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The Semantic Gap: An Exploration of User and
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Abstract—Research on the semantic gap has considered dif-
ferences between user and computer image interpretations, and
proposed methods to bridge it. These methods have been verified
by comparing results to reference data, or by measuring the
degree of user acceptance. Although these methods result in
a narrower semantic gap between computers and users, the
resulting model for a specific user and search goal may still
not be satisfactory to other users. Through an image annotation
task with users, we find that this discrepancy is caused by the
subjective biases present in the bridging methods, which we
refer to as the “linguistic semantic gap”. Based on our findings,
efforts to bridge the semantic gap should include different user
perspectives to compensate the individual subjective biases, by
increasing the diversity of data sets used in the domain. Moreover,
models derived from proposed bridging methods could be stored
and further used by other systems.

Index Terms—Earth Observation, Image Semantic Labeling,
Semantic Gap, Sensory Gap

I. INTRODUCTION

THE large amount of existing digital data in various do-
mains, such as multimedia and remote sensing, increases

the demand for developing more efficient data mining systems.
The already proposed methods usually perform based on
human supervision in the form of annotated data, either for
training or validation. However, the results of the existing
systems, particularly in Earth Observation (EO), are not always
satisfactory for users conducting content based searches [1].
This is caused by the “sensory” and “semantic” gaps. The
sensory gap refers to the difference between an object in
reality and its interpretation based on the recorded signals by
sensors [2], [3], [4]. The semantic gap, in most of the previous
research, has been defined as the difference between the user’s
understanding of objects in an image, and the computer’s
interpretation of those objects [1], [2], [3], [5], [6]. However,
each user will interpret images differently, and use different
terms to label the objects within them, and this is what we
call the “linguistic semantic gap”. While previous research
addressed this as a “vocabulary problem” [7], [8], showing
that it is unlikely for two people to assign the same label
to a given object; this problem has not been considered in
the context of the well-known semantic gap. Research on the
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semantic gap has considered differences between user and
computer interpretations of an image, and proposed methods
to bridge it, such as introducing various machine learning
algorithms [9], using different feature descriptors [3], using
correlations among multiple data modalities (e.g., image, text,
meta-data) [10], discovering semantic rules between users and
computers [1], and using interactive models [6]. The proposed
methods have been verified either by comparing results to
reference data, or by measuring the degree of user acceptance
in the interactive systems. In this letter, we show that since
the “gold standard” is set by user created references or user
acceptance, user subjective biases are included in this standard.
Thus, although these methods result in a narrower semantic
gap between computers and users, the linguistic semantic gap
remains, therefore the resulting model for a specific user and
search goal may still not be satisfactory to other users.

To overcome this problem, we propose that efforts to bridge
the semantic gap should consider the linguistic semantic gap,
and increase the diversity of data sets used in the domain (e.g.,
using various EO datasets for EO tasks), which will include
different user perspectives and compensate for the individual
subjective biases. Moreover, models derived from proposed
methods for bridging the semantic gap could be stored and
further used by other systems, which would then be including
other users’ image interpretations.

Furthermore, we show the relationship between the sensory
and the semantic gap. When users are presented with an image
to annotate, they must both identify the objects in it, and label
them. For every user, the task of object discrimination can
be affected by the sensory gap, since users are limited to
what they can perceive in an image, and this is influenced
by image characteristics, such as resolution. Once objects have
been identified, labeling them can also lead to different results
for each user, due to their pre-existing knowledge, or the
use of additional information (e.g., maps in EO), causing the
linguistic semantic gap. Since users first perceive and identify
objects, and then label them, it can be said that the semantic
gap builds on the sensory gap.

Section II proceeds by first detailing the procedure followed
for both the user and computer experiments, including the
feature descriptors used. Section III presents the results and
discussion regarding the semantic gap with reference to object
discrimination and object naming, the relationship between
the sensory and semantic gap, as well as the effect of the
semantic gap on biasing learning systems. Section IV presents
the conclusions.
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Fig. 1. The process chain for the semantic gap assessment. For explanation,
please refer to Section II-A.

II. EXPERIMENTAL PROCEDURE

A. User Experiments

A complete overview of the process chain followed for
this paper is depicted in Fig. 1, with each step italicized and
described in the text below. First, a Scene of the north of
Munich (Germany) with a resolution of 1.84 m was obtained,
and trimmed to 2000×1800 pixels, with RGB bands displayed.
This multi-spectral image was acquired on July 12th, 2010
(10:30 am UT) by the WorldView 2 satellite.

The Scene was first divided into 323 Patches of 200× 200
pixels, with a 50% overlap. With the goal of obtaining an
initial set of labels describing the patches, the Initial user
annotation by 3 different users (each one annotating an
average of 108 patches) was performed. Users carried out
a “free text annotation” [11], without the use of reference
material, to gather labels based on user perceptions without
external influences. Label collection & refinement followed,
removing duplicates and synonyms, resulting in 18 Content
labels describing the patch content (please refer to Table I).

These 18 Content labels, together with Google Earth1, were
used in a Manual annotation of the scene, creating a Reference
annotation (REF). Fig. 2 depicts samples of the image patches
and their corresponding reference annotations.

Following this, 16 users were recruited, and half were
randomly assigned to User Experiment 1 (UX1), and the other
half to User Experiment 2 (UX2). Each user was randomly
given a set of patches to label (14 users were given 40 patches,
2 users were given 43 patches), so that each patch was labeled
twice. Users were provided with a handout containing Table I,
and a second table with codes A-E, each corresponding to
a percentage range (A=0-19%, B=20-39%, etc). Users were
asked to look at each patch (zooming in as needed), and
assign it at least one alphanumeric code, representing both the
semantic content of the patch (the label), and the approximate
area of the patch covered by each label (the coverage). For
example, code 1A indicates there is an agricultural field,
covering between 0-19% of the patch area. This produced UX1
and UX2 labels and coverage.

After labeling, participants filled out a questionnaire ad-
dressing three points: perceptions on task ease, their confi-

1https://www.google.com/earth/

1 Agricultural field 7 Greenhouse 13 Railway
2 Building 8 Highway 14 Road
3 Crop 9 House 15 Soccer field
4 Factory 10 Isolated trees 16 Solar panels
5 Forest 11 Lake 17 Street
6 Grass 12 Parking lot 18 Tennis court

TABLE I
CONTENT LABELS

Fig. 2. Sample image patches and their corresponding REF. The legend shows
the correspondence of the 18 labels in Table I to the annotated regions. The
label ”0” refers to the unlabeled areas.

dence in the correctness of their labels, and general feedback;
all of which was used to further understand the results.

B. Computer Experiments
Considering the semantic gap as the difference between the

user and computer descriptions of the image, we measured it
by comparing the distribution of the labels assigned by the
users to the distribution of the labels assigned by a machine
learning algorithm. From a user perspective, the image is
described by its content in the form of semantic labels; and the
distribution of the labels is based on the corresponding user
assigned coverages. From a computer perspective, the image
is described by a vector of its primitive features (e.g., shape,
texture, color), and a learning algorithm is then performed on
the space created by the integration of the vectors, the so-called
“feature space”. Therefore, decision making in a computer is
based on both the feature descriptors and learning algorithms.

To study the semantic gap, we fix the learning algorithm
(using k-means clustering) and explore the effects of various
feature descriptors. Thus, in order to obtain the distribution
of the labels from a computer perspective, first we extract
the primitive features. Secondly, k-means is applied to the
primitive feature description of each image, where the number
of clusters is set to 18 (corresponding to the labels in Table I).
The obtained clusters represent the different labels, and their
size corresponds to their occurrence. We then normalize the
cluster occurrences and the user assigned label coverages in
order to represent each image by two probability mass func-
tions from the computer and user perspectives, respectively.
These functions are then compared by symmetrized Kullback-
Leibler divergence [12]:

DKL(Li||Ci) =
1

2
[

18∑
x=1

Li(x) ln
Li(x)

Ci(x)
+

18∑
x=1

Ci(x) ln
Ci(x)

Li(x)
],

(1)
where Li and Ci are the probability mass functions represent-
ing the distributions of the labels and clusters in an image i.
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In these functions, x is a discrete random variable indicating
a label or a cluster in the label and cluster distributions,
respectively. Due to the unsupervised nature of the k-means,
the correspondence between the x in Li to the ones in Ci is not
clear. In our experiments, we fix Li and shuffle the x in Ci and
compare the resulting functions to find the best fitting one. We
then consider the DKL between the Li and the fitted function
as the distance between the label and cluster distributions.

C. Feature Descriptors

In order to process the images from their different prop-
erties (e.g., shape, texture, color), they are represented by 3
different types of feature descriptors and their combinations,
such as Scale Invariant Feature Transform (SIFT), Weber
Local Descriptor (WLD), rgbHist, SIFT-Color, WLD-Color.
The features are extracted in a dense way at every location on
every image using a sliding window of 32 × 32 pixels with
50% overlap. SIFT represents the geometry-based features
of an image such as edges and corners by 128 dimensional
vectors [13]. WLD descriptor represents textural patterns of
an image [14] as a vector (the resulting feature vectors in
our experiments have 144 dimensions). To obtain the SIFT
and WLD descriptors the methods are applied to the gray-
value of the images, while to generate SIFT-Color and WLD-
Color, the methods are applied to the RGB channels separately.
The resulting vectors are then concatenated to achieve the
final feature vectors. Thus, the SIFT-Color and WLD-Color
features are 384 and 432 dimensional, respectively. rgbHist
extracts color information of an image. For each local window,
it concatenates the color histograms of the RGB channels and
represents it as a vector. The resulting rgbHist vector is 768
dimensional, composed of three 256 dimensional vectors.

III. RESULTS AND DISCUSSION

A. Object Discrimination and Object Labeling

In our experiment, users were asked to identify the objects
in each patch, approximate what percentage of the patch area
the object covered, and then label the object based on a
given dictionary. This can be viewed as two tasks: one is
a more perceptual task of visual segmentation of the patch
into areas, grouping pixels according to similarity. Here the
user is making a relative judgment- is each pixel like the
neighboring one? And what overall area of the patch does
this object cover? This task is affected by the sensory gap due
to patch characteristics, such as resolution.

The second task is a more conceptual one- the user must
identify what the object is and assign it a label from the
dictionary in Table I. This task is more difficult, since it in-
volves making an absolute, as opposed to a relative, judgment.
Previous research has found that annotators find ranking tasks
(in which they make relative judgments) easier than assigning
a precise score or classifying an image; and this type of task
also produces a higher inter-annotator agreement [15].

The semantic gap associated with the visual segmentation
task (identifying objects and assigning them percentages), and
the labeling task is exemplified in Fig. 3. (a). This figure
shows the DKL as a measure of the semantic gap between
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Fig. 3. (a) The semantic gap as the difference between two descriptions
of an object, considering UX1 and REF, UX2 and REF, or UX1 and UX2.
(b) Radar chart showing the average distributions of different labels in the
patches based on UX1, UX2, and REF. Each number corresponds to a label
as shown in Table I.

any two label distributions of the patches given by both UXs
and the REF. DKL is computed by first considering only the
coverages (ignoring the label correspondences and by finding
the best fitting distributions explained in Section II-B); then
only the labels (assuming the same probability for the occurred
labels); and finally both together. Results show there is a higher
degree of agreement, and lower semantic gap, when only the
coverages are considered; whereas comparing only the labels
results in a higher semantic gap. This demonstrates that visual
segmentation and identification of objects is performed in a
similar way by all users, compared to the object labeling.

It has been proposed that in order to determine the identity
of an object, humans will turn to their memory to find an
analogy - asking “what is it like?” (as opposed to “what
is it?”). These analogies will result in memory associations,
where additional information (e.g., context) will be consid-
ered, resulting in a prediction as to what the object is [16].
Considering the role of memory in prediction-making, it is
natural that a person’s background and experiences could play
a role in their predictions [16]. It has also been noted that
this prediction of what an object is can also affect what users
see and where they consider the object’s contours [17]; and
consequently, how they name the object. This brings us to the
“vocabulary problem”, which arises when people use different
terms to describe the same object [7], [8]. A study involving
spontaneous word choice for different domains revealed that
there was less than a 20% probability of two people assign-
ing the same label for a given object [7], exemplifying the
linguistic semantic gap. This is reflected in Fig. 3 (a), where
the largest semantic gap is between UX1 and UX2, showing
how even among users given the same images with a defined
dictionary, there will not always be a consensus with regards
to the semantics of an object.

These diverging understandings of label meanings can be
further explained using Fig. 3 (b). This radar chart shows the
average distribution of different labels in the patches based
on the REF, as well as the average distributions of the user
assigned labels. The average distribution for the REF is calcu-
lated based on the coverages for all the patches (referring to the
number of pixels corresponding to each label). For UX1 and
UX2, the user-assigned coverages for each label were utilized.
The deviation between the distribution of the UXs to REF
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Fig. 4. (a) The semantic gap between k-means and UX1, UX2, or REF;
using 5 different feature descriptors (their average ”Avg” is also depicted).
(b) The average semantic gap over the 5 features, for UX1, UX2, and REF;
while k-means is constrained by UX1, UX2, or REF.

for each label can tell us about missing labels, and confusion
patterns between different labels. Since the area inside each
plot is constant (because the values form a probability mass
function), an increase in one dimension causes a proportional
decrease in another dimension. A positive deviation of the UXs
from REF (for example, in the case of “Agricultural field”)
indicates that the label was incorrectly assigned to different
objects, or the coverage was overstated. The positive devi-
ation in “Agricultural field” is compensated by the negative
deviation of “Crop” for both UXs. A negative deviation of
the UXs from the REF indicates that objects belonging to
this category were not detected, other labels were incorrectly
assigned to this object, or the label coverage was understated.
Furthermore, if we turn to “Grass”, it is possible to observe
a negative deviation for UX1. This is consistent with the
user feedback in the questionnaires. Users commented that
they were not always able to distinguish between the labels
“Agricultural field”, “Crop” and “Grass”; that the resolution of
the image made the distinction between these semantic classes
difficult, and that the labels themselves were difficult to define
and differentiate. Taking all this together, it is possible to
conclude that users from UX1 assigned the label “Agricultural
field” to some objects that REF considered crops and grass.
In the case of UX2, there is a small negative deviation for
“Grass”; therefore, we can conclude that they misassigned the
“Agricultural field” to crops in most cases.

Taking the differences in the semantic gap when compar-
ing coverages to labels, and considering the user feedback
regarding difficulties in labeling, it is possible to observe both
a sensory gap (which is influenced by resolution and affects
what is perceived in the image), and a semantic gap (which is
influenced by confusion between labels, affecting the semantic
labels given).

B. The Relationship between the Sensory and Semantic Gap

In this section, we explain the relationship between the
semantic and sensory gaps. Considering the semantic gap as
the difference between the user and computer semantic under-
standings of images, we measure DKL to compare the label
distribution given by the UXs and the REF, to the distribution
obtained by clustering the primitive feature descriptors for
each image. The Y-axis in Fig. 4. (a) shows this difference
for 5 feature descriptors.

Semantic understanding is composed of both object percep-
tion and object naming. Sensory gap affects object perception,
which is influenced by the scene parameters (e.g., resolu-
tion) [4], and the visual perceptual system. In our experiments,
scene parameters are fixed; however, how objects are perceived
by humans and computers is different. From the user side,
since the perceptual system across humans is similar, the user
sensory gap is considered to be similar for all three groups
(UXs and REF) and is consequently disregarded. Therefore,
only additional information (in the case of the REF) and
user background can affect object naming, and thus semantic
understanding. From the computer side, feature descriptors
play the main role in object identification. By changing the
feature descriptors, we can obtain different measures for the
sensory gap, and consequently the DKL. The other factor
which affects the object classification and therefore the seman-
tic understanding, is the learning algorithm, which we fixed to
k-means. Therefore, in our experiments, two factors affect the
semantic gap: the user background (or use of additional infor-
mation), and the computer sensory gap (feature descriptors). In
Fig. 4. (a), the same pattern of DKL for the feature descriptors
across UXs and REF indicates the effect of the sensory gap
from the computer side. By taking the average measure, we
disregard the influence of the features to show the influence of
user background or additional information. It shows that the
average semantic gap for the REF is smaller than the average
semantic gap for both UX1 and UX2, with UX1 being larger
than UX2. This is consistent with the linguistic semantic gap
shown in Fig. 3. (a) where the distance between UX1 and REF
is larger than the distance between UX2 and REF.

C. Effects of the Semantic Gap on Biasing Learning Systems

The demand for developing more efficient data mining
systems has been met with methods usually performing based
on human supervision in the form of annotated data, either
for training or validation. Thus, different manually annotated
datasets have been created; and are used for various purposes.
However, according to research by Torralba and Efros [18],
relying too much on a specific dataset for training and validat-
ing the proposed image information mining methods narrows
down the research focus. The authors showed that in spite of
efforts devoted to creating general and unbiased datasets, due
to subjective and objective reasons (e.g., the purpose of the
datasets), they suffer from strong built-in biases. The authors
also doubted whether existing datasets reflect the expected real
world scenarios. As a result, the verified systems based on
reference datasets still do not provide results satisfactory to
user requirements [5]. This has also been confirmed in [18] by
training a model on a dataset and then testing it on another one.
The results showed that the agreement is low even between
datasets which appear to be similar.

The semantic gap, as the gap between user image under-
standing and that of computers, has been noted in previous
research ([3], [5], [6]) as a main reason behind the unsatis-
factory results of current image information mining systems.
Various schemes have been proposed to bridge the gap, which
have been verified either by comparing results to reference
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data, or by the degree of user acceptance in the interactive
systems. Thus, although the proposed methods help bridging
the semantic gap, they are biased to a dataset or to a user.
Considering the interactive methods, for example, the gap
between the system and a user become shorter as the user
refines his request in each iteration; however, the resulting
model may still not provide satisfactory results to other users.
Based on our discussion in Section III-A, the disagreement
between the users’ assigned labels can be due to the users’
different needs and background knowledge.

In order to show the effects of this gap, in a new set of
experiments we consider the effect of human interaction with
the learning algorithm by constraining the k-means to the
number of labels, given either by UX1, UX2, or REF. Fig. 4 (b)
shows the average semantic gap over the 5 features, for both
UXs and the REF. The x-axis shows the group that defined the
constraint. As the figure shows, when the learning algorithm is
constrained by a group (e.g., UX1), the semantic gap between
the learning algorithm and all the groups decreases, compared
to the average when it is unconstrained. However, there is a
significant decrease for the semantic gap between the learning
algorithm and the group used to set the constraints (e.g., UX1).
These results indicate that user interaction generally helps to
shorten the semantic gap due to a basic common understanding
between users; however, it biases the learning algorithm to that
specific users’ understanding of the image semantic.

To clarify what is meant by a common understanding
between users, we will present an example. It has been shown
in previous literature that using texture features improves the
performance of the learning systems to a high degree in remote
sensing tasks such as classification and segmentation [19]. In
order to measure the performance of a learning system, its
results are compared to a human-created reference data, which
is biased by human perception, semantic understanding, and
the task objective (what is expected of the data). Considering
the reference as the basis for comparison, and considering the
learning system’s performance comes closest to it when using
texture, we can conclude that texture features help humans in
object identification which in turn biases the reference data.
This is reflected in our experimental results in Fig. 4. (a),
which shows that the WLD-Color feature (which extracts
textures) has the smallest semantic gap across all the groups.

Altogether, all existing methods proposed for bringing a
system closer to a reference data or to a user decision, in
principle shorten the semantic gap, although only some authors
directly pointed this out in their publications [9], [10], [1],
[6]. Moreover, only part of the high improvement achieved by
bridging the gap is generalized, the bigger part is subjective
and specific to that reference data or to the particular user.

IV. CONCLUSION

The results of content based searches are not always sat-
isfactory for users, due to the sensory and semantic gaps.
Research on the semantic gap has considered differences
between user and computer interpretations of an image, and
proposed methods to bridge it. The proposed methods have
been verified either by comparing results to reference data, or

by measuring the degree of user acceptance in the interactive
systems. Although these methods result in a narrower semantic
gap between computers and users, the resulting model for a
specific user and search goal may still not be satisfactory to
other users. In this letter, we show that the subjective biases
present in the bridging methods, which we refer to as the
linguistic semantic gap, cause this discrepancy. Furthermore,
we show that the semantic gap builds on the sensory gap.

In order to overcome this problem, our proposal is that ef-
forts to bridge the semantic gap should consider the linguistic
semantic gap, and increase the diversity of data sets used in the
domain (e.g., using various EO datasets in EO tasks), which
will include different user perspectives and compensate the
individual subjective biases. Moreover, models derived from
proposed methods for bridging the semantic gap could be
stored and further used by other systems, which would then
be including other users’ image interpretations.
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