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Real Time Adaptive Feedforward Guidance for
Entry Vehicles

Marco Sagliano, Thimo Oehlschligel, Stephan Theil, and Erwin Mooij

Abstract One of the most powerful analysis tools to deal with entry guidance prob-
lems is the possibility to formulate them as optimal control problems (OCPs). En-
vironmental constraints, actuator limits, and strict requirements on the final con-
ditions can be efficiently transcribed, resulting in a discrete, finite-dimension non-
linear programmming (NLP) problem. However, NLP problems require a compu-
tational power, which often exceeds the vehicle’s onboard capabilities. Moreover,
it is important to ensure that the nominal optimal solution can be adapted to the
actual flight conditions, which can significantly differ from the nominal scenario.
This paper proposes an approach based on multivariate interpolation to generate
entry guidance solutions. The real-time capability is ensured in virtue of the lower
CPU efforts required to execute the interpolation operation. The approach is here
proposed for initial-conditions variations, but can in principle be applied to every
mission parameter, which allows to find a corresponding optimal solution. Results
have been generated for SHEFEX-3, an entry demonstrator vehicle scheduled to be
launched in 2016.

1 Introduction

Since the beginning of the Apollo program, entry guidance has been widely treated
by engineers and researchers. The first, successful approach, used for several pro-
grams (Apollo, Space Transportation System, MSL, [9, 17, 18, 15]), was based on
the planning of an entry trajectory in the drag-velocity plane. The rationale for this
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choice resides in the fact that the typical environmental constraints (dynamic pres-
sure, heat flux and load factor), as well as the range-to-go, can be efficiently rep-
resented in the drag-velocity plane. The longitudinal guidance can then be derived
either assuming the equilibrium-glide approximation, or extracting the longitudinal
states (altitude, speed, flight-path angle) from the drag acceleration and its deriva-
tives. It is possible to demonstrate that similar, but more accurate results can be
obtained if the drag-velocity plane is replaced by the drag-energy plane [13, 16].

In either case, approximations, disturbances and modeling errors require the use of a
feedback controller to track the scheduled nominal drag profile. In addition, a bank-
reversal logic is usually implemented to keep the heading error within prescribed
limits, chosen to steer the vehicle towards the Terminal Area Energy Management
(TAEM) interface. In parallel to these approaches, the use of techniques based on
optimal control [5, 26] has achieved significant improvements. The increased CPU
capabilities, together with the development of dedicated algorithms [3], have led to
the possibility to transcribe the problem into a discrete, finite-dimension problem
(i.e., an NLP problem) which can be efficiently solved with one of the available
and well-known NLP solvers [7, 10, 27]. The drawback of this approach is that the
computed solution is optimal within the limits of the accuracy of the models, and
the deviation of the inflight conditions from the nominal ones used to compute it.
Even in the presence of tracking controllers, significant off-nominal conditions can
deteriorate the performance of the system, or in the worst case, threaten mission
success.

In this paper an approach based on multivariate pseudospectral interpolation for the
generation of feedforward guidance solutions is proposed. Significant steps in this
direction have already been performed. Saraf et al. [24] use interpolation schemes
applied to extremal drag-energy profiles for generating landing footprints for entry
missions. Lockner et. al [11, 12] developed a more extensive approach based on
tensor product splines [14], which perform excellent for the lunar landing problem.
Arslantas et al. [2] used a similar technique for reachibility-set computations.

In this work, the tensor product spline algorithm is integrated with pseudospectral
methods, to exploit the interesting properties that characterize them. The proposed
method leads to the possibility to have a near-optimal real-time trajectory synthesis
able to deal with multiple, significant off-nominal conditions. The real-time capa-
bilities of the method will be demonstrated by comparing the CPU time required to
compute the interpolated and the optimal solutions, generated by solving the relative
optimal control problems with the use of pseudospectral methods [20, 23]. Indeed,
it is possible to demonstrate that the generation of a full trajectory is reduced to a
dot product between the interpolated results and a constant matrix. This matrix is
computed during the database generation with no further cost from a computational
point of view. This approach gives the possibility to online adapt the entry guidance
solution in case significant entry condition variations are experienced. Moreover,
in case important modifications to the scenario are required (e.g., a different land-
ing site or different conditions at the entry interface) a complete, updated guidance
scheme can be easily synthesized, by performing a new computation of the database
with little or no modifications of the flight software.
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The work is organized as follows: In Sec. 2 an overview of the SHEFEX-3 mis-
sion is given. The mission requirements will provide the basis to formulate a related
optimal-control problem, which is presented in Sec. 3. In Sec. 4 the multivariate
interpolation method is briefly reported, and the proposed approach, in combination
with the adopted pseudospectral method, is described. A detailed description of the
trajectory-database generation is the subject of Sec. 5, while in Sec. 6 the simula-
tion campaign results are reported, and a time comparison between the interpolated
trajectories and the optimal trajectories is performed. Section 7, finally, concludes
this paper with a discussion of the results obtained.

2 Reference Mission Description - SHEFEX-3

The reference scenario is one of the proposed misson profiles for SHEFEX-3. SHE-
FEX (SHarp Edge Flying EXperiment) is a DLR-led series of missions for scien-
tific experiments and development of the European technologies for atmospheric
reentry. SHEFEX-2 [25] was successfully launched from Norway (Andgya Rocket
Range) in June 2012. To go on with the effort to increase the technological level
for real space missions, a new challenge arises in the next years with the develop-
ment of SHEFEX-3. SHEFEX-3, foreseen to be launched in 2016, will be more
complex than SHEFEX-2 in terms of the presence of a real guided re-entry phase,
while for SHEFEX-2 an autonomous guidance and control phase was only partially
foreseen. As a consequence, the mission will be more complex and ambitious, and
requires the guidance system to be able to manage significant off-nominal condi-
tions. Also in this case, the current launch site is Andgya, while the terminal area is
placed in Greenland. An alternative scenario with the terminal point in the Svalbard
Archipelago has already been proposed in [22]. The spacecraft will be launched with
arocket based on the Brazilian engines S50/S44. After the stages separation and the
coast phase, the unpowered descent phase follows. An overview of the SHEFEX-3
mission profile is depicted in Fig. 1.

Once an altitude of 100 km is reached, the nominal entry phase begins. The entry
interface is characterized by a steeper flight-path angle and a lower Mach num-
ber w.r.t. other entry missions, like the Space Shuttle reentry or the X-33 studies
[5, 13, 16]. The mission, from the point of view of the guidance system, terminates
at the TAEM, for this mission associated with a Mach number equal to = 2. This
requires good accuracy in terms of final altitude and final speed. At that moment a
parafoil is deployed for the final descent and landing. The nominal entry and ter-
minal conditions are reported in Table 1. The requirements in terms of dispersions
at the terminal-area interface are associated with an ellipse having a semiaxis equal
to 0.5 deg in terms of longitude and latitude, with the center placed in the nominal
terminal condition. Moreover, a fine and a coarse ellipse are defined to characterize
the accuracy of the results. These two ellipses have semiaxis equal to 0.25 deg and
1 deg respectively.
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Fig. 1 Shefex-3 Mission Profile.

Table 1 Nominal Entry and Terminal Conditions for SHEFEX-3 guided flight.

State Initial Value  Terminal Value
Geocentric Altitude h (km) 100.10 20+5
Geocentric Longitude 0 (deg) -11.60 —46.00
Geocentric Latitude ¢ (deg) 71.89 66
Velocity Modulus V (m/s) 4712.26 525450
Flight-path Angle y (deg) -10.31 free
Velocity Azimuth Angle y (deg) -85.92 free

3 Optimal Trajectory Generation

The first step is a proper formulation of the related optimal control problem (OCP).
The requirements of the mission include a minimization of the dispersion around
the terminal point, at the prescribed altitude and velocity to meet the parafoil con-
ditions. The solution to this OCP problem will provide the reference solution, that
is, the reference trajectory and the reference controls, which satisfy all our require-
ments. Constraints such as dynamic pressure, heat flux and load factor, are also
taken into account. The cost function will then be represented as the difference be-
tween the current and the desired final states. The gravity model is derived from the
WGS84 model as central field with only the J, term, as, after a specific analysis, it
was observed that the higher-order terms can be neglected for this particular mission
[22]. The atmosphere is modeled with the US76 model. The aerodynamics model
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has been derived by the DLR Aerodynamics Institute. To make the analysis more
realistic, the equations of motion take the Earth’s rotation into account as well. For
the controls, the angle of attack is scheduled as a function of time, and more specifi-
cally, it is modeled as two constant values connected by a linear transition at a fixed
time. The bank angle and the bank-angle rate limits are explicitly introduced in the
transcription process, while bank-angle accelerations have been verified a posteriori.
It is worth mentioning that in case bank-angle accelerations exceed the limits, they
can be introduced in the transcription as well, but for the current mission scenario it
was not necessary. Reference values for the controls are reported in Table 2.

Table 2 Flight Control System Constraints.

Controls Values / Ranges
Upper angle of attack oy (deg) 42
Lower angle of attack oy, (deg) 17.5
Begin of o manoeuver 74 7 (s) 58
End of o manoeuver ¢ 7, (S) 88
Bank angle o (deg) [-60, 60]
Angle of attack rate & (deg/s) [-5,5]
Bank angle rate & (deg/s) [-5, 5]

The objective of the optimal-control problem is to minimize the cost function J

T =we(0(tf) — O rer)* +wo (O(tr) — Of rer)? ()

so that the distance w.r.t. the final nominal longitude and latitude is minimized. The
weights wg and wy are in this case assumed equal to one. The solution has to satisfy
the following equations of motions [13, 18],
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where h and r are the altitude and the radial position, respectively, 8 and ¢ are the
longitude and the latitude, V is the velocity modulus, ¥ and y are the flight-path
angle and the velocity azimuth angle, the latter equal to zero when the vehicle flies
towards the local north. ¢ and u¢ are the bank angle and the bank-angle rate, respec-
tively. D and L are the drag and lift accelerations, while g is the gravity acceleration.
Finally, @ is the Earth’s rotation rate, equal to 7.2921 - 1075 rad/s.

Both the states and the controls are bounded, i.e.

0 km h 120 km
~180 0 180
—90 0 90
0ms (S v (S 7000 mss &)
45 y 30
~180 v 180

Three constraints are included in the transcription, that is, the dynamic pressure g,
the heat flux Q (computed by using the cold-wall model for laminar boundary layer),
and the load factor n,, which can be computed according to

S

S 4

q 2PV 4)

0 = kgy/pV> (5)
Lcosa+ Dsina

ny = | | ©)

80

where p is the air density, expressed in kg/m?, k4 is a constant depending on the
material and the geometry of the thermal protection system, and gg is equal to the
gravity acceleration at sea level. Maximum allowed values are 5 - 10* N/m?, 6.5 - 10°
W/m? and 10, respectively. With these definitions, the optimal control problem to
be solved is completely characterized. Further details about the implemented tran-
scription method and the verification of the solution can be found in [21]-[23].
Figures 2(a)-(d) show the nominal solution of the corresponding OCP. From the
analysis of Fig. 2(a), it is possible to see that the vehicle follows a skipped entry.
This is due to the limits of the controls, which cannot allow for a shallower entry
(i.e., no inverted flight of the vehicle is allowed). Indeed, the flight-path angle oscil-
lates between about -12 deg and 8 deg, and this is mainly a consequence of the initial
flight-path angle, and of the limits on the bank angle, which can assume values in
the range [—60,60] deg. Figure 2(b) shows the controls. In terms of planning of tra-
jectory, the angle of attack « is predefined. Specifically it has an upper value equal
to 42 deg, and a lower value, equal to 17.5 deg, with a linear transition between
the two. The saturation limits both on the bank angle and on the bank angular rate
are satisfied too. Figure 2(c) shows the constraints, that is, dynamic pressure, heat-
flux, and load factor. All these constraints are within the prescribed limits. Finally,
in Fig. 2(d), the nominal groundtrack is plotted, starting from the entry interface.
The nominal mission is over once the TAEM condition is achieved. As expected,
the terminal position in terms of longitude and latitude is achieved with a very good
approximation. The limits on the control rates are also respected.
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Fig. 2 Nominal solution for Entry Guidance of SHEFEX-3: (a) states, (b) controls, (c) constraints,
and (d) groundtrack.

4 Multivariate Interpolation Technique

The purpose of the multivariate interpolation technique is to merge several precom-
puted trajectories to have a solution corresponding to the actual inflight conditions.
These trajectories are associated to different values that a parameter or a series of pa-
rameters P, can assume. However, extensive trajectory databases can exceed mem-
ory limits available onboard. To overcome this problem, the multivariate interpo-
lation process has been integrated with pseudospectral methods to store onboard
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low-density (LD) discrete solutions. They are online converted into a more useful
high-density (HD) discrete solution, able to properly represent the trajectory. The
trajectory synthesis via multivariate interpolation can then be seen as a three-phase
process:

e Definition and discretization of the parameter space
e Generation of low-density discrete solution
e Generation of high-density discrete solution

In the following subsections, these aspects, representing the multivariate pseu-
dospectral interpolation technique, are described.

4.1 Definition and discretization of the parameter space

Assume a parameterization of the OCP defined in Sec. 3 via a set of d scalar pa-
rameters (i.e. initial conditions, physical parameters etc.) p',...,p¢. Each of the
parameters is defined on a compact subset of the real numbers I[; C R,i=1,...,d,
such that the cartesian product

d
RIDP. =[[Li=1 x--xIq, (7
i=1

=

defines the parameter space P.. In this context a solution of the OCP can be inter-
preted not only as a function of time but also as function of a d-dimensional pa-
rameter vector. In the following each one-dimensional domain of a single reference
parameter is discretized using a finite number of discrete points. Therefor let

P ={p,.ph} (®)

define a strictly monotonically increasing set for each i = 1,...,d. The Cartesian
product of the sets given by (8) defines a d-dimensional n; X --- X ng-rectangular
grid

d .
P=[]p'=p"x- xp’, )
i=1

which can be seen as a discretization of the parameter space P, defined by (7).

d
The set P consists of ng = [] n; elements and can equivalently be represented as a
i=1

combination of all the grid points p;,i= (i1,...,is), Where p; = (pill b ,pffi) eR,
such that
P= {Pi},-]’i'l ,Zi] . (10)

The parameters space is therefore completely defined.
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4.2 Generation of low-density discrete solution

As stated in the previous section, a solution of the OCP defined in Sec. 3 depends
not only on the specific choice of a parameter vector p € P, but also on time. Within
this work the computation of a solutions of an OCP is based on the solution of a cor-
responding NLP. The interpolation approach described in this section shows how to
compute a discrete point of an interpolated reference trajectory belonging to a given
discrete point in time, while the discretization of the time interval is assumed to
be given by the transcription method. In case of a transcription based on flipped
Radau pseudospectral (FRP) method the following interpolation algorithm has to
be applied to each of the collocation nodes defined by the roots of the FRP (these
polynomials are properly defined in Sec. 4.3.1). The set of all collocation nodes can
be seen as the domain of the low-density discrete solution.

The solution of the OCP corresponding to an element p = (py,...,ps) of P is de-
noted by f(z,p) = f(t,p1,-..,pq) while fr(p) denotes the solution of the corre-
sponding NLP at p € P, and a given discrete point in time.

The generation of a trajectory database corresponding to a given grid P includes the
offline computation of ng solutions f; = f (¢, p;) of the corresponding NLP.

For each trajectory (i.e. states and control inputs) and each point in time the resulting
data base consist of ng pairs

(pisfri) 2y = (B B K ), (11

where the grid points p; are called supporting points while the f;; are called sup-
porting values.

A tensor product spline s € Sy, (, & ... & Sk, , on a grid P at a grid point p € P is
in general defined by

mp mq
s(p) = Z Z CitonigBiy ko (P1) -+ - Biy kg (Pa)- (12)

=1 ig=1

In (12) B, x denotes the ith B-spline of order k for a given non-decreasing knot vector
t = (t;)™F. The coefficients

C = (Cipyng) it (13)

are computed, such that the resulting tensor product spline fulfills the interpolation
condition, that is

s(pi) fo‘i,ViE 1...n6. (14)

Since every B-spline in (12) depends only on a single variable, the d-variate inter-
polation problem can be divided into d univariate problems. Each univariate spline
interpolation is solved via the numerical stable and efficient algorithm of De Boor
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[6]. A detailed description of the generalization of the univariate spline interpolation
to the so-called tensor product spline approach can be found in [11, 14].
Depending on the choice of k and a suitable knot vector t, the tensor product spline
interpolation in (12) corresponds to an interpolation method such as piecewise con-
stant, piecewise linear or piecewise cubic hermite interpolation. In general, the ten-
sor product spline interpolation allows the usage of different interpolation methods
for each of the d dimensions.

Within this work the grid P consists of two supporting points for each direction,
such thatn; =2,i=1,...,d and

P={p%,p5}><~-><{p‘f,p§}- (15)

The choice of the order of the splines k; = 2,i = 1,...,d and the corresponding
choice of the knot vectors

t= (1), = (Phplphph),  i=1...d (16)

defines a piecewise linear interpolation in each direction on the given d-dimensional
grid.

For C = F; the piecewise linear interpolation method fulfills the interpolation con-
dition given by (14) and there is no additional computational effort required to de-
termine the coefficients C.

With these simplifications, the evaluation of the tensor product spline interpolation
at a given point of the parameter space p € P, is described by the pseudo code
according to Algorithm 1. Algorithm 1 requires the knowledge of the interpolat-

Tensor Product Spline Interpolation

Data: Given: knot vector t, coefficients C, spline s € Sz ¢, @ ... &@ Sz ¢, , evaluation point
peP.

Ao = C‘,
fori=1:d

A; = EvalUnivSpline(t;, A;_1, p);

Ai = A;;
end
s(p) =Ag:
Result: interpolated values s(p)

Algorithm 1: Tensor Product Spline Interpolation

ing spline s € Sy ¢, Q... @Sy ¢, Details about the computation of the interpolating
spline can be found in [11].

The EvalUnivSpline(t, ¢, p) function in Algorithm 1 denotes the evaluation of a uni-
variate spline with coefficients ¢ at a point p while the operator (-)’ performs a cyclic
rotation, such that A € R™ "2/ = A’ € R"2:d:M1

An interpolation based on Algorithm 1 allows to generate reference trajectories for
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the states and the control inputs of the assumed system for each element of the
parameter space p € P.. It is important to emphasize that interpolated reference tra-
jectories in general are not formally solutions of the equations of motion that are
used within the underlying OCP. However, they represent, a good real-time capable
approximation of the optimal solutions without the computational burden needed to
generate them.

4.3 Generation of high-density discrete solution

The previous algorithm provides the interpolated values in a small number of nodes,
having the so-called low-density discrete solution. The objective of this section is
to convert the LD discrete solution into a HD discrete solution, able to represent the
trajectory with no need to store big amount of data onboard. Legendre polynomials
can be used for this purpose.

4.3.1 Flipped Legendre-Radau polynomials
Legendre polynomials belong to the class of more general Jacobi polynomials, and
are defined as follows.

1 an
T 2npl dth

Lu(7) [(z2—1)"] (17)
These polynomials are defined over the real axis R. They represent a family of or-
thogonal polynomials over the interval [—1, 1] € R. It is possible to demonstrate that
the family of polynomials R,(7) defined as a combination of the Legendre polyno-
mials of order n and n — 1

R, (t) =Ly(t) — Ly—1(7) (18)

is orthogonal too, in the domain (—1,1]. The polynomial defined in (18) is called
flipped Radau polynomial (FRP), (or alternatively flipped Gauss-Radau polynomial)
and is the fundamental entity for the formulation of the flipped Radau pseudospec-
tral method.

For a given order, it is possible to extract the roots of the associated flipped Radau
polynomial. This set of collocation nodes can then be used to approximate poly-
nomial approximations of the original continuous functions. Given a function F (1)
sampled in N + 1 points, it is possible to build this approximating function as

N
F(z)2 Y FR () (19)
i=0

where the terms P;(7) are defined as
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N o1
R(t)= [1 (20)
k=0 T
k+#i

The following properties, together with the ease of implementation, justify the
choice of using the pseudospectral methods for the characterization of the discrete
domain.

Spectral convergence in the case of a smooth problem.

Straightforward implementation.

Sparse structure of the associated NLP problem.

Mapping between the costates of the NLP discrete solution and the costates of the
optimal continuous solution in virtue of the Pseudospectral Covector Mapping
Theorem [8].

e Removal of the Runge phenomenon.

The removal of the Runge phenomenon! has an important implication: since all
the polynomials generated using the FRP nodes do not have undesired oscillations,
the interpolated solutions computed in these points will be smooth as well, with no
need to evaluate splines. This approach significantly reduces the onboard memory
requirements, as well as the onboard CPU burden.

4.3.2 Computation of Pseudospectral-based high-density discrete solutions

Let us suppose to have computed the values representing the LD discrete solutions
in the Nrp + 1 FRP nodes (that is, the Ny p FRP nodes plus the node at -1. The
solution is formed by the time vector typ, the states Xy p, and by the controls Uy p.
The matrices X;p and Uzp have dimensions ng X (Np + 1) and n. x (Nyp + 1),
respectively, where n; and n, are the number of states and controls associated with
the problem under analysis. We can group the states and the controls in a matrix
T;p, having dimensions (ny+n.) X (Npp + 1).

X | _ [ X0, X155 X
T = {ULD} B {UOaUla-“aUNLD @1

Our objective is to efficiently convert the matrix Ty p into a matrix Tup representing
the HD discrete solution,

T _ XHD _ XOailv-“aiNHD
THD - { O } - {ﬁOaﬁla"'aﬁNHD (22)

where Ngp + 1 is the number of points representing the HD discrete solution. More-
over, the HD time vector 7zp must be computed. If we combine equations (19) and

! Runge phenomenon is a problem of oscillation at the edges of an interval that occurs when
interpolating with polynomials of high degree over a set of equispaced interpolation points [19].
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(20), we can write

Np  Nip T— T
F@=YF [] —— tel-11] (23)
i=0 k=0 " k
k#i

F; represents a low-density variable. It can be replaced with the p'* row of Typ.
Moreover, the continuous variable 7 € [—1, 1] can be sampled in the Nyp + 1 high-
density discrete nodes. The result will be the high-density representation of our
variables

N N =
~ . Tn — T
o) =Y. 1 T1 7;’_1", p=1,..(ng+n.), m=0,...(Nup)  (24)
i=0 k=0 1k
k#i

The relationship (24) can be extended to all the rows of the matrix Tup, and rewrit-
ten in matrix form as

Tup =Tip - Prre (25)
where the matrix Prgp has dimensions (Nyp + 1) x (Ngp + 1), and is given by

N, -1 N, Ny~ Tk
H LD 0 k I‘I LD HD

k=1 T—% k=1 T %

Prrp = - (26)
HNLD71 ‘f()f’fk HNLl)fl TNHD_Tk
k=0 Wp—% k=0 Wy

The vector 7 is the high-density discrete pseudotime vector defined between -1 and
1. Since both the nodes T where the solutions are computed, and the nodes 7 where
the solutions are effectively evaluated, are part of the process of the database gener-
ation (as they are part of the transcription), the matrix Prrp can be computed offline
and stored, with a significant saving in CPU time, and the trajectory synthesis is re-
duced to a multivariate linear interpolation process and to the matrix multiplication
defined in the equation (25). To complete the generation of the HD solution, we still
need the HD discrete physical time vector associated to the interpolated solution. It
can be computed by using the following expression.

- Fr—1o .. fr+1o
tm:fz TmJFfz )

m:O,...,NHD (27)

The initial time 7y is given by the initial time #y. The final time 7y is computed
by applying the multivariate interpolation approach described in Sec. 4 to the final
times stored in the trajectory database. The trajectory representing the feedforward
guidance solution is completely generated with the application of the algorithm 1
and the equations (25) and (27).
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5 Generation of Trajectories Database

Once the mathematical tools needed for the online trajectory generation have been
described, we can apply them to a trajectory database. Therefore, the following
problem is the trajectory-database generation. For a complex mission such as the at-
mospheric entry, the inflight conditions can be significantly different w.r.t. the nomi-
nal ones, and this aspect directly affects the database size. Therefore, the reference
parameters which could vary need to be identified. The driving idea is to perform
a mapping of the range we are interested into cover, and to generate a database of
trajectories, which fullfill the requirements defined in Sec. 2 for the entire region
of interest. This information will be then processed online and used to adapt the
feedforward guidance to the current situation as described in Sec. 4. To realize this
scheme, we can identify the following steps.

e Identification of region of interest
e Trajectories computation

5.1 Identification of Region of Interest

The first step is the identification of a region of interest which covers, with a rea-
sonable probability, the inflight conditions at the entry interface of SHEFEX-3. Let
us characterize the uncertainty on the initial states from a purely geometrical point
of view. Indeed, a 1-D region of interest X can be represented as a straight line con-
necting two nodes representing the extreme values that this particular variable can
assume (Fig. 3(a)). The extension of this region to two dimensions X,Y is geomet-
rically represented by a rectangle (or in an easier way, by a square if the variables
are properly normalized), where the vertices are the 22 possible combinations of ex-
treme values that the variables X and Y can assume (Fig. 3(b)). In three dimensions
X,Y,Z, we will have a cube, whose vertices represent the 23 possible combinations
of values (Fig. 3(c)). Since the initial state of the vehicle at the entry interface is
represented by the three components of position and the three components of speed,
we will have a six-dimensional region of interest, which can be different from their
corresponding nominal values.

(28)

We can describe this multidmensional uncertainty as a hexeract (Fig. 3(d)), which
is a member of the hypercubes family, characterized by having dimension equal to
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X,Yu Xu,Yu

Fig. 3 Geometrical Representation of Regions of Interest: (a) 1-D, (b) 2-D, (c) 3-D, (d) 6-D.

six. The hypervertices of the hexeract will represent the 2° possible extreme initial
conditions used to solve the optimal-control problems, and the corresponding opti-
mal trajectories represent our database. The multivariate interpolation approach will
be able to combine them and provide a solution for any condition enclosed in the
hypervolume € R of the hexeract. The nominal conditions for SHEFEX-3 will rep-
resent then the hypercenter of our hexeract. To validate the method, the following
region of interest around the nominal initial state has been selected.

Oh € [-250,4250] m
660 € [—0.2,40.2] deg
0¢ € [—0.2,40.2] deg
8V € [~50,+50] m/s
§ye[-0.2,40.2) deg
Sy € [-0.2,+0.2] deg

(29)

It is worth to say that the database can be further extended by synthesizing more
hexeracts. Since two hexeracts will have a tesseract (i.e., a 5-D hypercube) in com-
mon, that is 23 trajectories, each additional hexeract will imply the computation of
23 more trajectories.

5.2 Trajectories Computation

All trajectories have been generated with SPARTAN (SHEFEX-3 PseudoSpectral
Algorithm for Reentry Trajectory ANalysis), a tool developed at DLR based on the
flipped Radau pseudospectral method, that exploits the Jacobian structure of the
NLP [23], and uses linear and nonlinear automatic scaling methods [21]. It has al-
ready been used for computing SHEFEX-3 alternative scenarios [22], and for lunar
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landing reachability analysis [1, 2]. Each of the computed 2° trajectories has been
formulated according to the description reported in Sec. 2, except for different ini-
tial conditions. Plots representing the states, the controls, the constraints, and the
groundtracks obtained are shown in Fig. 4 (a)-(d). The states and the controls re-
ported in 4(a) and 4(b) show that the obtained envelope satisfies the requirements.
The constraints in Fig. 4(c) are also within the prescribed boundaries, and their evo-
lution is a direct consequence of the skip entry. The groundtracks reported in Fig.
4(d), show that all trajectories end in the proximity of the final reference longitude
and latitude. Small deviations were observed for a few trajectories because of the
different initial conditions, but still within the allowed footprint limits.
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Fig. 4 Trajectories Database: (a) States, (b) Controls, (c) Constraints, (d) Trajectories.
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6 Numerical Results

6.1 Simulation Campaign

For the validation of the proposed method, a MonteCarlo campaign of 500 cases has
been simulated. For each case, random dispersions within the limits of the database
extension have been generated. The feedforward solution is generated according
to the initial conditions by using the proposed multivariate pseudospectral interpo-
lation approach. A tracking controller based on [28] has been added to the guid-
ance scheme. Results are compared w.r.t. the tracking of the nominal reference so-
lution. The results are reported in the Fig. 5-7. The multivariate approach generates
meaningful trajectories, as it can be seen in the Fig. 5(a), (b). The dispersion er-
ror is reduced on all the longitudinal states. All the control limits are satisfied, and
the feedforward guidance has the effect to reduce the control variations (Fig. 6(a),
(b)). A further advantage is that, with the introduction of the feedforward adap-
tive guidance, the number of cases where the reversals are needed significantly de-
creases. The consequence is a further improvement of the longitudinal guidance
performances, which are deteriorated by the bank reversals. In terms of constraints
(Fig. 8) the maximum values are consistent with the ones associated to the nominal
scenario. Moreover, the peaks which are reduced by using the feedforward-feedback
approach w.r.t. the corresponding cases which use the sole feedback controller ap-
plied to the nominal trajectory. Figures 7(a), (b) show a significant improvement
for what regards the dispersion errors (i.e., in terms of latitude and longitude). The
online adaptation of the trajectory brings therefore a reduction of the dispersion
area, and in general, an improvement of the performances. Specifically, the dis-
persion area is reduced by about 76%. This information is summarized in Table
3 as well, which reports how the terminal positions obtained with the two meth-
ods are distributed in the three dispersion ellipses previously defined. The number
of cases which fall into the finest ellipse substantially increases when the adaptive
feedforward scheme is used. About 76% of the cases satisfies the stricter require-
ments against 15% of the cases associated to the tracking of the nominal trajectory
with the feedback controller. Moreover, when the feedforward-feedback controller
is used, no cases which fall outside the coarse ellipse are observed, while with the
feedback controller 1.8% of the cases do not satisfy the dispersion requirements in
terms of longitude and latitude.

Table 3 Dispersion Analysis
Ellipse / Controller |[0.25 x 0.25]{[0.5 x 0.5]{[1 x 1]|Outside
FeedForward-FeedBack 382 105 13 0
FeedBack 75 221 195 9
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Fig. 7 Multivariate interpolated trajectory vs Nominal tracked trajectory: (a) Trajectories, (b) Foot-
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6.2 Real-Time capability: CPU time comparison

To give an idea about the real-time capability of the proposed approach, the ratio
between the required CPU time for synthesizing optimal trajectories and interpo-
lated trajectories for the first 100 cases is reported in Fig. 9. It is possible to see
that the interpolation technique is faster than the optimal trajectory generation with
a factor varying between about 69 and 619. The mean CPU time ratio is about 195.
Therefore, the CPU time required to compute onboard a valid solution is strongly
reduced. In absolute terms, the mean time required to generate an optimal trajectory

is 28.32 sec, while only 0.147 sec are required to compute the interpolated trajec-

tory2 .

CPU times Ratio (optimal / interpolated solutions)
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*  Single Ratio
----- Mean Ratio
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500
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i
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Fig. 9 CPU time analysis: Ratio between time required to compute an optimal trajectory and the
time required to compute the corresponding trajectory via multivariate interpolation.

7 Conclusions

In this work the multivariate interpolation approach has been coupled with pseu-
dospectral methods to generate nearly-optimal real-time feedforward guidance so-
Iutions for entry scenarios. Taking advantage from the pseudospectral transcription,

2 All the simulations have been performed with a laptop having an i7M640 CPU with a clock
frequency of 2.80 GHz and 4 GB of RAM.



Real Time Adaptive Feedforward Guidance for Entry Vehicles 23

the synthesis can be efficiently performed by processing information stored in a
“hexeract” of trajectories. Specifically, it has been shown that the synthesis can be
efficiently represented as a dot product between a low-density interpolated solution
and a pre-computed matrix. The MonteCarlo campaign has demonstrated the feasi-
bility of this approach, having as further advantage a significant improvement in the
guidance performances, analyzed both for the constraints peaks and the dispersion
in terms of final longitude and latitude. A comparison of the times required to syn-
thesize a solution with optimal control, and to compute it by using the multivariate
pseudospectral interpolation scheme has confirmed that the method is suitable for
real-time applications, since the CPU times is reduced by a factor between 69 and
695. The proposed algorithm can thus be considered as an efficient method for real
missions, where the CPU power and the real-time capabilities of the onboard system
are key factors for the selection of the guidance solutions.

References

1. Y. E. Arslantas, T. Oehlschlidgel, M. Sagliano, S. Theil, C. Braxmaier: Safe Landing Area
Determination for a Moon Lander by Reachability Analysis. 17-th International Conference
and Control (HSSC) Berlin, Germany, (2014)
2. Y. E. Arslantas, T. Oehlschldgel, M. Sagliano, S. Theil, C. Braxmaier: Approximation of
Attainable Landing Area of a Moon Lander by Reachability Analysis. International Astro-
nautical Conference. IAC-14-C.1.7.2, Toronto, Canada, (2014)
3. J. T. Betts: Practical Methods for Optimal Control and Estimation Using Nonlinear Program-
ming, 2nd ed., SIAM, Philadelphia, (2010)
4. 1. Bogner: Description of Apollo Entry Guidance. NASA Technical Memorandum CR-
110924 (1966)
5. K. P. Bollino: High-Fidelity Real-Time Trajectory Optimization for Reusable Launch Vehi-
cles. Ph.D. Dissertation, Mechanical and Astronautical Engineering Dept., Naval PostGradu-
ate School., (2006)
. C. De Boor: A Practical Guide to Splines. Springer, New York (2001)
7. P. E. Gill, W. Murray, M. A. Saunders: User’s Guide for SNOPT Version 7: Software for
Large-Scale Nonlinear Programming, Software User Manual. Department of Mathematics,
University of California, San Diego, CA, (2008)
8. Q. Gong, I. M. Ross, W. Kang, F. Fahroo: Connections Between The Covector Mapping
Theorem and Convergence of Pseudospectral Methods for Optimal Control. Comput Optim
Appl, (2008), doi: 10.1007/s10589-007-9102-4
9. J., C. Harpold, C. A. Graves Jr.: Shuttle Entry Guidance. Journal of the Astronautical Sci-
ences, Vol.27 No. 3, (1979)
10. M. Knauer, C. Biiskens C: From WORHP to TransWORHP. 5th International Conference on
Astrodynamics Tools and Techniques, Noordwijk (2012)

11. E. Lockner: Echtzeitfihige Trajektorien-Synthese mittels multivariater Interpolationsver-
fahren am Beispiel eines Mondlandemanovers. Diploma thesis, University of Bremen (2011)

12. E. Lockner, T. Oehlschlédgel, S. Theil, M. Knauer, J. Tietjen, C. Biiskens C: Real-Time capable
trajectory synthesis via multivariate interpolation methods for a moon landing manoeuvre.
CEAS Space Journal, DOI 10.1007/s12567-014-0063-z, (2014)

13. P.Lu, J. M. Hanson: Entry Guidance for the X-33 Vehicle. Journal of Spacecraft and Rockets,
Vol.35 No. 3, (1998)

14. T. Lyche, K. Morken: Spline Methods. Department of Informatics, University of Oslo.
http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340 (2011)

(=)}



24

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Marco Sagliano, Thimo Oehlschligel, Stephan Theil, and Erwin Mooij

. K. D. Mease, J.P. Kremer: Shutte Entry Guidance Revisited Using Nonlinear Geometric

Methods. Journal of Guidance, Control and Dynamics, Vol.17 No. 6 (1994)

K. D. Mease, D. T. Chen, P. Teufel, H. Schoneberger: Reduced-Order Entry Trajectory Plan-
ning for Acceleration Guidance. Journal of Guidance, Control and Dynamics, Vol.25 No. 2,
(2002)

E. Mooij: Robustness Analysis of an Adaptive Re-entry Guidance System, AIAA Guid-
ance, Navigation, and Control Conference and Exhibit, AIAA 2005-6146, San Francisco,
CA (2005)

E. Mooij: Characteristics Motion of Re-entry Vehicles, AIAA Atmospheric Flight Mechanics
(AFM) Conference, AIAA 2013-4603, Boston, MA (2005), doi:10-2514/6.2013-4603

C. Runge: Uber empirische Funktionen und die Interpolation zwischen #dquidistanten Ordi-
naten. Zeitschrift fii Mathematik und Physik Vol. 46, 224-243 (1901)

I. M. Ross, P. Sekhavat, A. Fleming, Q. Gong: Optimal Feedback Control: Foundations, Ex-
amples, and Experimental Results for a New Approach. Journal of Guidance, Control and
Dynamics, Vol.31 No. 2 (2008)

M. Sagliano: Performance analysis of linear and nonlinear techniques for automatic scaling
of discretized control problems. Operations Research Letters, Volume 42, Issue 3, (2014),
doi: 10.1016/j.0r1.2014.03.003

M. Sagliano, M. Samaan, S. Theil, E. Mooij: SHEFEX-3 Optimal Feedback Entry Guidance.
AIAA SPACE 2014 Conference and Exposition. AIAA 2014-4208, San Diego, CA, (2014),
doi:10.2514/6.2014-4208

M. Sagliano, S. Theil: Hybrid Jacobian Computation for Fast Optimal Trajectories Gen-
eration. AIAA Guidance, Navigation, and Control (GNC) Conference. AIAA 2013-4554,
Boston, MA, (2013), doi:10.2514/6.2013-4554

A. Saraf, J.A. Levitt, K.D. Mease, M. Ferch: Landing footprint computation for entry ve-
hicles. AIAA Guidance, Navigation and Control Conference and Exhibit, Providence, RI,
(2004)

S. R. Steffes: Development and Analysis of SHEFEX-2 Hybrid Navigation System Experi-
ment. Fachbereich Produktionstechnik, Universitidt Bremen, Bremen, (2012)

B. Singh, R. Bhattacharya: Optimal Guidance of Hypersonic Vehicles Using B-Splines and
Galerkin Projection. AIAA Guidance, Navigation, and Control (GNC) Conference. AIAA
2008-7263, Honolulu, HA, (2008)

A. Wichter, L.T. Biegler, On the implementation of an interior-point filter linesearch algo-
rithm for large-scale nonlinear programming, Math. Program. 106(1) Springer-Verlag, New
York (2006)

M. Sagliano, S. Theil, E. Mooij: Robust Nonlinear Tracking Controller for Hypersonic Entry
Vehicles. To be submitted (2015)





