehicles path is blocked at specified distance due to the presence of 
pedestrians. The given distance value corresponds to the geometric intersection between the 
crossing and the vehicles trajectory measured as distance from the start of the crossing.  The 
“striping”-model computes its results by iterating over all pedestrians on the lane and returns 
“blocked” status if a pedestrian is found which is not yet past the intersection point but 
within a threshold distance to that point (currently fixed at 10m). For “foe”-lanes other than 
crossings the check always returns false since pedestrians do not walk there. 

Concept b) could also be used to prevent pedestrians from walking into vehicles which 
occupy the crossing but this is currently not implemented. 

10.3.5 Further Pedestrian Models 

Both presented models have not been published before and are thereby not known to the 
scientific community. Within the COLOMBO project, a further model was implemented that 
has been discussed in literature intensively [Antonini et al., 2006], [Antonini, Berlaire, 
Schneider, Robin, 2009]. Being currently implemented within a standalone application, the 
model has not yet been included into SUMO. This is planned to be done during the next time. 
As well, several open source implementations of established pedestrian dynamics models 
exist, e.g. “pedsim” [pedsim] which uses a social force model (see [Helbing, Molnár, 1995]), 
that are planned to be included.  

10.3.6 Extensions for network generation 

The NETCONVERT application is part of the SUMO application suite. It is responsible for 
preparing the simulation network (net.xml) from a wide range of input data formats such as 



10 Modelling Pedestrian Dynamics in SUMO 

110 

OpenStreetMap (OSM), VISSIM or shape files. Another important input format is a set of 
simple xml inputs (called plain XML) which describe the nodes, edges and optionally the 
connections of the road network. NETCONVERT enriches its inputs by computing connectivity, 
right-of-way rules, and the geometry of intersections with configurable heuristic models.  

To support intermodal simulations, NETCONVERT was extended to create sidewalks as well as 
the new edge types “walkingarea” and “crossing” described in the previous sections. The 
crossings must be included in the generated right-of-way rules. Furthermore, heuristically 
generated traffic-light programs are adapted to include pedestrian signals. We describe these 
procedures in the sequence in which they are executed. For a usage description of the new 
functionality refer to [3]. 

Generating Sidewalks 

NETCONVERT supports multiple ways of defining sidewalks which are appropriate in different 
usage scenarios: 

• In plain XML input when describing edges (plain.edg.xml). This is done by defining 
an additional lane which only permits the vClass “pedestrian” and setting the 
appropriate width or by including the new attribute sidewalkWidth 

• When importing edges with defined types (i.e. from OpenStreetMap), sidewalks 
may be added for selected types  

• Heuristically for all edges with a speed limit within a defined range 
• Based on permissions: edges which allow pedestrians receive a sidewalk. 

Below is an example edge definition with two vehicular lanes, a green verge, a bicycle lane 
and a sidewalk:     

   <edge id="x" from="A" to="B numLanes="5" speed="13.89"> 

       <lane index="0" allow="pedestrian" width="3.00"/> 

       <lane index="1" allow="bicycle" width="1.00"/> 

       <lane index="2" disallow="all" width="1.50"/> 

       <lane index="3" allow="passenger"/> 

       <lane index="4" allow="passenger"/> 

   </edge> 

Generating Crossings 

Crossings may be defined explicitly in plain XML input when describing connections 
(plain.con.xml).  This is done using the new XML element <crossings> with the mandatory 
attributes node=”<nodeId>” edges=”<listOfEdgesToCross>” and the optional 
attributes width=”<widthInM>” and priority=”true/false”. This defines a 
crossing at the given node across the given list of edges. Crossings at TLS-controlled nodes 
are always prioritized. Since crossings are always associated with nodes, a node must be 
present if a crossing somewhere along an edge is to be modelled. This fits well into the 
existing simulation architecture which only recognizes conflicting traffic streams at nodes. 
Below is an example crossing defininition: 

   <crossing node="A" edges="x y" width="4.5"/> 
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The second available method adding crossing information to a network is with the 
option   --crossings.guess. This enables a heuristic which adds crossings wherever 
sidewalks with similar angle are separated by lanes which forbid pedestrians. If the edges to 
be crossed have sufficient distance between them or vary a by a sufficient angle, two 
crossings with an intermediate walking area are generated. Such split crossings can be seen in 
Figure 10-19. 

 

Generating Right of Way Rules 

The Intersection model described in [ Erdmann, Krajzewicz, 2014] extends naturally to 
pedestrian crossings. Crossings are simply another set of internal lanes which must be 
considered in the conflict-matrix and the right-of-way matrix. 

The first matrix (called “response”) defines for each connection, the set of foe connections to 
which it must yield in case of registered approaches. The second matrix (called “foes”) 
describes for every connection, the set of foe lanes which may not be crossed in case of 
occupancy. These matrices are extended to incorporate crossings depending on whether they 
are prioritized or not. In the former case, all connections which have trajectories intersecting 
the crossing must yield to pedestrians occupying the crossing whereas the crossings 
themselves are only flagged in “foes” matrix which means pedestrians are free to walk. In the 
case of unprioritized crossings, the right of way varies depending on the properties of the 
road connection: Vehicles which perform a left or right turn must yield if there is a pedestrian 
crossing on their target edge. Otherwise the pedestrians must yield to all vehicles. 

Generating Signal Plans for Crossings 

A controlled intersection with pedestrian crossings needs to incorporate information about 
the signal states for pedestrians. In the previous versions of SUMO all connections entering an 
intersection are generally controlled by the traffic light. When adding pedestrian structures, 
this no longer holds true. Connections between sidewalks and walkingareas are never 
controlled. On the other hand connections from walkingareas to crossings are always 
controlled. Connections from crossing to walkingarea are uncontrolled as it is always possible 
to leave the crossing. When entering a crossing in the backward direction (relative to its 

Figure 10-19 Intersections with split pedestrian crossings 
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natural direction), the traffic light state for the forward entering connection is substituted 
instead of using the (uncontrolled) connection from the crossing to the walking area in 
reverse. 

The additional controlled connections are indexed in clockwise directions starting in the north 
following the connections from normal edges. Thus, signal plans for such intersections can be 
given explicitly by defining phase states of the appropriate size. 

When signal plans are generated heuristically, the signal state for pedestrian crossings is set to 
“red” whenever any intersecting straight connections are set to “green major” (being able to 
drive with absolute priority). Otherwise the crossing is set to the “green major” state itself. 
This ensures that pedestrians are only allowed to walk when they do not disturb straight-
going traffic. TLS signals for vehicles with a green state are set to “green minor” if the 
destination edge of that connection intersects a pedestrian crossing which also has a green 
state. This models the fact that vehicles turning right or left at an intersection need to yield to 
pedestrian crossings when leaving an intersection. The “green minor” state ensures a slow 
approach which allows vehicles to brake for pedestrians in time. Additional phases are 
generated to allow pedestrians to leave an intersection before giving vehicles the green light. 

NETCONVERT can apply these heuristics to existing signal plans in order to “upgrade” 
vehicular networks in to intermodal networks. 

Generating Walkingareas 

Whenever at least two sidewalks are adjacent at an intersection or a sidewalk is adjacent to a 
crossing, a walkingarea which connects these structures is generated. Unidirectional 
connections following the existing schema for regular road connection are generated 
according to the following rules:  

• sidewalks of edges incoming to the current node have a connection to the 
walkingarea 

• walkingareas have a connection to sidewalks of outgoing edges 
• Connections between walkingareas and crossings are generated in a counter-

clockwise fashion around the node. 

Currently walkingareas are only generated if the network is built with the 
option   --crossings.guess or at least one crossing is specified in the input files. This was 
done to still allow the generation of networks without pedestrian structures but could be 
made configurable in the future. 

10.3.7 Additional Extensions 

Various other additions to the SUMO code base were implemented in order to meet the 
requirements listed in section 10.2. They are described in the following. 

Pedestrian router 

A routing application was implemented which allows routing bidirectionally on sidewalks, 
walkingareas and crossings. This is accomplished for constructing a special routing graph 
which can be processed with the existing implementation of the Dijkstra routing algorithm. 
One particular feature where this adapted graph differs is the dynamic treatment of TLS-
controlled crossings. In reality pedestrians which need to cross the street twice to reach the 
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diagonally opposite corner of an intersection will usually select the crossing which first shows 
a green light, using the knowledge that the second crossing will be green soon after they 
reach it. To achieve this type of behavior, the travel times which are returned by each edge in 
the routing graph take into account whether access to an edge is regulated by a traffic light 
which is currently in its red phase. The travel time for passing an edge behind a red light is 
computed using the following formula: 

traveltime = length / speed + max(0, 20 – (t – tD)) 

where (t - tD) is time offset to reach that edge from the current moment. Thus, red lights in 
close proximity are avoided while far away red lights are not. 

Output  

The existing methods for retrieving simulation data where extended to cover pedestrians 

 Option –fcd-output now includes positions, speeds and angles of pedestrians 
 Option –nestate-output now includes positions, speeds and angles of pedestrians 
 TraCI allows retrieving 2D-position, edge, edge-position, angle and speed of persons 

(and thus pedestrians) 

Demand Generation 

The tool randomTrips.py was extended with the options --pedestrians which generates 
persons with a single walk between random locations. The new option --max-distance 
can be used to limit the distance of walks. 

10.4 Simulations 

The main goal of the described extensions was to model the interactions between vehicles 
and other modes of traffic.  To obtain a quantitative assessment of these interactions some 
experiments were conducted. These are described in the following. 

10.4.1 Interactions between right-turning vehicles and crossing 
pedestrians at a single intersection 

In this experiment, a saturated flow of right-turning vehicles arrives at a single intersection. To 
complete the right turn, this flow must pass a pedestrian crossing which is frequented by a 
binomially distributed pedestrian flow of variable strength. The synthetic intersection used for 
this experiment is shown in Figure 10-20. The simulation was conducted with a traffic light as 
well as with a prioritized pedestrian crossing. The traffic light was following a fixed cycle of 90 
seconds with 26 seconds combined green time for vehicles and pedestrians and 5 seconds 
exclusive green for the vehicles (the rest of the cycle being reserved for other directions of 
traffic). Fehler! Verweisquelle konnte nicht gefunden werden. shows the vehicular flow 
behind the crossing in dependence on pedestrian density. At low and medium pedestrian 
flows, the uncontrolled intersection allows for higher flows due to the absence of “red” 
phases. However, at high pedestrian flows the TLS-controlled intersection allows for higher 
vehicle flows because vehicles already waiting within the intersection may drive each time, 
pedestrians have to wait at the red light. 
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10.4.2 Influence of pedestrians on an urban vehicular scenario 

In this experiment an urban vehicular simulation scenario was extended with pedestrian 
traffic. The simulation scenario named ACOSTA [Bieker et al., 2013] comes from the iTETRIS 
project and models a part of the city of Bologna. It contains 9045 vehicle movements within 
the space of about 90 minutes in an area of 1.5km2 and is characterized by high traffic 
density. The network model consists of 179 nodes and 182 edges. To extend this scenario, 
sidewalks and pedestrian crossings were added to the network model using the NETCONVERT 
options --sidewalks.guess and --crossings.guess. A total of 182 sidewalks (1 for 
each edge) and 164 pedestrian crossings were generated. Of these crossings, 52 are 
controlled by traffic lights. The existing traffic light programs were modified automatically to 
also cover the generated crossings. The green time allotted to vehicles remained unchanged. 
Pedestrian demand was generated randomly using the tool randomTrips.py described in 
section 10.3.7. 3600 pedestrians were generated which enter the network with a spacing of 
1 second and then proceed to their destination along the shortest route. The scenario is 
shown in Figure 10-5.  

 

Figure 10-20 Simulation experiment for measuring 

the relationship between pedestrian flow and right 

turning vehicle flow (TLS-controlled intersection). 

Figure 10-21 ACOSTA scenario with pedestrian enhancements. Pedestrians are shown at exaggerated size 

to increase visibility. 

Figure 10-4 Flow of right-turning vehicles as a 

function of increasing pedestrian flow 
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To measure the influence of the pedestrians on vehicular traffic, we compared the duration of 
vehicular trips in both versions of the scenario. Figure 10-6 shows the histogram of trip 
durations with a binning size of 60 seconds. It can be seen that the overall shapes of the 
distributions are similar but a small number of trips with much higher durations exist in the 
pedestrian scenario. The increased travel times were seen to be caused by the conflict of 
turning traffic with crossing pedestrians.  

 

We also compared the running times of both scenarios and noted that the average real-time 
factor (the fraction of simulated time over running time) decreased from 800 to 460 when 
adding pedestrians. When increasing the number of pedestrians to 9000 the real-time factor 
decreased further to 330. However, simulating 9000 pedestrians without vehicles still has a 
factor of 630. This shows that the pedestrian model has similar complexity to the vehicular 
model and a surprisingly large fraction of the time is spent on the interaction of vehicles and 
pedestrians. 

10.5 Conclusion 

An extension of SUMO for modelling pedestrians was presented. The work included 
modifications to several tools included in the SUMO package, which support the generation, 
simulation and analysis of multi-modal traffic scenarios. 

The presented extensions allow a number of new investigations. While the major focus was 
put on evaluating the behavior of pedestrians at traffic lights, the implementation allows 
simulating pedestrians on a city-wide level. Being integrated into SUMO’s inter-modal trip 
chains, it enhances SUMO by allowing microscopic modelling and evaluation of all (common) 
modes of urban transport. 

The currently available models for both vehicle and pedestrian traffic are not yet fine-grained 
enough to address traffic safety research questions, but the inclusion of pedestrians into a 

Figure 10-22 Histogram of vehicle trip durations in both versions of the 

ACOSTA scenario 
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traffic simulation with a modular architecture is assumed to be an important step towards 
that goal 

At last, one should point out that the inclusion of pedestrians – and the infrastructure 
(crossings) they use – influences the performance of motorized traffic as well. Therefore, the 
extensions not only extend SUMO’s capabilities, but also improve its quality when the focus is 
on vehicular traffic. 
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Abstract 
The research presented in this paper proposes a novel methodology for modelling the impacts 
of floods on traffic. Often flooding is a complex combination of various causes (coastal, fluvial 
and pluvial). Further, transportation systems are very sensitive to external disturbances. There 
is insufficient knowledge on the interactions in these complex and dynamic systems. This 
paper proposes a methodology for integrating a flood model (MIKE Flood) and a traffic model 
(SUMO). Traffic on inundated roads will be interrupted or delayed according to the manner of 
flood propagation. As a consequence, some trips will be cancelled or rerouted and other trips 
will be indirectly affected. A comparison between the baseline and a flood scenario yields the 
impacts of that flood on traffic, estimated in terms of lost business hours, additional fuel 
consumption, and additional CO2 emissions. The outcome suggests that the proposed 
methodology can help to quantify the flood impact on transportation. 

Keywords: microscopic traffic modelling, flood impacts, traffic disruption, flood 
modelling, model integration 

11.1 Introduction 

In order to consider flood impacts on traffic, general aspects of flood impacts should be 
addressed. Floods can impact human activities in many ways and this is why it is common to 
categorise these impacts. The flood consequences can be grouped as  direct or indirect, 
tangible or intangible, or a combinations of both [1].Direct damages occur if the asset of 
interest is physically exposed to flood waters (i.e., buildings, people or environment). Indirect 
damages are outside the flooded area and usually become apparent after a longer time [2]. A 
classic example of indirect losses is the interruption of production in a firm that might occur 
due to a supplier affected by flooding. Traffic disruption due to floods is another indirect 
flood impact, the importance of which has not been studied in detail. The main reasons are: 
1) the complexity of integrating two highly dynamic and uncertain systems; 2) the need to 
assess flood impacts in monetary terms (for the purposes of cost-benefit ratio). Flood impacts 
on traffic are often intangible: loss of time, frustration, environmental degradation due to 
additional CO2 emissions. However, they can also have monetary dimensions: additional 
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operating costs and fuel consumption have market prices, and loss of time could be 
monetized as well. Approaches to monetize the intangibles and the emerging importance of 
multi-criteria analysis for hazard impact assessments create the necessary conditions for the 
proper evaluation of flood impacts on traffic.  

To date traffic disruption due to flooding has received little attention. Comprehensive flood 
impact guidelines recommend carrying out traffic disruption study only if the expected traffic 
losses are significant, because otherwise the cost of traffic disruption is negligible compared 
to direct or indirect tangible costs [3]. It should also be noted that the importance of impacts 
on traffic (relative to other flood impacts) varies – in some cities (e.g. in Beijing) it is a major 
problem; but in other cities it is not so significant. So far the flood impacts on traffic have 
been approached using simple mathematical models [3] or macroscopic traffic models [4], [5]. 
None of these methods consider the dynamics of the transportation system, rerouting whilst a 
street is closed, or the dynamics of the flooding event. These methods represent a static 
system, which uses homogeneous aggregated traffic flows. The reliability of such models is 
not high, especially when it comes to simulating decisions in complex urban traffic networks. 
Microsimulation represents traffic congestion situations and bottlenecks more realistically, 
mainly through its algorithms incorporating drivers' responses and intermodal transportation 
[6], [7]. 

To date micro-simulation has not been used for computing flood impacts on traffic 
congestion and this is one of the main goals of this research. Another primary objective of 
this research is to introduce monetizing techniques not only for lost hours in traffic 
congestion, but also for the cancelled trips. Thus, the importance of flood impacts on traffic 
will be emphasised. From the modelling part an evident gap in the current research is the 
fact, that traffic models are not based on the duration and propagation of the flood. The 
methods introduced in this paper will address this dynamic behaviour of the system, through 
timely changes of the status of the links (open, closed, or with certain speed limit in 
accordance to the changes in flood depth).  

11.2 Methodology 

The proposed conceptual framework for incorporating flooding conditions into a microscopic 
traffic model is outlined in Figure 11-1. The impact of extreme hydro-meteorological events 
on transportation is twofold. First, the extreme weather conditions lead to reduced maximum 
speed limits [8], [9]. This impact will be driven by the intensity and the duration of the rainfall 
event and it will result in reduced road capacity before the flood has even occurred. Thus the 
flood impacts will start evolving in a transportation system, which already has reduced 
capacity due to heavy rainfall intensities. 

Different combinations of intensities of rainfall and storm surges are simulated to produce the 
time varying flood characteristics. The consequent flood intensities in terms of flood extent, 
depth and propagation determine whether a street in the road network is going to be closed 
for traffic. This closure will affect both the overall road capacities and the trip definition 
components of the flood model. The trips that have an origin or destination in the flooded 
area will be cancelled and the routes that pass through a flooded area will be rerouted to 
unfavourable routes. A micro-simulation technique facilitates a better and a more detailed 
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representation of the traffic processes, compared to macro-simulation. There are several 
reasons to adopt a micro-simulation technique for the assessment of flood impacts: 

 

 
Figure 11-1: Flowchart of the proposed methodology 

- When a street is closed due to flooding conditions, each vehicle will be rerouted individually, 
according to its destination. Hence, the rerouting algorithm ensures a detailed representation 
of the traffic condition during flooded conditions. This is particularly important if there are 
numerous flooded streets throughout the whole network; 

- The micro-simulation technique is more reliable for the estimation of losses, related to the 
cancelled trips that will occur due to the flooding, because it contains a detailed description 
of each trip; 

- The intermodal representation of different vehicle types is important for the overall 
consumption of fuel and greenhouse gas emissions. Different modes of transportation also 
indicate different cost of travel delays and will result in a more realistic representation of the 
flood impacts.  

- Microscopic traffic models can simulate the dynamics of the flood propagation both in 
spatially and temporally. For instance, depending on the flood severity, it can allow closure of 
only one lane, whist keeping the traffic active in the other lanes; 
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At the end the results of the traffic simulations will be compared for scenarios with and 
without flooding. The whole procedure will be performed for different flooding scenarios, 
different times of the day (pick and off-pick times). As stated before the end results will be 
presented in absolute measures of lost business hours, additional fuel consumption, and 
additional CO2 emissions. The lost time and the additional fuel consumption will be also 
represented in monetary terms, so that they can be easily compared to the other type of flood 
losses and damages in the studied area. Ultimately, such an approach will allow for testing 
the effects of both flood risk management measures and of traffic improvement systems. 

The model will be applied to a case study in a Caribbean island – St Maarten. This case study 
is considered appropriate for the research for two reasons: first, it has been a frequent victim 
of tropical storms and hurricanes and second, a closed road network system of an island helps 
assessing indirect impacts easier.  

The following sections elaborate the hydraulic model, used to simulate the flooding 
conditions, the translation of flooding results into SUMO environment and the SUMO 
modelling setup. 

11.2.1 Hydraulic model 

The case study area of St Maarten is prone to tropical storms and hurricanes. Even small scale 
floods in the past posed a serious threat to traffic  [10]. The hydraulic modelling is carried out 
on a catchment level for the most hazardous catchments in the island of St Maarten. The 
flood hazard characteristics (depth and velocity) are computed using DHI software MIKE 
FLOOD [11]. This software makes it possible to couple MIKE 11 (1D river model) and MIKE 21 
(2D model, computing the flood plain and the coastal flooding). The results from the coastal 
flooding model are used as boundary conditions in the MIKE FLOOD simulation. This ensures 
integration between surface runoff and coastal conditions at each time step. The flooding 
conditions are simulated for different return periods of storm events, assuming independence 
of the rainfall and storm surge occurrence. The results of the hydraulic model provide maps 
for relevant flood depth over time, depending on the flood propagation at a particular site.  

11.2.2 Translation of flood model results into SUMO model input 

The time varying flood maps identify the streets that will be closed and the duration of the 
closure. This extraction is performed in a GIS environment by overlaying the flood map with a 
road network (Figure 11-2). The roadmap is a modified version of Open Street Map (OSM), 
which ensures all street types and speed limits are correct. The description of the roads in 
OSM does not allow a precise identification of the location of the flood because streets are 
represented with only one line.  In order to avoid conversion discrepancies, a reliable 
translation of the link indices is desired. This is performed first by segregating major streets 
into edges in a GIS environment and second, by giving unique indices of the individual edges. 
The resultant shapefile is saved as an OSM network and then translated to SUMO, using the 
netconvert application. That way, no data will be lost in conversion, i.e. space varying speed 
limits, or number of lanes per street. This operation also established a linkage between the 
ArcGIS and SUMO environments, by using the same edge IDs. Thus a list of flooded streets is 
identified by their IDs in GIS environment and is readily available for rerouting in SUMO. To 
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provide consistency, the newly created road map is used for simulating traffic with and 
without flooding.   

 
Figure 11-2: Flood map (left), and a road map overlaid with a flood map (right), showing in red the roads closed 

to traffic 

11.2.3 SUMO parameters setting and traffic volume estimation 

The SUMO software [12] has been used to create a basic model, so that the proposed 
methodology can be tested (Figure 11-3). The traffic model is limited by the reduced 
availability of transportation measurement data, but it is believed there is sufficient data with 
which to test the methodology. Currently the model uses the traffic network of the whole 
island of St Maarten, which is rather large for conventional microsimulation network (total 
area 34 km2 and nearly 40 000 inhabitants).  

 
Figure 11-3: Flowchart of implemented traffic model 

This network has been extracted from Open Street Map and later on modified for the 
purposes of SUMO, with special attention given to the different types of roads and their 
maximum speed limits. The traffic demand is based on a quasi-random route generation 
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(ActiveGen), based on statistics about settlements, population and the location of big 
employers. Different parameter combinations are used to run the model and obtain statistics 
for each scenario. The sensitivity analysis of the different scenario results can help improve the 
understanding of how the system functions. This strategy for computing traffic demand is 
hoped to help overcome the lack of data for calibration. The large number of quasi-randomly 
generated data approaches the traffic demand distribution from a probabilistic standpoint.  

Another objective of the research is to investigate what the environmental impact of traffic 
congestion during floods can be. To achieve this, the SUMO model employed a simplified 
HBEFA classification of vehicles and their relevant CO2 emission levels for different engines. 
This model also provides a description of fuel consumption for individual trips in the 
simulation and thus can help monetize the impacts of floods on traffic congestion. 

The actual flood impacts on traffic are estimated as a comparison between the results of a 
flooded and non-flooded situation for different scenarios of flooding, time of the day and 
traffic demand generation. The final result files provide statistics about each individual trip 
that has been computed. As stated before the main interest will be the difference in trip 
duration, fuel consumption and greenhouse gas emissions between the flooded and the 
baseline scenario.  

11.2.4 Monetization of traffic delays 

Previous studies in the field of flood impact to traffic congestion [4], [5] indicate that wasted 
time in traffic congestion will be the most significant flood impact to transportation. This 
imposes the need to monetize business hours lost in traffic, so that they can be compared to 
other tangible flood impacts as damage to built environment or business interruption. Value 
of time per individual person (driver or passenger) is defined by the purpose of the trip, mode 
of transportation  and the type of vehicle [13]. The cost of the additional travel time can also 
depend on the duration of the delay. Interviews showed delays longer than 30 min have 
higher relative costs than shorter delays [14]. This research will employ a monetizing method 
which will consider a UK methodology [13] to estimate costs of travel times based on 
assumptions on average income.  

11.3 Concluding remarks 

This paper presents a novel methodology for assessing flood impacts on traffic. Micro-
simulation traffic models have not been used yet to approach that problem, even though only 
a microsimulation model can capture the dynamics of both the natural and social-
technological sphere.  

The methodology presented in this paper is to be further confirmed by modelling results and 
supported by actual traffic measurements for calibration of the representation of traffic 
demand. The model for cost assessment of travel delays also needs to be adjusted to regional 
specifications of salaries in Saint Maarten. 

The approach presented in this paper relates to off-line analysis of combined flood and traffic 
modelling. This methodology lends itself nicely for real-time modelling and decision making 
for coupled flood and traffic management systems. 
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Abstract 
Coordination of Traffic Signal Timing Systems has significant impacts on traffic congestion, 
waiting time, risks of accidents and unnecessary fuel consumption. But, despite more than 50 
years of researches on Traffic Flow Theory, about half of Traffic Signal Timing systems in the 
U.S. are not updated on a regular basis as recommended by The Institute of Transportation 
Engineers (ITE). Also, the efficiency of traffic signals timing plans depends greatly on 
knowledge and judgment of circulation experts. Moreover this process still difficult to 
accomplish in real time.  

Actually, we conduct a research that aims to change traffic lights programming without 
complex calculations at the right time (in real time). The mass of parameters to be considered 
and uncertainty caused by human behavior and the environment confirms our idea to opt for 
a quick and easy way to apply for better efficiency. But in order to prove this hypothesis, we 
must be able to simulate the most realistic traffic network. As part of our work, we use free 
software SUMO (Simulation of Urban MObility). This article describes the approach, the main 
problems and things that we have being learning so far. 

Keywords: SUMO, simulation urban mobility, circulation management, Artificial 
Intelligence. 

12.1 Introduction 

A study conducted in 2004 by Tarnoff and al. [1] in more than 100 states, cities or agencies 
on behalf of The Institute of Transportation Engineers (ITE9) showed that more than half of 
traffic systems in the U.S. were badly synchronized or poorly maintained. ITE also 
recommends updating traffic signals every three to five years. However, 35% of systems are 
reprogrammed at a frequency of ten years or more. In the same study it was shown that the 
                                            
9 Founded in 1930, ITE is a community of transportation professionals including, but not limited to 
transportation engineers, 

  transportation planners, consultants, educators, and a network of nearly 17,000 members, working in more 
than 90  

  countries,  http://www.ite.org/aboutite/ , accessed March 25, 2015. 
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average cost for the upgrade of traffic signals plans was 2 675$ or more per intersection. 
Assuming an average cost of $ 3 000 today, it would cost more than six million dollars to 
reprogram the system of a city like Montréal in Canada (2 000 static traffic signals).  

Additionally, the process of programming static signals is complex. The ITE [2] recommends 
taking an average traffic volume during a given period and using these data to develop 
various programming plans until a satisfactory solution is obtained. Thereafter, it is 
implemented on site and revalidated by a traffic expert who makes the final adjustments 
required (Fine Tuning).  

Also, this process is even more complicated to achieve and implement in real time. The 
proposed solutions are often costly and time consuming to implement, so little used. As part 
of our work, we aim rather to change a system of traffic lights at the right time and without 
complex calculation. The amount of parameters to be considered and the uncertainty caused 
by human behavior and the environment leads us to choose a workable and useful solution. 

But in order to prove this hypothesis, we must be able to simulate a realistic traffic network. 
As part of our work, we use open free software SUMO10. This tool is developed by the 
Institute of Transport of the German Aerospace Center DLR11. SUMO is visual, well 
documented and free. Users can also rely on the support of the DLR Research Center and 
community of international researchers. We believe that this is a valid alternative of 
commercial software that seems generally used by public administrations. 

The next sections describe the approach, the methodology, the main problems encounter and 
things that we have learned so far. As part of this conference, the focus is put on the process 
related to SUMO simulator.  

12.2 Approach 

Almost all of existing systems are static and are programmed accordingly to time of the day 
(ex.: peak hour morning or afternoon). But even during these periods, there are fluctuations 
in traffic flow and it is important that the system is adapted to these variations. If the system 
can react to pre-congestion and congestion situations, that can lead to improvements in 
travel time. Also, even small improvements can have substantial impacts in delay and fuel 
consumption; hence the importance of continuing research works. 

Actually, we conduct a research that aims to change traffic lights programming without 
complex calculations and at the right time (in real time). We do not try to find optimal 
                                            
10 SUMO is a free and open traffic simulation suite which is available since 2001. SUMO allows modelling of 
intermodal 

  traffic systems including road vehicles, public transport and pedestrians.  

  http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/ , accessed March 25, 2015 
11 DLR is the national aeronautics and space research centre of the Federal Republic of Germany. Its extensive 
research and  

  development work in aeronautics, space, energy, transport and security is integrated into national and 
international  

  cooperative ventures. DLR has approximately 8000 employees.  

  http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10002/#/DLR/Start/About, accessed March 25, 2015 
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solution every moment but to improve the situation the best as we can. Our assumption is 
that the summation of small improvements will have a significant effect over a reasonable 
period of time (few hours). 

To get there we will guide us on the work of traffic officers (Figure 12-1). Miller [3] has shown 
that short-term retention of human brain is 7 ± 2 items. Despite these limitations, human 
being can manage traffic in case of system malfunction (or during special events). The human 
strategy is simple and is based on common sense. Traffic officers try to redirect traffic to free 
places and to be fair with road users. We aim to use a similar strategy to develop an 
intelligent system that would be able to propose solutions like a traffic officer. 

 

 

 

 

 

 

 

There exist some studies that use intelligent systems but the context and the approach are 
different. To our knowledge, no other research uses the concept of human traffic officers to 
develop an intelligent traffic management system. We also seek to develop a system that can 
anticipate problems as does a human traffic officer. Our approach is based on common sense 
and we want to apply it on a larger number of intersections (10 or more). For example, 
Hossain and al. [4] propose a case-based system with libraries to identify recurring congestion 
situation on an artery with four intersections. Sadek and al. [5] developed a knowledge-based 
system for identifying incidents on a highway and divert traffic accordingly. Yang and al. [6] 
introduced a two-stage optimal combination fuzzy controller for traffic signals at isolated 
urban intersection. Wannige and al. [7] developed an adaptive neuro-fuzzy traffic signal 
control for multiple junctions. These works proposed intelligent solutions, but anyone does 
not try to implement the decisions done by traffic officers when they are on site. 

However, the challenge is to translate this common sense behavior in a system. We propose 
to use the Density - Volume curve (Figure 12-2) and Speed - Volume curve (Figure 12-3) [8]. 
These two figures show that traffic must not exceed a critical threshold because the situation 
will deteriorate rapidly. If we look at Figure 12-2, we see that when the volume reaches the 
maximum critical point, the density is too high for the capacity of the road. And when it 
exceeds this point, the volume (or traffic flow) gradually decreases to the point of ultimate 
congestion (jam). This point is located at the right of the curve. This phenomenon is presented 
in Figure 12-3 by comparing the volume of flow and speed. When traffic is paralyzed (speed 
= 0), we have reached the point of extreme congestion. This point is located at the origin in 
Figure 12-3 and corresponds to the level of service E. The level of service is a standard of 
vehicle density of a road. The level of service A is a low vehicle density while E is the ultimate 

Figure 12-1. Traffic officers 
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density (the road is like a parking lot and the traffic is jam). There are five levels of service in 
figure 12-3 (A-B-C-D-E) and our approach is to avoid levels of service D and E. 

 

 

 

 

 

 

 

In SUMO, a street network consists of nodes (junctions) and edges (streets connecting the 
junctions). Thus, if we want to create a network with two streets, subsequent to each other, 
we need three nodes and two edges [9]. Moreover, SUMO allows changing signal 
programming plan during the simulation with TraCI module that is part of the system. Also, it 
is possible to make a set of traffic lights program with it and to use them at the right time 
depending on the situation. 

So, the aim is to calculate the density of each section (edge) and infer the level of service at 
every moment in each section of the network. This is the basic ingredient of our approach. 
Knowing the level of service of each section, we are able to decide what is the best decision 
as would do a traffic officer. This may result in an increase or a decrease in the duration of 
some traffic lights. In our approach, traffic lights replace the traffic officer.   

Let’s see an example. Suppose a set of sections (edges) and a set of service levels. For each 
edge, the system measures the level of service. By putting these service levels one after the 
other, one get a quick picture of the situation on the network. It is from this information that 
the decision to change the duration of traffic lights is taken. If one wants more accuracy, one 
just has to add dummy nodes.  

Edges =   {E1, E2, E3 ..., En} 

Level of services = {A, B, C, D, E} 

Figure 12-4 shows a main road with different levels of services. In this situation, the obvious 
decision would be to reduce the arrival of vehicles to the edges that have already been 
reached the level of service D or E (the last ones). This situation is also described in figure 12-5 
and a solution in this case could be to reduce the duration of green lights for the previous 
edges (AAAAA minus 20 seconds, BBBB minus 15 seconds, CCCCC minus 10 seconds). It will 
not solve congestion problem but will avoid extending the level of congestion in previous 
edges and it will reduce average waiting time for the secondary roads. This is one example 
and the idea is to apply similar reasoning for other situations. The goal is to keep it simple. 

Figure 12-2. Volume vs. density Figure 12-3. Speed vs. volume 
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12.3 Methodology 

To test our approach, we use a network in Québec city in Canada. The network is located 
along the Sainte-Foy road (Figure 12-6). This is a busy area of Québec city with significant 
congestion problems. The studied network stretches over a distance of about 4 km. This 
network is made using free software OpenStreetMap (OSM12) and the Java application JOSM 
13.  

 

 

 

 

 

 

The goal is to replicate as closely as possible the actual network and traffic light systems. The 
vehicles paths infer from the data collected in the field. We build a kind of Origin-Destination 
matrix from these data. Data were measured with the short count method from 5 to 30 
November 2012. The short-count method evaluates the number of vehicles that pass each 
intersection for 15 minutes and then extrapolate the results for one hour. Each intersection 
was observed during the peak period of the afternoon between 16:00 and 18:30. In addition, 
the signaling systems in place were measured (duration of each cycle to each intersection). 
Geometric data were collected from the OSM map and validated in the field. Parallel parking 

                                            
12 OpenStreetMap (OSM) is a collaborative project to create a free editable map of the world,  

  https://en.wikipedia.org/wiki/OpenStreetMap, accessed March 25, 2015. 
13 JOSM is an extensible editor for OpenStreetMap written in Java 7, https://josm.openstreetmap.de/,  accessed 
March 25,  

  2015. 

 

Main road
E1 E2 ... E7 E8 ... E13 ... E24 ...

Level of A A B B C E
service

Figure 12-4. Edges and Level of service 

E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24   
         A   A  A  A   A  B  B  B   B    C    C    C    C     C    D     D   D    E    E    E    E    E    E    E 

Figure 12-5. Edges and Level of service 

Figure 12-6. OSM and SUMO 
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areas along the Sainte-Foy road (and time permit parking), speed limit and bus stops have 
been identified in the field. Schedules are those of the bus transport network of Québec city 
(lane 7). We have not considered pedestrians. 

The first step was to develop the network from an OSM map and JOSM software. Thereafter, 
the map has been transferred and converted to be usable in SUMO. There are roughly 70 
knots, 140 edges, 40 secondary roads and 17 signalized intersections in the network. Each 
node and each edge of the network is identified by an ID number (--21111#0, -21408#0, --
25012, 1690707806 ....).  Nevertheless, there is no logical order in the list of IDs and this can 
complicate the analysis. During simulation there is a continual back and forth between the 
screen and the xml files and it is better to easily find the information. So, to facilitate 
identification of nodes and edges, a Python program was carried out and IDs have been 
changed (Figure 12-7). This program is based on manipulation of array lists and regular 
expressions. We think it is important because it would speed up analysis. This approach also 
reduces the risk of errors. The nodes on the main road are now classified from West to East or 
left to right (100, 200, 300, 400, 500 .... 2600) and those on the secondary roads are 
incremented by 1000 according to the x coordinate of each terminal node (5000, 6000, 7000 
... 44000). A similar approach was used for the edges.  

 

 

 

 

 

 

 

 

 

When the xml nodes and edges files have been completed, the files describing lanes and 
vehicles have been established. To simplify, we used flow paths rather than determining a 
route for every vehicle. In comparing data counted at each intersection, it was possible to 
achieve relatively realistic approximations of displacement. Since there is only one main road 
and perpendicular roads, it was easy to figure on the trips. The number of trucks was 
approximated to 5%. Parallel parking cars (Figure 12-8) along the main road were put at the 
beginning of each simulation in specific edges (and they do not move afterwards). However, 
there was a problem during the simulation caused by parked cars and a way to bypass this 
issue is to remove a lane on these edges. The duration of traffic signals generated by SUMO 
and OSM were modified to match traffic lights system in the field. 

 

Figure 12-7. New designation IDs nodes edges 
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12.4 Experimentation and results 

Several tests were performed to validate the simulation. The main congestion problem is at 
the intersection of St-Sacrement road (Figure 12-9) and it reflects the observation in the field. 
We doubt that we can resolve major congestion problems like that but we hope to be able to 
prevent as much as possible such situations. 

 

 

 

 

 

 

 

 

 

 

 

 

SUMO allowed us to make several manual tests quickly to validate partly our hypothesis. We 
recall that the strategy is to build on the work of a traffic officer. We found that cars queues 
on some secondary roads improperly stretched during the simulation. Tests were then carried 
out to check if it was possible to reduce the length of cars queues with varying cycle times at 
specific intersections. We found that when there was free space (or less density) on neighbor 
edges, it was possible to quickly improve the situation without getting worse the cross-road. 
For example by increasing the cycle of green light four seconds on a busy cross road it empty 
its queue every cycle and does not appear to cause serious problems on the main road 

Figure 12-8. Parallel Parked Cars 

Figure 12-9. Congestion St-Sacrement road intersection 
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(Figure 12-10). If we can apply that concept for short periods elsewhere, we believe it is very 
likely that the overall result will be improved. 

 

 

 

 

 

 

 

So, the results look promising so far but we have not at this stage build decision trees to 
change the duration of the traffic lights on every signalized intersection depending the vehicle 
density on neighbor edges. This program in Python language must interact with the simulator 
SUMO via TraCI module which operates on the base of client-server system. So, the next step 
will be to develop this intelligent system that will interact at the right time with the simulator.   

12.5 Conclusion 

In this research project the first steps were to collect data, understand how the simulator 
work and develop a realistic network. As part of the work we had to learn SUMO and OSM 
software. We found that SUMO is relatively easy to learn even if it requires perseverance and 
training. We estimate a few months learning time before understanding the tutorials and be 
at ease with the simulator. However, once this stage is reached, the experiments are relatively 
easy to implement.  

We believe SUMO best advantage is that it can be easily parameterize via xml files system. In 
addition, users can benefit support from the research center DLR and a community of 
researchers via the newsgroup sumo-users. Most questions are answered the same day which 
is certainly comparable if not better than services provided by commercial software vendors. 
Also it is free which is definitely a plus. 

One advantage of using OSM maps is to develop a network quickly. However, we 
recommend beginners to enlist the support of people who know that open source project. 
This is what we have done by contacting the OSM project responsible in the Québec city area 
and it allowed us to save a lot of time with small ad hoc training. We also recommend taking 
time to simplify the nomenclature of nodes and edges when transferring data from OSM to 
SUMO. This may appear trivial but it simplifies the analysis and prevents errors. These 
adjustments also allow saving a lot of recurring waste of time if one plan to use the network 
for months or years.  

The advantage of a program like SUMO is that it can quickly test a hypothesis. We can not at 
this stage certify that our approach is valuable but preliminary results lead us to believe that 
this track is promising. We are optimist that it will be possible to demonstrate this approach 

Figure 12-10. Alteration of duration of green light + 4 sec  
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during pre-congestion stage. It remains to build a decision tree and to link with the simulator 
via TraCI module. We also need to verify that the change in the duration of traffic lights in 
some places does not move the problem elsewhere on the network.  

Finally, in traffic management each case is unique and quality of solution relies heavily on the 
experience of the expert. So one has to be careful and even if a solution seems attractive, 
field validation is essential.  
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Abstract 
The increasing mobility and transport demand and the sinking global supply of fossil energy 
carriers will eventually cause a growing trend towards alternative drive concepts and the 
development of corresponding energy supply infrastructures. These emerging solutions and 
their interaction with the prevailing traffic will need to be evaluated for their optimal 
integration. SUMO is a preferred tool when it comes to evaluating measures in urban traffic 
behavior. When using SUMO, however, the creation of corresponding scenarios is 
accompanied by challenges in network creation and corrections as well as traffic demand 
generation and calibration. Motivated by the projects emil and InduktivLaden, both funded by 
the German Federal Ministry of Transport and digital Infrastructure, this paper presents the 
newly developed tool eNetEditor, which allows users the rapid prototyping of custom and 
calibrated traffic scenarios based on traffic counts and their evaluation in regard of energy 
consumption. 

Keywords: network generation, traffic assignment and calibration, energy consumption 

13.1 Introduction 

Current traffic is mostly driven by fossil fuels. In 2014, the number of newly registered 
vehicles in Germany was 3.048.507 References 

[1]. 8522 of these vehicles (2.8 ‰) were electric vehicles [2]. The same statistic indicates that 
the number of electric vehicles is expected to rise in the coming years. An exponential 
extrapolation of these numbers yields an approximate range of 14283 to 27041 newly 
registered electric vehicles for the year 2015. 

One of the current challenges for the customers of electric vehicles is the multiplicity of 
charging systems and interfaces. Whereas 14622 gas stations in Germany supply conventional 
traffic with the adequate amount of fossil fuel [3], only 5050 publicly available electric 
charging points have been installed for electric vehicles in Germany until June 2014 [4]. Many 
manufacturers offer proprietary solutions, tieing customers to a limited amount of available 
charging stations, such as Tesla. In other cases, countries or regions have agreed on and 
effected the installation of a more consistent charging infrastructure, such as CHAdeMO in 
Japan and France or CCS in Germany. This heterogeneous situation has resulted in charging 
station infrastructures of several different manufacturers and providers with varying and 
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largely incompatible standards. In addition to this heterogeneous situation with the charging 
infrastructure, new developments indicate that battery-driven electric vehicles might not 
remain the only alternative solution for the coming years: Most of the leading automobile 
manufacturers have invested many efforts into the development of hydrogen fuel-cell vehicles 
over the past years. Toyota, for example, has introduced one of the first of these vehicles to 
be sold commercially starting in 2015. This further results in a comparably increasing diversity 
regarding drive train concepts. 

However, even with these trends, the development of new compatible charging 
infrastructures is still at its beginning. This situation is a chance for the introduction of more 
homogeneity in the charging infrastructure and, as opposed to the location of current gas 
stations, its optimal operational integration into prevailing traffic situations. For this 
unification of the energy supply infrastructure, traffic planners will need tools in the future 
that take into account the energy consumption of vehicles along their routes allowing the 
optimal positioning of components for the corresponding energy supply infrastructure. These 
results can further be used for infrastructure operators to determine the amount of energy 
that electric vehicles are expected to gain at specific locations within the road network and 
how much power will be required for their sufficient supply. 

This paper introduces eNetEditor: a tool with a graphical user interface for traffic planners 
that allows the rapid prototyping of arbitrary road traffic networks and calibrated scenarios 
based on flow measurements and the evaluation of the corresponding energy consumption. 

13.2 Concept 

For the simulation of vehicles within the road network and their interaction with 
infrastructure objects and other vehicles, the microscopic traffic simulation tool SUMO 
(Simulation of Urban Mobility) is used [5]. SUMO is "an open source, highly portable, 
microscopic and continuous road traffic simulation package designed to handle large road 
networks" [5]. The development of SUMO was initiated by the Institute of Transportation 
Systems of the German Aerospace Center (DLR), in 2001. It has evolved into a traffic 
simulation tool, high in features, functionality and interfaces. Even though instantiated 
vehicles follow a simplified behavior, traffic simulation tools like SUMO allow the realistic 
replication of prevailing traffic in arbitrary road networks. 

Implementations were presented in [6] that newly introduced a simplified energy 
consumption model for vehicle objects and a corresponding declared charging station class as 
integral parts into SUMO. These implementations build the functional basis for the evaluation 
of the energy consumptions in traffic scenarios. 

The application of these implementations subsequently require a traffic scenario consisting of 
a road network and traffic demand. Whereas a common procedure is to use open data to 
map transportation networks, this process is often accompanied by corrections that, if 
irregularities are found, are hard to carry out without the proper tools. In order to instantiate 
calibrated traffic in arbitrary road networks, eNetEditor (initially, a MATLAB-based tool) has 
been developed with a graphical user interface that allows the rapid and efficient generation 
of road networks. Network object data were structured such that they contain the properties 
required by SUMO's network generator netconvert.exe (i.e. edges, lanes, nodes, connections), 
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by SUMO itself (e.g. vehicle types, bus stops), and arbitrary custom parameters and their 
values (e.g. traffic counts or other traffic demand data) for user-defined functions. The data 
structure for the network creation is outlined in section 13.13.3.1. After the definition of 
vehicles, traffic can be instantiated and calibrated from within this tool as described later in 
sections 13.13.3.2 and 13.13.3.3, respectively. 

Using traffic data and measurements from different sources, such as flows from induction 
loops, eNetEditor allows the generation of traffic demand. The goal is a simulation output in 
form of a structure that can be used to represent energy consumption of individual vehicles 
over time and vehicle position or along individual lanes of a road network over time. An 
example urban traffic scenario will be shown in chapter 13.4 that was generated by 
eNetEditor, accompanied by evaluations in regard of its constituents' energy consumptions. 

13.3 Implementation 

This chapter explains the structure of eNetEditor's implementations. The modules are split into 
three parts: 

1. network definition and generation, 
2. vehicle definitions and generation, and 
3. traffic demand generation and calibration. 

The following sections in this chapter give an overview on the implementation of each of the 
modules and the used data structures that broadly represent SUMO's object structures. 

 

 

 

 

 

Figure 13-23: Constituents of a traffic scenario's network represented in form of a UML class daigram 
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13.3.1 Network definition and generation 

A SUMO Network consists of edges, nodes, 
lanes, vehicle class restrictions on specified 
lanes, lane connections (and prohibitions), bus 
stops, and light signal systems. As a new 
infrastructure element, charging stations have 
been introduced. Figure 13-23 shows the 
structure of these constituents as definable in 
eNetEditor, axiomatizing the terms in form of a 
class diagram as introduced in [7] and [8]. The 
following sections will describe the data 
structure for each network constituent that can 
be represented in eNetEditor, the interface for 
their generation, and exemplified output data. 
Newly introduced classes and attributes are 
shown in green. 

13.3.1.1 Nodes and edges 

Nodes and edges constitute the essential components of a network's graph. These can be 
created directly in the GUI with a mouse click or by connecting two nodes with a click-and-
drag. To allow efficient analyses and operations with the resulting multi-edged directed graph 
and its adjacency matrix, edges and their properties are stored in the 3-dimensional array E of 
the following structure 

E n × n × (2 m + 1) = (ei,j,k), with …   (1)

origin node index i = 1 … n, 

destination node index j = 1 … n, 

property index k = 1 … 2 m + 1, 

number of nodes n and 

number of edge properties m. 

The entries (ei,j,k=1) represent the network graph's adjacency matrix, where each element ei,j,k=1 
equals the number of lanes from node i to node j. Edge property and corresponding value 
pairs are stored in successive entries of Ei,j,k=2,4,6,… (property name) and Ei,j,k=3,5,7,… (property 
value) in form of strings. Whereas SUMO and its netconvert application will only process the 
values of specified property tags, eNetEditor allows the declaration of arbitrary properties and 
property values that can be used for eNetEditor-/MATLAB-based pre-/post-processing. 

Nodes and their properties are stored in the 2-dimensional array O with the following 
structure 

O n × 18 = (oi,k), with …   (2)
node index i = 1 … n, 

property index k = 1 … 18 and 
number of nodes n . 

Figure 13-24: eNetEditor's graphical user interface 
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Next to mandatory property values in oi=1…n, j=1…6, the remaining entries in O (oi=1…n, j=7…18) can 
be used for the declaration of arbitrary node properties and their corresponding values. The 
structure of the edge and node variables E and O is depicted In Fehler! Verweisquelle 
konnte nicht gefunden werden.. 
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Figure 13-24 shows eNetEditor's user interface for the creation of nodes and edges with 
arbitrary property keys and property values. The output in the specified XML-format, as 
required by SUMO's netconvert.exe, is exemplified in Listing 1 and Listing 2. The 
corresponding node and edge xml-files are created by parsing the described data structures 
and can be initiated by a keyboard entry of the buttons o and e respectively. 

 

Listing 1: Example edge definition file in the SUMO specified xml-format (typically .edg.xml) 
<?xml version="1.0" encoding="utf‐8"?> 
<edges> 
  <edge from="1" id="1to5" intensityProfile="TGw3West" numLanes="1" numVeh="1050" 

priority="4" speed="8.333" to="5"/> 
  <edge from="1" id="1to11" intensityProfile="TGw3West" numLanes="1" numVeh="1050" 

priority="4" speed="8.333" to="11"/> 
  <edge from="1" id="1to13" intensityProfile="TGw1West" numLanes="2" numVeh="14900" 

priority="9" speed="13.889" to="13"/> 
  ... 
</edges> 

Listing 2: Example node definition file in the SUMO specified xml-format (typically .nod.xml) 
<?xml version="1.0" encoding="utf‐8"?> 
<nodes> 
  <node id="1" type="priority" x="1106.15" y="339.02" z="0"/> 
  <node id="2" type="traffic_light" x="1074.55" y="419.47" z="0"/> 
  <node id="3" type="priority" x="1221.08" y="485.55" z="0"/> 
  <node id="4" type="right_before_left" x="1347.50" y="443.89" z="0"/> 
  ... 
</nodes> 
 
 
 
 
 
 

Figure 13-25: Data structure of edge (left) and node (right) description arrays O 
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Figure 13-26: A complex junction structure in 

SUMO with irregular connections 

Figure 13-27: Connection input 

13.3.1.2 Connections 

Every edge in SUMO represents a road, on which 
vehicles can travel into one direction. A bidirectional 
street in SUMO would therefore be modeled by two 
edges. Each edge further consists of one or more 
lanes. Most nodes in a network have at least one 
incoming and one outgoing lane. When generating 
a network, netconvert will make assumptions about 
these connections. However, many complex 
junctions' structure will deviate from the 

assumptions made by netconvert's generalized 
heuristics. Figure 13-26 shows such an irregular 
junction with many specific lane-to-lane (red) 
connections. To allow these kinds of junction definitions and for 
their correct representation and functionality, connections 
between nodes' (junctions') incoming and outoing lanes often 
need to be specified explicitly. 

These connections can be specified in SUMO by explicitly 
declaring them in a separate connection file in xml format, 
typically .con.xml. Since connections are lane-specific definitions, 
each connection possesses 6 degrees of freedom: the incoming 
lane's parameters, specified by (1) its origin and (2) destination 
node and (3) its lane index and the outgoing lane's parameters, 
specified by (4) its origin and (5) destination node and (6) its lane 
index. The incoming edge's destination and the outgoing edge's origin node, 
parameters (2) and (4) will most often be identical. 

The chosen data format for the connection specification is a 3-dimensional array C, where 
each element ci,j,k represents an incoming lane and contains a list of connections to outgoing 
lanes. The connection variable C has the following structure: 

C n × n × l = (ci,j,k), with …   (3)
incoming lane's origin node index i = 1 … n, 

incoming lane's destination node index j = 1 … n, 
incoming lane's index k = 1 … l, 

number of nodes n and 
lane number of the edge with the most lanes l . 

Whereas the indices i, j, and k of each element in (ci,j,k) represent an origin lane, each element 
ci,j,k itself is a list of connecting destination lanes: 

ci,j,k = 
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Figure 13-28: Lane-based 

specifications input dialog 

outgoing lane's origin node index r = 1 … n, 
outgoing lane's destination node index s = 1 … n, 

outgoing lane's index t = 1 … l, 
number of nodes n , 

lane number of the edge with the most lanes l and 
number of incoming lane's connections x . 

Connections will be guessed by netconvert if incoming and outgoing edges exist and no lane 
connections are specified for a node. Connections can also be specified in eNetEditor using 
the dialog box shown in Figure 13-27, which can be called by the keyboard entry of the 
button c. The resulting xml file (typically .con.xml) is automatically generated after closing the 
dialog window. The example of a resulting xml is shown in Listing 3. 

Listing 3: Example connection definition file in xml-format (typically .con.xml) 
<?xml version="1.0" encoding="utf‐8"?> 
<connections> 
  <connection from="110to105" fromLane="0" to="105to66" toLane="0"/> 
  <connection from="110to105" fromLane="1" to="105to66" toLane="1"/> 
  <connection from="110to105" fromLane="2" to="105to124" toLane="0"/> 
  ... 
</connections> 

13.3.1.3 Lanes 

Next to connections, lanes can be attributed with further 
specifications that serve two purposes: visualization and lane-based 
restrictions or allowances. eNetEditor allows the specification of 
these introduced parameters by calling the dialog window (shown in 
Figure 13-28) with the keyboard entry of button r. The 
corresponding variable R consists of a list implemented as a 2-
dimensional array 

R=(ri) with …   (5)
lane specification i ri , 

lane specification index i = 1 … rln and 
total number of lane specifications ln , 

where element ri contains all lane-based parameters for the corresponding lane: 

 iiiii
L

i wsdaidr  , with …   (6)
identifier of lane li Lidi , 

allowed vehicle classes on lane li ai , 
disallowed vehicle classes on lane li di , 

speed limit on lane li si (in m/s) and 
width of lane li wi (in m). 

The parameters allow and disallow refer to the abstract vehicle parameter vehicle class. For 
the intended functionality, vehicles need to be assigned the corresponding vehicles class 
parameter, as outlined later in section 13.13.3.2. 

If specified, lane-based specifications require a subsequent generation of the edge 
descriptions. Further notes regarding on the order of generating individual components of the 
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Figure 13-29: Bus stop input dialog 

network can be found later in subsection 13.13.3.1.7. An example output is shown in Listing 
4 that contains lane-based specifications in the edge definition file (typically .edg.xml). 

Listing 4: Example edge definition with lane-specific parameters in xml-format (typically .edg.xml) 
<?xml version="1.0" encoding="utf‐8"?> 
<edges> 
  … 
  <edge from="2" id="2to17" numLanes="2" numVeh="17050" priority="9" speed="13.889" 

to="17"/> 
  <edge from="2" id="2to19" numLanes="2" numVeh="18600" priority="9" speed="13.889" 

to="19"> 
      <lane allow="bus, taxi" index="0" width="4"/> 
  </edge> 
  <edge from="3" id="3to5" numLanes="1" numVeh="975" priority="4" speed="8.333" 

to="5"/> 
  ... 
</edges> 

13.3.1.4 Bus stops 

To model public transport behavior, recurring vehicle halts can be 
specified in SUMO using bus stop objects. eNetEditor allows the 
definition of bus stops using an input dialog that can be called by 
the keyboard entry b and is shown in Figure 13-29. The 
corresponding variable B consists of a list, implemented as a 2-
dimensional array 

B=(bi), with …   (7)
specification of bus stop i bi , 

bus stop index i = 1 … bst and 
total number of specified bus stops bst , 

where each element bi contains all parameters for the corresponding bus stop 

 ieB
is

BB
ii

B
i xxjlidb ,, , with …   (8)

identifier of bus stop bi Bidi , 
lane on which bus stop bi is located li , 

index of bus stop bi on lane li Bj = 1 … 26, 
start position of bus stop bi on lane li Bxs,i (in m) and 
end position of bus stop bi on lane li Bxe,i (in m). 

The output is a SUMO compatible xml-file, which is exemplified in  

Listing 5. 

 
Listing 5: Example bus stop definition file in the SUMO specified xml-format 

<?xml version="1.0" encoding="utf‐8"?> 
<additional> 
  <busStop id="bS_2to19_0a" lane="2to19_0" startPos="10" endPos="25"/> 
  <busStop id="bS_54to72_0a" lane="54to72_0" startPos="10" endPos="25"/> 
  <busStop id="bS_54to72_0b" lane="54to72_0" startPos="35" endPos="50"/> 
  ... 
</additional> 
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Figure 13-30: Charging station 

input dialog 

13.3.1.5 Charging stations 

Charging stations constitute the infrastructural complement to 
the energy consumption of vehicles. In analogy to bus stops, 
eNetEditor also allows the definition of charging stations, 
where compatible vehicles can be supplied with a specified 
power, if operational conditions allow. The placement and 
definition of bus stops in the network is similar to that of bus 
stops. The dialog for the definition of charging stations can be 
called in eNetEditor by the keyboard entry t. eNetEditor's 
dialog window is shown in Figure 13-30. Variable T contains 
all of the network's charging station information in form of a 
list, implemented as a 2-dimensional array 

T=(ti), with …   (9)
specification of charging station i ti , 

charging station index i = 1 … tcs and 
total number of specified charging stations tcs , 

Each element ti contains all parameters for the corresponding charging station: 

 iiii
T

i
T

ie
T

is
TT

ii
T

i cdTPxxjlidt ,, , with …   (10)
identifier of charging station ti Tidi , 

lane on which charging station ti is located li , 
index of charging station ti on lane li Tj = 1 … 26, 

start position of charging station ti on lane li Txs,i (in m), 
end position of charging station ti on lane li Txe,i (in m), 

charging power of charging station ti TPi
 (in W), 

charging efficiency of charging station ti Tηi
 , 

delay between arrival and charging at charging station ti Ti
 (in s), 

(dynamic) charging of moving vehicles above charging station ti di
 and 

compatible vehicle eType(s) that charging station ti can charge ci  
   

node link_index link_from  link_to
'41' [ 1] '43to41_0'  '41to56_0'
'41' [ 2] '43to41_1'  '41to56_1'
'41' [ 3] '43to41_2'  '41to40_0'
'41' [ 4] '40to41_0'  '41to43_0'
'41' [ 5] '40to41_1'  '41to43_1'
'41' [ 6] '40to41_1'  '41to56_0'
'41' [ 7] '40to41_2'  '41to56_1'
'41' [ 8] '56to41_0'  '41to40_0'
'41' [ 9] '56to41_1'  '41to43_0'
'41' [10] '56to41_2'  '41to43_1'

 

The output is an xml-file that is compatible with SUMO and the implementations described in 
[6] for modeling the energy consumption of vehicles and their energy supply with the 
specified infrastructure elements. An output is exemplified in Listing 6. 

Figure 13-31: Layout of traffic light signal controlled junction '41' and output of its link indices for its program 

d f
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Listing 6: Example charging station definition file in xml-format 
<?xml version="1.0" encoding="utf‐8"?> 
<additional> 
  <chargingStation id="cS_2to19_0a" lane="2to19_0" startPos="10" endPos="25" 

chrgpower="200000" efficiency="0.95" chargeDelay="2" chargeInTransit="0" 
eType="a"/> 

  <chargingStation id="cS_17to2_0a" lane="17to2_0" startPos="0" endPos="62" 
chrgpower="220000" efficiency="0.9" chargeDelay="5" chargeInTransit="1" 
eType="b"/> 

  <chargingStation id="cS_17to2_1a" lane="17to2_1" startPos="0" endPos="62" 
chrgpower="250000" efficiency="0.9" chargeDelay="5" chargeInTransit="1" 
eType="a"/> 

  ... 
</additional> 

13.3.1.6 Light signal systems 

The definition of traffic light signal system plans for nodes of type traffic_light takes place 
during the network creation by netconvert. In most cases, the automatically generated 
programs/plans of a junction's light signal system will deviate from its real behavior. SUMO 
allows multiple ways to interact with light signal systems, both during simulation definition 
and during runtime. Whereas traffic light signals systems can be declared as actuated for 
vehicle-flow based triggering or their program switched during simulation runtime using TraCI 
[9] or WAUT [10], it is also possible to declare static programs with phases of constant 
durations. Junction's programs can often be sufficiently approximated by a static program, if 
the period under observation is characterized by similar traffic intensities. 

Each phase of a traffic light-signal system in SUMO consists of a duration and a state, where 
the state is an aggregation of all connection/link states. While the indexing of links is  

 

(currently) carried out in clockwise order, one difficulty of defining programs beforehand is 
that link indices are defined by netconvert and are known only after a junction polygon within 
the net file has been created. Therefore, the chosen solution for eNetEditor is the manual 
definition of traffic light signal programs in the network file (.net.xml). After the network 
generation, however, eNetEditor parses the generated network file for all junctions controlled 
by a traffic light signal system and their link indices and outputs these to support the user 
with the definition of light signal programs. Figure 13-31 exemplifies a traffic light signal 
controlled junction ('41') along with its corresponding output. 

Edges E Lanes R
(optional)

Nodes O Connections C
(optional)

Bus Stops B
(optional)

Charging
Stations T

(optional)

nod.xml edg.xml con.xml

'r' 'c' 'b' 't'

'e'

add.chrg.xmladd.bStop.xml

mouse input via GUI

net.xml

'o'

user dialog

user input

user input

user input

output

output time

'n'

Figure 10: Sequence chart of the network creation process 
Figure 13-32: Sequence chart of the network creation process 
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Figure 13-33: Vehicle type input 

dialog 

13.3.1.7 Network creation 

After all constituents of the simulation's road network have been specified in eNetEditor's 
graphical user interface and user dialogs, the network can be created with the specified 
parameters using the sequence chart shown in Figure 13-32. 

It is a multi-stage creation process that ultimately results in a call to netconvert, passing it all 
required files, to generate the net file (.net.xml). Bus stop and charging station definitions are 
created separately (in .add.bStop.xml and .add.chrg.xml respectively) as additional files and 
can subsequently be used under the xml tag <additional> of a SUMO configuration. The 
generated command line that executes netconvert with the required arguments has the 
following syntax: 

netconvert.exe  ‐n  genNets\Test.nod.xml  ‐e  genNets\Test.edg.xml  ‐o  genNets\Test.net.xml  ‐x 

genNets\Test.con.xml. 

13.3.2 Vehicle definitions and generation 

The creation of a scenario by filling a defined network with life, i.e. vehicle objects with 
routes, initially requires defined vehicle types. SUMO allows the definition of various vehicle 
types along with their parameters that vehicle objects have access to. Most of these 
parameters are used by implemented vehicle models and include physical constraints and 
descriptions of the vehicle itself (e.g. maximum speed, vehicle length, color), driver specific 
parameters (e.g. minimum gap between vehicles, impatience, deviation from speed limit) or 
model specifications (e.g. the car following behavior, lane-
change model, and other user-defined devices. Based on 
previous implementations described in [6], an energy device 
has been implemented in SUMO that allows the realistic 
recreation of the energy variation of vehicles' energy content 
during simulation runtime, based on newly introduced and 
defined vehicle parameters, such as vehicle mass, maximum 
battery capacity (i.e. energy content), drivetrain efficiencies, 
or various drag coefficients. To attract a wide user base, the 
goal of these implementations was simplicity by introducing 
basic physical and comprehensible vehicle parameters. After 
defining vehicle types, vehicle objects can be instantiated 
with vehicle attributes (initial values) for different model 
variables. These parameters are contained within each vehicle 
object itself, are not part of the vehicle type definition and 
therefore need to be set separately, e.g. manually or by a 
router described in 13.13.3.3. Most popular among these 
parameters are the vehicle's initial speed, its desired lane to 
depart from (enter the simulation), its departure (simulation 
entry) time, or its route. Figure 13-34 shows the class diagram of thevehicle attribute 
structure as definable in eNetEditor. The newly introduced energy device and its  
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attributes are shown in green as well as the initial value of a vehicle object's energy content. 

The configuration of vehicle attributes can be performed manually. However, in large 
simulation scenarios this task is carried out by the different routers during traffic demand 
generation and calibration that will be described in section 13.13.3.3. In the following, an 
overview will be given on eNetEditor's data structures and user interface in for definition and 
generation of vehicle types. 

Vehicle types can be specified with all relevant parameters in eNetEditor using the user 
interface shown in Figure 13-33. Vehicle type properties are stored in the 2-dimensional array 
V of the following structure 

V nv × 27 = (vi), with …   (11)
vehicle type index i = 1 … nv and 

total number of vehicle type nv . 
In the same list-type format as introduced in section 13.13.3.1 for lanes, bus stops, and 
charging stations, each vehicle type description vi contains 28 parameters that are exemplified 
in Listing 7. It also shows the xml format required by SUMO and the implemented energy 
device [6] for the correct definition of vehicle types. 

Listing 7: Example vehicle type definition file in the SUMO specified xml-format with additional parameters used 
by the newly implemented energy device [6] 

<?xml version="1.0" encoding="utf‐8"?> 
<vType id="car" accel="2" decel="5" maxSpeed="42" length="4.5" minGap="2.5" sigma="0.5" 

speedDev="0.05" speedFactor="1.1" tau="1" impatience="0.1"> 
  <param key="MaxBatKap" value="20000"/> 
  <param key="PowerMax" value="80000"/> 
  <param key="Mass" value="2000"/> 
  <param key="InternalMomentOfInertia" value="50"/> 
  <param key="FrontSurfaceArea" value="2.0"/> 
  <param key="AirDragCoefficient" value="0.4"/> 
  <param key="RadialDragCoefficient" value="0"/> 

Figure 13-34: Structure of vehicle and vehicle type attributes as implemented in eNetEditor, represented in form 

of a UML class diagram 
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  <param key="RollDragCoefficient" value="0.15"/> 
  <param key="ConstantPowerIntake" value="40"/> 
  <param key="PropulsionEfficiency" value="0.8"/> 
  <param key="RecuperationEfficiency" value="0.5"/> 
  <param key="eType" value="a"/> 
</vType> 

If left unspecified, default values are assigned to the vehicle energy model parameters, which 
are explained in more detail in [6]. 

13.3.3 Traffic demand generation and calibration 

After the definition of the network and declaration of vehicle types, the target traffic scenario 
can be finalized by a subsequent traffic demand generation and, if desired, its calibration. 
Initial and most important part of vehicle instantiation is the definition of vehicle routes. For 
this purpose, SUMO comes with a variety of routers. Secondly, initial parameters of the 
routed vehicle objects need to be set. SUMO's mostly applied routers for the creation of 
traffic demand are 

MAROUTER: macroscopic data from origin/destination-matrices and traffic assignment 
zones or districts is used to assign routes to vehicles within a given network, 
DFROUTER: detected vehicle flow data is used to calculate the flow proportion at 
junctions to build vehicle routes [11], and 
JTRROUTER: definitions of traffic flows on edges and turn ratios at junctions are used 
to compute vehicle routes within a given network. 

For the creation of traffic scenarios using MAROUTER, SUMO Traffic Modeler has been 
developed [12], which is a very convenient and functional third-party tool that supports the 
generation traffic demand within an existing network. It aims at supplementing a network 
with demographic data to create time-varying origin/destination-data, which can be used by 
SUMO's MAROUTER for the generation of vehicle routes. Therefore, eNetEditor focuses on 
utilizing SUMO's JTRROUTER and (more importantly) DFROUTER for the rapid generation of 
traffic demand, which is described in more detail in section 13.13.3.3.1. 

After an initial set of desired routes (edge-by-edge declarations) or trips (origin-destination 
declarations) has been generated by a router that most often does not take into account the 
resulting interaction between vehicles, the route choices for individual vehicles need to be 
calibrated to create realistic traffic scenarios by distributing vehicles iteratively among 
alternative routes within the network. Two of the most widely utilized applications for traffic 
calibration are  

DUAROUTER: based on [13], this user assignment algorithm aims at finding a dynamic 
user equilibrium for given vehicle trips by assigning routes iteratively until no vehicle can 
reduce its travel time by an alternative route choice and 
cadyts: based on [14], this method further takes into account a supply model of the 
network to iteratively find a stationary condition, which is consistent with existing traffic 
counts. 
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Figure 13-35 shows the implemented data structure for generating and calibrating traffic 
demand that the following sections will give more details on. The necessary steps in 
eNetEditor will further be outlined to build calibrated traffic scenarios. The components 
shown in red are not implemented in eNetEditor. For creating routes based on existing 
origin/destination matrices with MAROUTER, the application of SUMO Traffic Generator is 
recommended instead. 

13.3.3.1 Traffic demand generation 

For the generation of vehicle instances and routes, eNetEditor offers two possibilities: 
JTRROUTER and DFROUTER. 

13.3.3.1.1 JTRROUTER 

For demand generation with JTRROUTER, eNetEditor allows the definition of vehicle flows and 
junction turn ratios. 

Flow definitions are stored in the 2-dimensional array F with the following structure: 

F n × 8 = (fi,k), with …  (12)
flow indexi = 1 … n, 

property indexk = 1 … 8 and 
total number of flow definitionsn . 

Each element fi contains all required parameters of a flow definition: 

 iF
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F
ie

F
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F
i

F
i vlTVettidf ,, , with …   (13)

identifier of flow definition fi Fidi , 
start time of flow definition fi Fts,i , 
end time of flow definition fi Fte,i , 

origin edge of flow definition fi Fei , 
number of vehicles in flow definition fi FVi , 

vehicle type of flow definition fi FTi
 , 

departure (initial) lane of flow definition fi's vehicles Fli and 

Figure 13-35: Class diagram of traffic demand generation and calibration structure in SUMO and eNetEditor 
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Figure 13-36: Input dialog for 

vehicle flow definitions 

departure (initial) speed of flow definition fi's vehicles FVi
 . 

The resulting xml-output is shown in Listing 8. 

Listing 8: Example vehicle flow definition file in the SUMO specified xml-format 
<?xml version="1.0" encoding="utf‐8"?> 
<flows> 
  <flow id="86to11flow1" begin="0" end="8640" from="86to11" number="88" type="car" 

departLane="random" departSpeed="random"/> 
  <flow id="87to13flow1" begin="0" end="8640" from="87to13" number="90" type="car" 

departLane="random" departSpeed="random"/> 
  <flow id="88to13flow2" begin="0" end="8640" from="88to13" number="15" type="bus" 

departLane="random" departSpeed="random"/> 
  ... 
</flows> 

The typical use-case of JTRROUTER is that incoming flows into a network are defined at the 
network boundaries, along with turn ratio definitions at junctions to fill the network with 
vehicle interaction. When the vehicle flow input dialog is opened for the first time, one 
vehicle flow is initialized for each incoming edge into the regarded network, whose 
parameters have to be specified. An edge ei,j,1 is identified as an incoming edge if its origin 
node is not a destination node of any other edge (not even ej,i,1). Equation 14 formally defines 
the set of incoming edges EI as 

, , ∀ ∈ 0, : , , 0 . (14) 

In addition to vehicle flows, turning ratios need to be defined at junctions to feed JTRROUTER 
with all required information. The concept behind the structure for the turn ratio definitions 
at junctions is similar to that of connections described in section 13.13.3.1.2. The main 
difference between the two declarations is that connections are lane-based definitions (each 
connection is described by an incoming and outgoing lane), where turning ratios are edge 
based (each turn ratio is described by an incoming and outgoing edge). Consequently, the 
complexity for turn ratio definitions at junctions is lower than that of connections and can be 
reduced to three degrees of freedom: the incoming and outgoing edge, each described by 
their origin and destination nodes, where the destination node of the incoming edge is 
identical to the origin node of the outgoing edge. Each resulting turn ratio is a sequence of 
three nodes, attributed with a probability. The chosen data structure for turn ratio definitions 
is a three-dimensional matrix, implemented as 

J n × n × n = (jk,l,m), with …  (15)
origin node index of incoming edge k = 1 … n, 

destination/origin node index of incoming/outgoing
d d

l = 1 … n, 
destination node index of outgoing edge m = 1 … n, 

total number of nodes n and 
turn ratio (probability) jk,l,m = [0,1]. 

Even if J grows exponentially with the amount of nodes, the 
resulting variable will most often be a sparse matrix, whose 
required amount of memory can correspondingly be reduced by 
explicitly declaring it as one in MATLAB (command: sparse). 
Since junction turn ratio definitions are treated as probabilities 
when JTRROUTER creates vehicle routes, the definitions have to 
meet requirements to be valid. For the conservation of vehicle 
flows at junctions, equation 16 defines that the turning ratios 
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Figure 13-37: Input dialog for junction turn ratio 

definitions 

from an incoming edge, taken from the adjacency matrix E = (e), must add up to 1. The 
resulting variable J is automatically validated accordingly when entering turning ratios. Listing 
9 exemplifies the xml-output for the definition of junction turn ratios. 

, ,
1
0
		

if , , 0
else. 											

 (16) 

Listing 9: Example junction turn ratio definition file in the SUMO specified xml-format 
<?xml version="1.0" encoding="utf‐8"?> 
<turns> 
  <fromEdge id="23to29"> 
    <toEdge id="29to30" probability="0.2"/> 
    <toEdge id="29to33" probability="0.3"/> 
    <toEdge id="29to34" probability="0.5"/> 
  </fromEdge> 
  ... 
</turns> 

The vehicle flow and junction turn ratio input 
dialogs are shown in Figure 13-36 and Figure 13-
37 and can be called by the keyboard entries of  
f and c respectively (due to their similarity, 
junction turn ratios can be defined along with 
connections in the lower half of the same input 
window as shown in Figure 13-27). 

If the vehicle flow and junction turn ratio 
definitions have been created, the specified 
scenario can be built with a keyboard entry j. This 
(1) calls JTRROUTER with all required options, which returns vehicle routes that (2) are used to 
build the resulting SUMO configuration (scenario) file, which is saved in the working directory. 
The following syntax exemplifies the created command line call to of JTRROUTER with all 
required options: 

jtrrouter ‐‐random 1 ‐f Test.flows.xml ‐t Test.turns.xml ‐n Test.net.xml ‐o Test.rou.xml. 

13.3.3.1.2 DFROUTER 

If the regarded road network is equipped with induction loops or other sensors to measure 
vehicle traverses, the measurement data can be used to build vehicle routes using DFROUTER, 
which performs a stochastic route estimation for vehicles. eNetEditor offers an interface to 
DFROUTER that will be described in this section. 

For the definition of induction loops (detectors), the keyword numVehs has been reserved as 
a property name for edges described in section 13.13.3.1.1. If vehicle counts exist for an 
edge, their values can be assigned to the edge attribute numVehs for subsequent processing 
to build a command line argument for DFROUTER, including detector and vehicle count 
definitions. DFROUTER declares routes for two vehicle types: PKW and LKW, representing the 
average passenger and commercial/freight vehicle in the simulation scenario respectively. 
PKW and LKW need to be declared as vehicle types in eNetEditor before building the scenario 
using DFROUTER's routes. The following descriptions are further required: 

Detector Definitions: Detector definitions are built according to the declaration of the 
attribute numVehs on the corresponding edge, as exemplified in Listing 10 and 
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Vehicle Counts: Synthetic vehicle counts are generated according to the specified value 
of the numVehs attribute. Their timestamps are distributed according to the daily traffic 
curve  TGw2West from [15] (Figure 13-4) within a user-specified time (e.g. 15:00--
18:00) and aggregation periods (e.g. 20 minutes). A constant distribution of 95% 
passenger and 5% commercial/freight vehicles is currently assumed. The vehicle flow 
measurement file is exemplified in Listing 11. 

Listing 10: Example induction loop (detector) definition as input for the DFROUTER command line 
<?xml version="1.0" encoding="utf‐8"?> 
<detectors> 
  <detectorDefinition id="det0_1to5_0" lane="1to5_0" pos="0"/> 
  <detectorDefinition id="det1_1to11_0" lane="1to11_0" pos="0"/> 
  <detectorDefinition id="det2_1to13_0" lane="1to13_0" pos="0"/> 
  ... 
</detectors> 

Listing 11: Example of the synthetically generated vehicle flow measurement file for DFROUTER command line 
Detector;Time;qPKW;vPKW;qLKW;vLKW 
det0_1to5_0;0;4.2989;7;0.22626;5 
det0_1to5_0;20;8.334;7;0.43863;5 
det0_1to5_0;40;10.5241;7;0.5539;5 
det1_1to11_0;0;4.4204;7;0.23265;5 
  ... 

If all required definitions have been made, the generation of a scenario with vehicle routes 
from DFROUTER can be initiated by the keyboard entry d. Much like the process defined in 
13.13.3.3.1.1 for JTRROUTER, this (1) calls DFROUTER with all required options. DFROUTER 
then returns two files: a route file containing a list of all generated routes and a vehicle 
instantiation file (with reference to the declared routes). These files (2) are subsequently used 
to build the resulting SUMO configuration. The following command exemplifies the 
DFROUTER execution to build the described routes: 

dfrouter  ‐‐random  1  ‐‐net‐file  Test.net.xml  ‐‐detector‐files  Test.det.xml  ‐‐measure‐files 
Test.flowMeas.xml ‐‐routes‐output Test.rou.xml ‐‐emitters‐output Test.veh.xml ‐‐time‐step 1200 
‐‐departlane random ‐‐departspeed random ‐‐vtype true 

The sequence chart for traffic demand generation with is shown in Figure 13-38. 

13.3.3.2 Traffic demand calibration 

The problem of the routers described in section 13.13.3.3.1 is that vehicle instances are 
assigned a route under static conditions, e.g. by searching for the shortest path through the 
network. Prevailing traffic conditions are not regarded. This task can be compared to that of 
trying to find the shortest way through a traffic-intense urban area, only using a map, in hope 
that the chosen route will be the fastest or the one with the least amount of energy required. 
It is obvious that prevailing traffic conditions can have a high impact on these optimization 
criteria. In real traffic, participants without (also often with) assistance usually need a few 
tries, where iterative variations of departure time and route choice ultimately yields the 
optimal perceived route for a recurring trip. 
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Figure 13-38: Sequence chart of the traffic demand creation process using JTRROUTER and/or DFROUTER 

A variety of methods exist for traffic simulations that aim to minimize a cost function to find 
an optimum route distribution among participants (vehicles) in a similar manner as described 
above. In the scope of eNetEditor, demand calibration refers to the adaption of route 
assignments. A comparison between different traffic demand assignment methods can be 
found in [16]. eNetEditors provides an interface to two established implementations for 
SUMO that aim to optimize the route assignment for vehicle instances: DUAROUTER and 
cadyts. The basis for both is a validated set of vehicle trips, each consisting of origin, 
destination, and departure time. These parameters are taken from the route definitions that 

were stochastically determined by DFROUTER. The calibration of traffic demand in eNetEditor 
is implemented as a 2-phase process: 

DUAROUTER: Vehicle routes are distributed by creating alternative routes and 
evaluating the resulting edge-based weights for specified vehicle trips, until no vehicle 
can modify its route choice without increasing its travel cost. One of the outputs is a 
vehicle route file for vehicles containing alternative route probabilities and 
corresponding travel costs. 
cadyts: cadyts itself performs no routing. The alternative routes created by DUAROUTER 
are evaluated and vehicle route choices adapted, such that the chosen routes comply 
with detector measurements passed as an input to cadyts. 

If traffic scenarios are to be calibrated with cadyts, a previous calibration with DUAROUTER is 
required in eNetEditor to obtain a required alternative route definition for cadyts. 

13.3.3.2.1 DUAROUTER 

While DUAROUTER itself has been implemented in C++, the iterative process of finding 
alternative routes and executing the simulation has been implemented in form of a Python 
script, duaIterate.py. eNetEditor automates the creation and execution of the required 
command-line argument by the keyboard entry of the u, if previous vehicle routes from 
DFROUTER (section 13.13.3.3.1.2) are present. These routes are stripped down to each of 
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their trip definitions using the existing Python script route2trips.py: the route's origin edge, 
destination edge, and departure time. A trip definition is exemplified in Listing 12. 

Listing 12: Example trip definition as a result of route definitions from DFROUTER used as input for DUAROUTER 
<?xml version="1.0" encoding="utf‐8"?> 
<trips> 
  <trip depart="0.00" departLane="random" departPos="0" departSpeed="random" 

from="82to49" id="emitter_det211_82to49_0_0" to="13to16" type="PKW"/> 
  <trip depart="0.00" departLane="random" departPos="0" departSpeed="random" 

from="83to33" id="emitter_det212_83to33_0_0" to="10to27" type="LKW"/> 
  <trip depart="0.00" departLane="random" departPos="0" departSpeed="random" 

from="84to23" id="emitter_det213_84to23_0_0" to="23to28" type="PKW"/> 
  ... 
</trips> 

The resulting output in eNetEditor is a command-line argument that executes the iterative 
DUAROUTER Python script with the specified options as exemplified in the following 
command: 

duaIterate.py  ‐n  Test.net.xml  ‐t  Test.trips.xml  ‐x  detailed  ‐+  "Test.vtypes.xml, 
Test.add.chrg.xml,Test.add.bStp.xml" ‐l 20 

13.3.3.2.2 cadyts 

If DUAROUTER has finished calibration, a subsequent call to the Python script cadytsIterate.py 
can be made from eNetEditor by keyboard entry of the button y. cadyts requires traffic flow 
measurements in the xml-format exemplified in Listing 13. In regard of the contained 
information, this measurement file is nearly identical to that required by DFROUTER, with an 
additional standard deviation for each measurement, only in a different format. Currently, 
only one percentage value will be queried by eNetEditor, which derives the standard deviation 
as a fixed percentage of the corresponding flow for all measurement values. The 
measurement file is constructed from the values of the user-specified edge parameter 
numVehs in the same manner as described in section 13.13.3.3.1.2 for DUAROUTER. 

Listing 13: Example flow measurement definition created for subsequent call to cadyts 
<?xml version="1.0" encoding="utf‐8"?> 
<measurements> 
  <onlink start="0"    end="1199" link="1to5"  value="4.280"  stddev="0.428" 

type="COUNT_VEH"/> 
  <onlink start="1200" end="2399" link="1to5"  value="8.158"  stddev="0.816" 

type="COUNT_VEH"/> 
  <onlink start="2400" end="3599" link="1to5"  value="12.036" stddev="1.204" 

type="COUNT_VEH"/> 
  <onlink start="0"    end="1199" link="1to11" value="4.280"  stddev="0.428" 

type="COUNT_VEH"/> 
  ... 
</measurements> 

The resulting output is a command-line argument that executes cadyts with the specified 
options to iteratively adapt the route choice of vehicles. The following exemplifies a command 
line call to cadyts with all required input files and arguments: 

cadytsIterate.py ‐b 0 ‐n Test.net.xml ‐d Test.calibFlowMeas.xml ‐+ "Test.vtypes.xml, Test.add. 
chrg.xml, Test.add.bStp.xml" ‐r Test.rou.alt.xml ‐W Test.flowsEvaluation.txt ‐l 20 ‐a 1200 
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Figure 13-39: eNetEditor's graphical user interface showing a user-specified background image with a user-

created network's digraph (left) and a snapshot of the resulting scenario in the SUMO GUI (right) 

13.3.3.3 Manual initial vehicle energy content adjustments 

Since the current implementation of the described routers are not yet compatible with the 
newly developed energy device [6], there are currently two possibilities for setting vehicles' 
initial energy content at their departure (in analogy to the parameters departSpeed, 
departLane, etc.): (1) if left unspecified, vehicles' initial energy content is set to half of the 
vehicle type’s maximum energy content by default or (2) vehicle instantiations need to be 
modified manually within the vehicle route file as exemplified by the syntax in Listing 14. 

Listing 14: SUMO configuration of a scenario calibrated with cadyts 
<?xml version="1.0" encoding="utf‐8"?> 
... 
<vehicle depart="0" id="veh1" route="route02" type="ElectricCar" departSpeed="max"> 
    <param key="ActBatKap" value="1000"/> 
</vehicle> 
... 

13.3.4 User interaction and interface 

Beyond the described user dialogs, user interaction is implemented on the basis of hotkeys. 
eNetEditor can be executed with the following command-line from MATLAB. 

netBuild('quadraticBackgroundImage.png',widthInMeters,'projectName') 

The first command argument specifies the filename of a quadratic background image for 
visualization. The second argument specifies the width (= height) in meters as an integer of 
the regarded network to be modeled. The third argument specifies the project name as a 
string. 

Projets can be saved in the main window at any time with the keyboard entry s. If an existing 
project shall be opened, the above command-line argument must be executed in MATLAB 
with its project name specified in the third argument. After all windows have finished loading, 
the project can be loaded with the keyboard entry l. An overview of all hotkeys can be found 
at the bottom of the main window. 
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Figure 13-40: Cumulated energy consumed (left) and cumulated vehicle standstill duration Tst, with 

Tst ≥ 0 s (left) and Tst ≥ 10 s (right), of all vehicles in the simulation over their position 

13.4 Example scenario and results 

An example scenario was created that represents a section of Braunschweig's road traffic. 
Traffic measurements were taken from the city's traffic intensity map [17] and used for 
calibration as described in section 13.13.3.3. Figure 13-39 depicts eNetEditor's user interface 
along with a created scenario (left) next to its visualization in SUMO's graphical user interface. 
The SUMO corresponding configuration file, using the vehicle energy device and charging 
stations, after calibration with cadyts is shown in Listing 15. 

Listing 15: SUMO configuration of a scenario calibrated with cadyts 
<?xml version="1.0" encoding="utf‐8"?> 
<configuration ...> 
  <input> 
    <net‐file value="ringSect5.net.xml"/> 
    <route‐files value="ringSect5_049.cal.xml"/> 
    <additional‐files value="dua_dump_049.add.xml,ringSect5.DFvtypes.xml, 

ringSect5.add.chrg.xml,ringSect5.add.bStop.xml"/> 
  </input> 
  <output> 
    <battery‐output value="iteration_049.battery.out.xml"/> 
    <battery‐output.precision value="4"/> 
    ... 
  </output> 
  ... 
</configuration> 

The resulting output file (in this case iteration_049.battery.out.xml) can be used by 
subsequent analyses and optimization algorithms (subject of future work) to determine (1) 
where in the network energy is consumed and (2) which locations are suitable for the 
placement of charging stations to supply vehicles with adequate energy on the fly, i.e. during 
their operation. Figure 13-40 shows first results that aim to supplement these future analyses. 

Whereas the left image shows the cumulated energy that was consumed by all vehicles in the 
simulation, the center and right image focus on the energy consumption's complement: the 
time, which can be used for transferring energy into vehicles. If vehicles can be charged while 
moving at arbitrary speeds (e.g. catenary/trolley systems), any location within the road 

network can potentially be used for transferring energy into vehicles. The resulting cumulated 
time of all vehicles in the example scenario as a function of vehicle position is shown in the 
center image (Tst ≥ 0 s). However, most charging stations (e.g. gas stations) require vehicles to 
be standing still for a certain duration. If only halts can be used for charging that have a 
minimum duration, the amount of energy that can be charged reduces drastically. The image 
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to the right shows the cumulated duration of vehicles halts, of which each exceeded 10 
seconds in the scenario as a function over vehicle position. 

13.5 Summary and outlook 

The development of eNetEditor was motivated by the projects emil and InduktivLaden, both 
funded by the German Federal Ministry of Transport and digital Infrastructure. An inductive 
charging infrastructure and a compatible fully electric prototype bus fleet was successfully 
integrated in Braunschweig's traffic infrastructure and public transport. With the application 
of Bombardier's inductive charging system PRIMOVE, vehicles can be charged with powers 
beyond 200 kW. A crucial factor for the reliable operation of vehicles with limited range is the 
placement of charging stations. In the project emil infrastructure placement was optimized on 
the basis of measured public transport vehicle trajectories [18] using the FMS interface [19] 
and GPS loggers. 

eNetEditor was developed for city and traffic planners to evaluate the application of 
alternative energy supply systems in early idea and concept phases, where such data is not 
readily available and only general traffic measurements exists. The ultimate goal is to adapt 
and implement flow capture and flow refueling optimization algorithms from [20], [21], and 
[22] to determine optimal charging infrastructure locations and thereby help in initial 
estimations of installation costs. 

Regarding the validity of the created scenario, calibrated vehicle routes will be checked next 
against the measured public transport vehicle trajectories. Future implementations in 
eNetEditor itself include the assistance in modelling public transport by the creation of 
recurring vehicle routes and their integration in calibrated scenarios. For a more realistic 
integration and application of DFROUTER's and cadyts' functionalities, user-specifiable daily 
traffic intensity curves as well as lane-based measurement variations and distributions 
between passenger and commercial/freight vehicles (PKW and LKW) will be implemented. 
Regarding the application of the newly developed energy device [6], routers are currently not 
compatible with the definition of vehicles' initial energy content at their departure (in analogy 
to departSpeed). It is planned to adapt the routers correspondingly or to implement a parser 
of vehicle route declarations to allow for custom initial vehicle energy content distributions. In 
the long term, an import function for .net.xml-files is planned as well as the migration to a 
platform-independent implementation. 
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