
Reachability and Dexterity: Analysis and Applications
for Space Robotics

Oliver Porges, Roberto Lampariello, Jordi Artigas, Armin Wedler, Christoph Borst, Máximo A. Roa
German Aerospace Center (DLR), 82234 Wessling, Germany, Email:firstname.lastname@dlr.de

Abstract—The utility of a mobile manipulator largely
depends on its kinematic structure and mounting point
on the robot body. The reachable workspace of the robot
can be obtained offline and modeled as a discretized map
called Reachability map. A Capability map is obtained by
including some quality measure for the local dexterity of the
manipulator, which helps to identify good and bad regions for
manipulation. Once the maps are obtained based on forward
or inverse kinematic methods, they can be used for numerous
analysis tasks such as robot kinematics and workspace quality
assessment, robot mounting point analysis or redundancy
and failure analysis. This paper covers basic aspects of the
Reachability and Capability map generation and storage, and
shows particular applications of the maps for space robotics.

I. INTRODUCTION

The ability of a robotic manipulator to grasp and manip-
ulate objects depends on the kinematic structure of the arm,
on its location in the physical space, on the relative location
of the objects with respect to the arm, and on environmental
restrictions. The reachable and dexterous workspace of the
robot can be computed offline, which saves time for online
queries of the map like grasp selection or path planning, or
helps in the design process to obtain a correct performance
for predefined manipulation tasks.

The manipulator workspace is defined as the set of all of
the robot tool frame (TCP) poses that can be reached with
some choice of joint angles. An efficient representation
of the workspace can be generated by discretizing the
task space SE(3) in a hierarchical way: the reachable
Cartesian workspace in R3 is divided in voxels with a
predefined desired resolution, and each Cartesian voxel has
an associated rotational grid that discretizes SO(3). Using
forward or inverse kinematics, each cell in the grid receives
a binary value that indicates if it is reachable or not; this
process generates the Reachability map [1], [2]. The inverse
Reachability map can be created to look for the proper
placement of a mobile robot according to a desired task [3].
The cells can also have an associated quality index that
measures the dexterity of the robot when located in this
position, thus creating a Capability map [1]. In the general
case of a mobile manipulator, the robotic arm is mounted
on a mobile platform. This base can also be included in
the computation of the map in order to identify regions that
are reachable and avoid self-collisions with the robot.

This paper summarizes the methods to generate the
reachability map based on forward and inverse kinematics,
and a hybrid method that combines advantages from both
worlds, allowing the creation of such maps in a reasonable
time while still guaranteeing complete coverage of the

Fig. 1: Cross-section of the workspace of a KUKA-DLR
LBR arm in form of a Capability map. The HSV color
scale encodes the dexterity of each region in the space; blue
indicates areas with higher dexterity of the manipulator.

workspace. The efficient allocation of the map in memory
is presented, which allows fast online queries and path
planning. The prediction accuracy of the maps is discussed
to show the influence of the map resolution on the quality
of the obtained representations. The maps generated in this
way represent ideal robot workspaces that only consider
the kinematic design quality. In a real life scenario, the
robotic manipulator is always mounted on a platform and
embedded in an environment that imposes more restrictions
on its movement. We show how to include these factors in
the generation process to obtain the effective workspace
for a particular application scenario. The potential of the
Reachability and Capability maps is illustrated with differ-
ent applications in the space domain, in particular: deter-
mining the optimal mounting point for a manipulator on
a Lightweight Rover Unit (LRU), online grasp feasibility
evaluation for a DEOS-TerraSAR-X deorbit mission, and a
workspace analysis for the mission simulator DEOS-SIM.

II. GENERATION OF REACHABILITY MAPS

The Reachability maps represent all possible positions
and orientations that are reachable by the robot tool frame
(TCP). The representation is obtained by hierarchically
discretizing the robot workspace in all 6 degrees of free-
dom of the TCP (position and orientation): the reachable
workspace in R3 is divided into equally sized cubes
called voxels, with a predefined desired resolution, and
each Cartesian voxel has associated rotational grids that
discretize SO(3), as illustrated in Fig. 2. The map is stored
as a binary array where each bin represents the reachability
of a small range of translations and rotations of the TCP.

Fig. 2: Hierarchical discretization of SE(3): Cartesian
voxels define spatial locations (cube), each voxel has an
associated grid for the approach directions (sphere), and
each spherical region has an associated discretization for
the roll directions (circle).

The bins are set to 1 if the range is considered reachable,
and 0 if the robot cannot position and orient the end-
effector within the bin range.

Different quality measures can be employed to further
interpret the reachability data. Most commonly, a reach-
ability index that indicates the percentage of bins that
are reachable within a given voxel is used [1], which
provides a single measure reflecting local dexterity. The
set of reachability indices of the whole map creates a
Capability map, as shown in Fig. 1. Further discussion on
the reachability index and visualization of the data will be
presented in Section III-C.

A. Generation Strategies

A straightforward method for the map generation uses a
combination of forward kinematics (FK) and random joint
sampling. Due to the low computational requirements of
this approach, it is able to generate a large number of TCP
samples in a short time. However, the random sampling
does not guarantee that the whole workspace of the robot
is covered in a finite time. Also, the larger the number of
samples the most likely that the TCP samples start to fall in
previously visited bins, which slows down the whole map
generation process. The progress of the generation process
can be assessed based on the ratio of new reachable bins
within a number of generated samples. The map is ready to
be used when this ratio falls below a predefined threshold.

Inverse kinematics (IK) can also be used for the map
generation, as it guarantees a complete workspace explo-
ration. Each bin in the map is represented by one TCP
sample (commonly chosen at the center of the bin). If an
IK solution (i.e. a combination of joint values) exists to
reach this TCP, the bin is marked as reachable. However,
while an FK check takes only some microseconds to obtain
the TCP pose, an IK solver may take a longer time (several
milliseconds) to determine whether a desired TCP pose is
reachable or not. Due to the large number of samples that
need to be generated, this method is rather slow.

A third generation method, the hybrid (HYB) method,
combines the two previously mentioned strategies [4]. The
process starts by using an FK approach based on random
sampling of the joint positions. At the beginning, a large
number of bins is correctly set to 1, employing only a small
computation time per bin. The time required to determine
new bins (or the ratio of newly discovered bins within

a number of generated samples) is monitored, as it will
increase (decrease, respectively) over time, and once it
reaches a predefined threshold an IK-based generation is
triggered to complete the map by verifying if there exists
an IK solution for the bins that have not yet been set.
The threshold depends on the particular IK solver, and it is
related to how much time does the solver need to find a so-
lution or determine that a pose is not reachable. In this way,
the number of IK queries required to guarantee a complete
exploration of the workspace is reduced, thus reducing the
computational effort required for the map generation.

B. Prediction accuracy

The elementary evaluation for the quality of the map
is its prediction accuracy. To test the accuracy, an arbi-
trary TCP frame is chosen and the map is queried for
its reachability. Afterward, an IK solution is attempted,
and there should be a match between the information
coming from the map and the solver. A practical range
of accuracies for this type of maps should be above 90-
95% [4]. The remaining percentage (error) corresponds
to a wrong identification of TCP reachability, which can
be either false positives (FP) or false negatives (FN). The
ratio of FP/FN queries changes according to the generation
method. While the IK generation process produces roughly
equal FP/FN queries, the FK generated maps significantly
shift the ratio towards FP errors. This is due to the fact
that with increasing numbers of random samples there is a
higher chance that a TCP falls within a bin whose range
of poses is mostly unreachable, yet still marked as fully
reachable. For the hybrid method, the FP/FN ratio can be
steered based on the switching criterion, and it will always
be somewhere between the FP/FN levels of the IK and FK
generation processes.

Naturally, the accuracy of the map depends also on the
chosen discretization level. Let r be the voxel resolution
(typically in cm), da the number of discretized approach
directions and dr the number of roll directions (Fig. 2).
Table I presents prediction accuracies obtained for the case
of the LBR (Fig. 1). Further details on performance and
prediction accuracy for the three generation methods can
be found in [4].

TABLE I: Prediction accuracy of IK, FK and Hybrid
generation methods for the Reachability map of the LBR

r - da - dr IK FK HYB
5 - 50 - 10 95.8% 90.6% 93.7%

5 - 100 - 20 96.4% 92.7% 94.7%
5 - 200 - 30 97.5% 94.5% 95.2%

C. Environment model in generation process

The previously described generation processes only con-
siders the kinematic structure of the robot itself, which is
good enough to analyze kinematic limitations or redun-
dancies in the actuation, or to assess the ability of a robot
to perform some specified tasks. However, in reality the

robot is mounted on a base and interacts with a semi-
structured environment. The generation above described is
then enriched by including a model of the environment
and using collision detections within the generation loop
to obtain a workspace representation valid for particular
use cases (i.e. valid TCP samples for which the robot is
in collision are not considered valid and are not included
in the map). Furthermore, the same approach should be
applied during on-line queries of the maps.

A self-made collision checker was developed to be able
to work directly with sensor data in a highly parallelizable
way. The robot is modeled as a set of sphere and cylinder
primitives. The robot parts are inscribed into the primitives,
which can be enlarged if more conservative collision avoid-
ance is required. The environment is modeled as a point
set. These point sets can be obtained from CAD models by
a user-defined discretization of the surfaces, which results
in a controlled precision in the generation process. More
importantly, as RGB-D sensors are a very common choice
for robotic perception nowadays, with this approach the
sensor data can be directly used later on to perform online
collision checks.

At the beginning, a three dimensional binary tree is built
for the point cloud of the model or scene [5]. The tree is
built only once for a model, and on per frame basis for point
clouds directly coming from the sensor. The binary tree
helps to speed up radius queries (i.e. obtaining all points
within a given position and radius without the necessity
to check every point in the cloud). For a given robot
configuration we perform a radius check for each primitive
of the robotic chain to obtain the set of points possibly in
collision with the primitive. The remaining points do not
need to be checked at all. A point to primitive check is
performed on each point and its corresponding primitive
in vicinity. The squared distance from a sphere center or
from the central axis of a cylinder is compared to the model
parameters to detect possible collisions.

III. IMPLEMENTATION DETAILS

This section provides some details on the computational
implementation of the Reachability maps, and presents
the generation of a Capability map without requiring to
explicitly store it.

Let Wc ⊂ R6 be the set of all reachable poses by an
end-effector. Each pose within Wc can be described by a
homogeneous transformation matrix as follows

TCP (t, R) =


R1,1 R1,2 R1,3 tx
R2,1 R2,2 R2,3 ty
R3,1 R3,2 R3,3 tx
0 0 0 1

 (1)

By using the decoupled approach for discretizing the
space (Fig. 2), a set of unique mapping functions for each
bin can be defined. The first mapping function assigns an
index ic ∈ N for the ordering of the space of translations.

fc(tx, ty, tz)→ ic (2)

Control parameters for the function fc(tx, ty, tz) are
the voxel resolution r, the coordinates of the origin (the
lowest point the grid can contain), mx,my,mz , and the
grid dimensions Dx, Dy, Dz . The orientation of the grid
is assumed to be aligned with the robot base frame, and
we further assume that the point in question lies inside the
bounding box of the grid.

fc(tx, ty, tz) =

⌊
tx −mx

r

⌋
+

⌊
ty −my

r

⌋
× dz+⌊

tz −mz

r

⌋
× dy × dz

(3)

where bxc denotes the floor operator that rounds to the
highest integer value not larger than x. The mapping
function in Eq. (3) discretizes the robot workspace into
voxels. Each voxel has an associated discretization for the
set of orientations. The pitch and yaw angles are coupled
as an approach direction. The set of approach directions
can be pictured as a spherical surface being inscribed into
each voxel, where the spherical surface is divided by a grid
into segments of equal areas. Each combination of pitch
and yaw angle uniquely identifies a point on the spherical
surface, which is used to assign an index with the following
mapping function.

fa(α, β)→ ia (4)

Further details on the discretization of the spherical
surface, including the explicit expression for fa(α, β),
can be found in [6]. Note that the spherical segments
should ideally have equal areas, otherwise a non-desired
weighting would be imposed on the discretization. Each
cell of approach directions carries an additional grid that
discretizes the remaining roll angle and completes the
mapping of SE(3).

fr(γ)→ ir

fr(γ) =

⌊
γ

rr

⌋
(5)

where rr is the resolution of roll angle discretization.
Indices ic, ia, ir are directly used to address the memory
structure of Reachability maps.

A. Memory structure

The map is stored in the memory as blocks of binary
strings. We start by grouping all roll bins within one
approach direction. These groups are stored one after
another based on their index ia. A complete set of approach
directions corresponds to a voxel. Voxels are again stored
based on their index ic. The size of each voxel in the
memory is determined by dr × da bits, with dr be the
number of discretized roll directions and da the number
of approach directions. Figure 3 illustrates the hierarchy
and outline. The offset of n-th voxel in the memory is
vo = n× dr × da bits.

To guarantee higher accuracy, higher resolutions of the
maps are desired, which have a large memory footprint.

ir ~ dr=0

Approach direction =0

ir ~ dr=0

Approach direction =1

Voxel =0

Memory bitsIndices from TCP

it

ia

ia

ir ~ dr=0

Approach direction =0

ir ~ dr=0

Approach direction =1

Voxel =1it

ia

ia

Fig. 3: Dense memory organization based on mapping
indices ic, ia, ir.

The operating system might not allow the allocation of
one large continuous block of memory for the map (espe-
cially on 32-bit systems). For this reason, in the current
implementation the memory is fragmented into fixed size
blocks. These blocks are of arbitrary but constant size.
They are allocated separately, which decreases the chance
of allocation refusal by the operating system. To access a
particular voxel, first the voxel offset vo must be computed,
and then it is mapped into the two dimensional array
indices i1 and i2 as follows

i1 =
vo
bs

i2 = vo mod bs

(6)

where bs is the size of the blocks in bits.

B. Memory requirements
It is intuitive that a higher discretization resolution leads

to higher prediction accuracy. The undesired effect of
higher resolution is higher memory footprint. In particular,
the memory requirement grows with the third power while
increasing the voxel resolution. Table II shows the memory
requirements for the KUKA-DLR LBR map at different
resolution parameters.

TABLE II: Map memory requirements in MB

r=7.5cm r=5cm r=2.5cm r=1cm
da=50, dr=10 0.69 2.3 18 258
da=100, dr=20 2.9 9.7 73 1100
da=200, dr=30 8.6 30 219 3301

C. Capability maps and visualization
Simple visualization of the 6D information in the Reach-

ability map is not too meaningful. The Capability map, on
the other hand, provides richer information. Each voxel
is associated with its reachability index, described by the
following equation

Ri =

da×dr∑
a=1

Vi(a)

da × dr
× 100 (7)

where i is the index of i-th voxel and Vi(a) is a particular
binary reachability value stored in the map. Reachability
index essentially describes how many of the discretized
directions are reachable within each voxel, and quantifies
its dexterity. The index is later used to encode the color
for visualization. Using the voxel coordinates in space and
the associated color, the robot workspace with the dexterity
information can be visualized. For static applications, we
commonly use a cross section of the workspace, as shown
in Fig. 1. Thanks to the storage method of Reachability
map, there is no need for storing an extra capability
information. Using the common in-built CPU instruction
for population count, each voxel’s data is passed through
and thus the reachability index is obtained on the fly.

IV. APPLICATIONS

This section presents different applications of Reachabil-
ity and Capability maps in several applications within the
space domain, for ongoing projects developed at the DLR.

A. Deutsche Orbitale Servicing Mission (DEOS) Simulator

The DEOS Simulator, or DEOS-SIM, is a ground-based
facility that serves as a test bed and experimental validation
tool for on-orbit servicing scenarios. The system uses two
KUKA KR-120 arms with force-torque sensors mounted
at the end-effector. The readings of the sensors are used
to generate appropriate motions for both KR-120 robots
to simulate on-orbit conditions. In our case, two satellite
mock ups are mounted at the end of each robot. One model
represents a client (target) satellite, the other one represents
the servicer, which is equipped with a smaller manipulator,
a KUKA LBR. The goal of the servicer is to approach the
tumbling target and grasp it with the LBR. Further details
on the system can be found in [7].

The workspace of both kinematic chains, represented
with a Capability map, is shown in Fig. 4. For this partic-
ular application, special interest is posed on the common
workspace between the robots, as it is the useful area where
mission simulations can be performed. One challenge for
this implementation is the large workspace volume to be
stored in memory. Thanks to the memory structure above
described, we are able to store the workspace on a com-
modity workstation. The second challenge is the kinematic
complexity, as the simulator employs two systems - a 6
DOF chain for the target and a 13 DOF chain for the
servicer. We are able to obtain the reachability map within
12 hours of calculations using the FK based method at 2 cm
voxel resolution, discretizing 500 orientations (50 approach
directions and 10 roll angle ranges).

Let W1 be the workspace of the KR-120 and W2

be the workspace of the second KR-120 with LBR. We
want to determine the common workspace volume Wc,
with Wc = W1

⋂
W2. The cross-sections of the common

workspace Wc are shown in Fig. 5; the volume of Wc is
approximately 23.28m3. This number is a parameter of the
simulator and can change with a given mission scenario.
For example, if a precise grasping point on the target is
known, the transformation from the KR-120 TCP would

Fig. 4: Cross-sections of the capability maps for the ser-
vicer robot (left) and the client robot (right).

Fig. 5: Common workspace volume (cross-section) of the
DEOS-SIM, side-view (left) and top-view (right).

increase its workspace volume. If a CAD model of the
target is known, the collision detection would decrease
the common volume. It is also possible to restrict the
orientations of the servicer’s TCP and obtain a mission
specific common volume, along with the ideal volume in
the workspace where the mission could be executed.

B. DEOS mission with TerraSAR-X

The DEOS mission is designed to perform an au-
tonomous on-orbit robotic manipulation. The Capability
map is specially useful to address the grasping and ma-
nipulation part of the mission. In the planned scenario, the
servicer approaches the target on orbit. Once the relative
distance and poses of the two satellites allow a feasible
capture, the robot arm should reach out to the target,
grasp it and perform a docking maneuver. A predefined
structure dedicated for grasping is mounted on the target.
This capture process cannot be planned ahead, but rather
robust perception and planning algorithms have to run on-
board of the servicer.

The fact that there is no possibility for precise pre-
planning implies that the servicer has to be able to robustly
asses the feasibility of the planned motions. Due to the
constant relative motion of the two satellite bodies, the
planned motions are only valid within a certain small time
frame. The feasibility assessment has to be carried out in
a meaningful time frame for not loosing the window of
opportunity. In this application the maps are used to obtain
a set of feasible grasps on the target body, using either the
CAD model or sensor depth data. Note that not every grasp
is acceptable to perform the subsequent docking. There
can be kinematic restrictions of the robot or collisions
that would prevent the completion of the maneuver. After
selecting a grasp, we can evaluate whether it is possible to
perform the docking maneuver.

The effective Reachability map for the servicer system,
including collision detection with the satellite’s body, was

Fig. 6: DEOS workspace with TerraSAR-X in view, includ-
ing the grasping structure (in red).

Fig. 7: TerraSAR-X approaching DEOS. Surfaces high-
lighted in green are reachable in this part with the current
relative pose.

Fig. 8: Docking position of the two satellites. Surfaces
highlighted in red are not reachable by the robot.

generated off-line. The CAD model of the target is pre-
processed to discretize the model’s surface into point-
normal pairs. A point-normal pair is essentially a 5 DOF
pose (position and approach direction), while the sixth
parameter remains undefined. We formulate a query for the
map for each point-normal in the model. The 5 parameters
of position and approach direction are set, the remaining
degree of freedom is the roll of the TCP. We check all
the discretized roll bins for the given pair. The point is
reachable if at least one discretized roll bin is set as
reachable within the map. Such point-normal could be
used as a grasping frame if it is possible to maintain the

grasp during the complete path execution. This is achieved
by transforming the target model along a desired docking
trajectory. Those points that are reachable at all times
throughout the complete path can be considered as good
grasping points.

Figure 6 shows the DEOS satellite with a cross-section of
its workspace. The structure to be grasped is all highlighted
in red because no points on the surface are currently
reachable. As the two satellites get closer, as shown in
Fig. 7, some parts of the surfaces are reachable by the
robot (highlighted in green in the figure). The final docking
situation is presented in Fig. 8. Note that not all the points
on the surface are graspable in this situation, therefore it
is crucial to choose the right grasping point at the starting
configuration to avoid the need for re-grasping during the
maneuver. Given a model of an end-effector, valid grasping
points can be easily obtained on-line. A similar evaluation
of path and grasp validity was presented in [8] and [9].

C. Lightweight Rover Unit (LRU)

Fig. 9: DLR’s Lightweight Rover Unit - LRU.

The LRU1, shown in Fig. 9, is primarily designed to
explore Mars and the Earth’s Moon in a semi autonomous
way. To deal with the communication delays, LRU oper-
ates in a semi-autonomous mode where the operator only
provides way points or goals, and the system follows them
without the need of real-time teleoperation. This is possible
thanks to several state of the art technologies developed
at DLR, such as the space qualified drives and the stereo
matching algorithm SGM [10].

LRU’s design is currenlty being enhanced with a robotic
manipulator to increase its usefulness. Different arm sys-
tems were considered to be mounted on the rover: The
LBR2 by KUKA, P-Rob 1R3 arm by F&P Personal-
Robotics, and Jaco4 by Kinova robotics. Table III presents
the workspace volumes for different dexterity levels with-
out taking the rover into consideration. Full workspace is
the complete volume that the end-effector can cover. We
also compare the dexterous volumes which have at least
50% and 75% dexterity.

After choosing a sample mounting point, we recalculated
the workspace volumes considering the effects of collisions

1LRU - Lightweight Rover Unit, presented at ASTRA 2015.
2http://www.kuka-labs.com/en/service robotics/lightweight robotics/
3http://www.fp-robotics.com/en/prastandard/
4http://kinovarobotics.com/products/jaco-rehabilitation/

TABLE III: Workspace volumes [m3] at different dexteri-
ties - without taking the LRU body into account

Arm / Dexterity Full workspace ≥ 50 % ≥ 75 %
LBR 2.6673 1.8545 1.4518
F&P 1.5715 0.75254 0.2389
JACO 1.9505 1.8713 1.2746

TABLE IV: Workspace volumes [m3] at different dexteri-
ties with robots mounted on the front plate of LRU

Arm / Dexterity full workspace ≥ 50 % ≥ 75 %
LBR 2.4985 1.4979 0.93034
F&P 1.4047 0.5361 0.17357
JACO 1.752 1.5367 0.61783

with the rover body. Table IV presents the volumes of all
reachable space and volumes of at least 50% and at least
75% dexterities.

Considering all design parameters (including the added
weight on the rover), the Jaco arm was chosen. The next
step involves the definition of a proper mounting point.
The goal is to maximize the frontal reach of the robot,
maximize the effective workspace volume, and allow for
all predefined paths to be executed. As the rover can have
storage areas on top or on the sides of its body, those areas
need to be reachable when starting the motion at the frontal
part of the rover. We also want to maximize the volume of
the workspace where high dexterity is possible. The robot
can be mounted in the front or in the back of the rover body.
On both sides, an arbitrary tilt angle and a range of height
from the ground can be chosen. The allowed degrees of
freedom of the mounting point are discretized to calculate
the effective workspace for each option. These different
mounting angles are depicted in Fig. 10. Parameters such
as workspace volume, high dexterity volume (above 75%
reachability), and path feasibility around the storage areas
are extracted from each map and compared.

Fig. 10: Different mounting angles considered for a ma-
nipulator mounted on LRU.

Cross-sections of the workspace maps for different
mounting points are presented in Fig. 11. The collision
model for Jaco arm is visualized in its default position. We
can see how the dexterity changes on top of the robot body.
After close examination, we determined for instance that
the collisions with the pan-tilt head unit prevent the robot

(a) Robot mounted at 0◦ angle

(b) Robot mounted at 22.5◦ angle

(c) Robot mounted at 45◦ angle

(d) Robot mounted at 67.5◦ angle

(e) Robot mounted at 90◦ angle

Fig. 11: Cross-sections of workspaces corresponding to the
5 mounting angles with the robot arm in its default position.

to reach the top of the body under a perpendicular TCP
orientation. The maximum reach on a flat surface decreases
with higher tilt angles. An ideal compromise is to mount
the robot under approximately 50◦.

V. CONCLUSION

This paper presented the Reachability and Capability
maps as tools to describe the workspace of a robot and
to understand and quantify different aspects of the inner
structure of the workspaces. The algorithm consists of two
stages, an offline-generation and online-application. The
generation strategies and their tradeoffs were summarized.
We described a data structure for the second stage to
perform fast querying, thus allowing for application sce-
narios beyond pure workspace analysis. Three real life use
cases were presented to demonstrate the applicability of the
algorithm to analyze and compare the kinematic structures
of robots, to make informed design decisions about robot
mountings, and for online identification of good grasping
locations with respect to the predefined task. Reachability
and Capability maps are well suited for design, analysis
and online tasks in both Earth and Space robotics. Current
efforts are focused on increasing the prediction accuracy
and minimizing the memory footprint to be able to run the
maps with limited hardware resources.

REFERENCES

[1] F. Zacharias and C. Borst and G. Hirzinger, Capturing Robot
Workspace Structure: Representing Robot Capabilities, IEEE-RAS
Int. Conf. Intelligent Robots and Systems - IROS 2007, pp.3229-
3236.

[2] R. Diankov, Automated Construction of Robotic Manipulation Pro-
grams, CMU-RI-TR-10-29, Robotics Institute - Carnegie Mellon
University, 2010.

[3] N. Vahrenkamp, T. Asfour and R. Dillmann, Robot Placement based
on Reachability Inversion In IEEE Int. Conf. on Robotics and
Automation - ICRA 2013, pp.1970-1975.

[4] O. Porges, T. Stouraitis, Ch. Borst and M.A. Roa, Reachability
and Capability Analysis for Manipulation Tasks, ROBOT2013: First
Iberian Robotics Conference, Series: Advances in Intelligent Systems
and Computing, Vol.253, Ed. Springer, 2014, pp.703-718.

[5] M. Muja and D. Lowe, Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration, Int. Conf. on Computer Vision
Theory and Application - VISSAPP 2009, pp.331-340.

[6] P. Leopardi, A partition of the unit sphere into regions of equal area
and small diameter, Electronic Transactions on numerical analysis,
2006, Vol. 25, pp.309-327.

[7] J. Artigas, M. de Stefano, W. Rackl, B. Brunner, R. Lampariello,
W. Bertleff, R. Burger, O. Porges, C. Borst, A. Albu-Schaeffer,
The DEOS-SIM: An On-ground Simulation Facility For On-Orbit
Servicing Robotic Operations, IEEE Int. Conf. on Robotics and
Automation - ICRA 2015.

[8] F. Zacharias, Knowledge Representations for Planning Manipulation
Tasks, Springer, 2012.

[9] F. Zacharias and C. Borst and G. Hirzinger, Online Generation of
Reachable Grasps for Dexterous Manipulation Using a Representa-
tion of the Reachable Workspace, IEEE Int. Conf. Advanced Robotics
2009, pp.3229-3236.

[10] H. Hirschmueller, Accurate and Efficient Stereo Processing by Semi-
Global Matching and Mutual Information, IEEE Conf. on Computer
Vision and Pattern Recognition - CVPR 2005, pp.807-8014.

