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Abstract— It has recently been shown that intrinsically elastic
robots are capable of outperforming rigid robots in terms
of peak velocity by making systematic use of energy storage
and release. Certainly, high link side velocities are beneficial
for performance, however, they also increase the probability
of self damage or human injury in case of a collision. To
ensure the physical integrity of both human and robot, it is
therefore crucial to avoid potentially dangerous collisions and
react in a compliant manner if unwanted contact has occurred
or may occur unforeseeable. In this paper, we consider the
most intuitive collision anticipation and pre-reaction scheme,
namely stopping an elastic robot, if possible in minimum
time. For 1-DOF elastic joints with limited elastic deflection
we extend existing model-based and model-free controllers
and compare their performance. Furthermore, we analyze the
braking trajectory that is achieved with the different stra tegies.
The 1-DOF solution is extended to the double pendulum case,
where we show that feasible estimates for maximum and final
position can be obtained at the very first instant of braking.

I. I NTRODUCTION

Many of today’s robots are being developed for close
interaction with humans in either industrial or domestic envi-
ronments. One key issue in physical human-robot interaction
(pHRI) is safety, because it is primary to ensure that a human
is not harmed in any situation. For this, a robot must be
designed and controlled such that no potentially dangerous
collision occurs. In particular, one is interested in minimizing
harm already prior to the collision.

In robotics, there exist many pre-collision strategies to
generally avoid contact with the environment [1], [2], [3]
or to limit the robot speed to a biomechanically safe value
such that human injury can be avoided upon contact [4]. In
the context of safe motion control, one important problem
is to stop a robot as fast as possible. For rigid robots with
stiff position control, there exist standardized schemes for
braking according to DIN EN 60204, e.g. engaging the
brakes and switching off the drives at the same time (category
0) or commanding a stopping trajectory using the maximum
available power (category 1). Such strategies might also be
employed for torque controlled rather rigid designs such as
the LWR family, which show compliance via active control.

More recently, it has become increasingly popular to intro-
duce intrinsic elasticity for achieving compliance already in
the mechanical structure [5], [6], [7]. Another motivationfor
introducing deliberate joint elasticity is to exploit the energy
storage and release capabilities to outperform rigid robots by
means of energy efficiency and peak velocity [8], [9], [10].
Considering safety, however, the benefit of joint elasticity
on collision safety has to be treated differentiated. Elasticity
may improve compliance on the one hand, but high link side
velocities increase human injury probability during contact
on the other hand [11], [12]. The problem of reducing injury
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Fig. 1. 1-DOF elastic joint

risk already before a collision occurs is therefore also an
important problem for this class of robots.

In this paper, we consider the most basic pre-collision
scheme for elastic robots, namely effective braking. In opti-
mal control literature, there exists the time-optimal solution
for braking of linear visco-elastic joints [13]. In [14] this
problem was extended by taking also limited elastic deflec-
tion into account. It was shown that the SISO control law
can be applied to multi-DOF robots by using a decoupling
based control scheme. An alternative method was presented
in [15], which makes use of the energy storage and release
properties of elastic joints to develop a passive, model-free
braking scheme. The aim of the present work is to extend
and compare existing model-based with model-free braking
strategies for 1-DOF elastic joints. Furthermore, we analyze
the braking trajectory for the respective controllers to predict
the braking distance of an elastic robot. A double pendulum
is finally used to exemplify the application of braking control
and braking distance estimation ton-DOF robots.

This paper is organized as follows. In Sec. II we introduce
the elastic joint model considered in this work. In Sec. III
we formally define the considered control problem, describe
existing braking controllers and propose modifications for
improving their performance. The case of limited elastic de-
flection as well as the applicability to nonlinear joints andfull
n-DOF robots are discussed. Braking distance estimation for
1-DOF elastic joints and the extension to a double pendulum
are considered in Sec. IV. Finally, Sec. V concludes the
paper.

II. CONSIDERED MODEL

The dynamics of a single visco-elastic robot joint consist-
ing of motor, elastic transmission, and link (see Fig. 1) are
governed by following differential equations

Bθ̈ = τm − τf − τJ (1)

Mq̈ = τg − τJ (2)
τJ = KJ(θ − q), (3)

where the motor inertia and position are denotedB andθ, the
constant joint stiffnessKJ , and the link inertia and position
M and q. The motor and motor friction torque areτm and
τf , the elastic joint torque isτJ . For the principle analysis
we consider in this paper, we make following assumptions.
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First, we assume that gravity torques are being compensated.
Furthermore, we assumeτf ≈ 0 for sake of clarity.

As the intention of this paper is to unveil basic principles
of intrinsically elastic joints, we take the most importantreal-
world constraints of such devices into account, namely the
maximum motor velocity and elastic deflection

|ϕ| = |θ − q| ≤ ϕmax (4)

|θ̇| ≤ θ̇max. (5)

Typically, the motor dynamics of intrinsically elastic joints
are significantly faster than the link side dynamics. In this
work, we thus model the motors as velocity sources, meaning
desired velocities complying with (5) can be reached instan-
taneously under all operating conditions. The validity of this
singular perturbation approach was already experimentally
shown in [8], [15]. The reduced dynamics can now be
expressed as

θ =

∫

θ̇ dt+ θ0 (6)

q̈ = ω2(θ − q), (7)

where θ0 is the initial motor position,ω =
√

KJ/M the
mass-spring eigenfrequency, andTp = 2π/ω the periodic
time. We select the motor velocity as the control inputu :=
θ̇, and the elastic deflection and link velocity as the system
statex := [q̇ ϕ]T . Now, the first order differential equations
are found to be

ẋ = Ax+Bu =

(

0 ω2

−1 0

)

x+

(

0
1

)

u. (8)

For the examples shown in this paper, we select the system
parametersM = 1.8 kg,KJ = 207 Nm/rad,umax = 2 rad/s,
andϕmax = 0.1 rad if boundary control is considered.

III. 1-DOF BRAKING CONTROLLERS

In this section, we discuss five different methods to brake
an elastic joint. Two of them take advantage of the full joint
dynamics, while the other three assume unknown system
parameters. First, we provide a formal definition of the
problem. Then, we analyze the energetic behavior of the
elastic joint and how the equilibrium can be reached. This
influences the design of each controller described hereafter.

A. Problem formulation

Essentially, we seek to stop the elastic joint as fast as
possible, i.e. reach the equilibrium[0 0]T without violating
(4) and (5). Note that we are explicitly interested in extracting
energy from the system and not in stopping at a desired goal
state. The initial and final conditions for this problem are

q̇(0) = q̇0, q̇(tf ) = 0 (9)
ϕ(0) = ϕ0, ϕ(tf ) = 0, (10)

where tf is the final time andx0 := [q̇0 ϕ0]
T the initial

state. In order to meet the constraints while braking, this
state must be located within a brakable setB. In [14], this
set was determined for time-optimal braking. The respective
analysis may be used to find the brakable set also for the
other controllers described in this work. However, this is goes
beyond the scope of the present paper. Here, we assume that
the mass-spring system is always brakable, i.e.x0 ∈ B.
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Fig. 2. System behavior if control law (14) is used. The statetravels
clockwise on the blue ellipses if the minimum motor speed is applied and
on the red ellipses if the maximum velocity is applied.

B. Remark: Reaching equilibrium

The overall system energy of the considered elastic joint
is

V = U + T =
1

2
KJϕ

2 +
1

2
Mq̇2, (11)

whereU is the spring potential energy andT the link kinetic
energy. The change of energy is simply found to be

V̇ = KJ ϕu. (12)

A very intuitive energy dissipating idea would thus be to
choose the control law

u = −Kc ϕ (13)

based on (12), whereKc is the controller gain. We seek
for maximum controller performance, i.e. the motor travels
at maximum/minimum velocity1. The control law (13) then
becomes

u = −sign(ϕ)umax. (14)

This control law reduces the system energy locally. However,
the trajectory may not converge to the equilibrium, but
remains at a point on the line segmentq̇ ∈ [−umax, umax],
ϕ = 0. This is because the ellipses centered around±umax

meet on this line segment with opposite direction of travel,
see Fig. 2 Becauseϕ = 0, no elastic torque is available
to brake the link to zero velocity. In this situation, one may
switch to a different controller to reach the equilibrium. This
can be e.g. one of the other controllers described in this work.
For reaching the equilibrium directly, it can be observed from
Fig. 2 that the system state must travel on the curve denoted
S.

Next, the first model-based controller is described. For
clarity of presentation, we first consider the unbounded case,
meaning the state constraint (4) is not active. Boundary
control is considered after describing every model-based and
model-free controller.

C. Time-optimal control

The time-optimal solution for braking an elastic joint with
dynamics (7) is a standard problem in optimal control theory
[13]. The switching curveS can be obtained when starting
at the equilibrium and applyingu = ±umax for one half
periodic timeT/2 = π/ω, resulting in one half ellipse, see
Fig. 3 (upper left). The adjacent half ellipses are defined
by starting a new half ellipse from every point of the first

1Please note that this choice does not alter the principle behavior of any
controller described in this paper.



−8 −6 −4 −2 0 2 4 6 8

−0.2

−0.1

0

0.1

0.2

0.3

0.4

umax−umax

u = −umax

u = umax

S

q̇ [rad/s]

ϕ
[r

a
d
]

Time-optimal

−8 −6 −4 −2 0 2 4 6 8

−0.2

−0.1

0

0.1

0.2

0.3

0.4

umax−umax

u = −umax

u = umax

u = 0

q̇ [rad/s]

ϕ
[r

a
d
]

Near time-optimal

0 0.5 1 1.5 2
−6
−4
−2

0
2

v
el

o
ci

ty
[r

a
d
/
s]

 

 

u
q̇

0 0.5 1 1.5 2
−6
−4
−2

0
2

v
el

o
ci

ty
[r

a
d
/
s]

 

 

u
q̇

0 0.5 1 1.5 2
0

20

40

ωT
π

E
n
er

g
y

[J
]

 

 

U
T
V

0 0.5 1 1.5 2
0

20

40

ωT
π

E
n
er

g
y

[J
]

 

 

U
T
V

Fig. 3. Time-optimal (left column) and near-time optimal (right column) control law. In the upper row, the phase plane representation of the control laws
as well as an exemplary trajectory are depicted. The gray solid, dashed, and dotted lines represent ellipses centered aroundumax, −umax, and the origin,
respectively. The motor and link velocities are depicted inthe middle row, the system energies in the lower row. Thex-axis indicates the timeωT

π
in

half-cycles of the system eigenfrequency.

ellipse, which physically means eigenfrequency excitation.
Successively repeating this procedure provides the remaining
ellipses of the switching curve. In order to hit zero velocity
and deflection time-optimally, one must applyu = umax if
the current state is located belowSr, above the switching
curve u = −umax has to be commanded. The control law
can be formulated as

iS =

⌈

|q̇|

2umax

⌉

(15)

ϕiS = −
sign(q̇)

ω

√

u2
max − (|q̇| − (2iS − 1)umax)

2

(16)
uTOC = sign(ϕS − ϕ)umax, (17)

where iS is the index of the switching curve located be-
low/above the system state andϕiS the deflection of the
switching curve with same velocitẏq as the link.

The control law is depicted in Fig. 3 (upper left) where
the red area represents maximum velocity input and the blue
area minimum velocity input. In the phase plane, the black
solid line represents an exemplary braking trajectory. The
according motor and link velocities are shown in the middle
figure. In the bottom figure, the spring potential energyU ,
link kinetic energyT , and total system energyV = U+T are
depicted. The overall system energy is being reduced as fast
as possible. However, it is not decreasing monotonically, c.f.
Fig. 3 (lower left) at approx. 0.2 and 1.2 half cycles. In the
first and third quadrant in the phase plane, energy decrease,
i.e. V̇ ≤ 0 according to (12), is always ensured. In the second
and fourth quadrant, however, the system energy increases
when the current state is located within the area enclosed by
the switching curve and thex-axis. This is because motor
velocity and elastic deflection have equal sign. This results
in a non-passive behavior.

In control, passivity is generally a desirable property due
to being strongly related to stability and robustness. Next,
we propose a modification of the time-optimal control law,
which leads to suboptimality by means of braking time but
monotonic energy decrease, i.e. the controller shows passive
behavior.

D. Near time-optimal & passive control

To achieve passivity, we cannot select positive motor ve-
locity in the left half of the area enclosed by the first switch-
ing curve, thex-axis andumax, because the system may hit
and remain at a point on the line segmentq̇ ∈ [−umax, umax],
ϕ = 0 as described in Sec. III-B and illustrated in Fig. 2.
Thus, we chooseu = 0 in this area. When applying zero
velocity, the energy of the system remains constant and
energetically passive behavior is achieved. In the phase plane,
the system state travels on an ellipse centered around the
origin until the switching curveS is hit, see Fig. 3 (upper
right). The maximum motor velocity can then be commanded
because deflection and motor velocity have different signs,
which in turn results in overall energy decrease. For the right
half of the area enclosed by thex-axis, S and umax, we
could apply the control law (14) to reduce the system energy.
However, then we must applyu = umax after entering this
area, switch tou = 0 if q̇ < umax and again command
u = umax after hitting the switching curve. This does not
only require many motor switchings, but may also result in a
long braking time. Therefore, we chooseu = 0 in this area.
We also select zero motor velocity for the remaining areas
enclosed by the switching curve, because then we can use the
switching curves of the time-optimal control law and only
apply slight modifications to achieve passivity. In summary,
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Fig. 4. Model-free control law I, II, and III with exemplary braking trajectories.

the control law for near time-optimal control is given by

uNTOC =







−sign(q̇)umax, ϕq̇ ≥ 0,

sign(q̇)umax, ϕq̇ < 0 ∧ |ϕ| ≥ |ϕi,S |,

0, otherwise.
(18)

The phase plane representation together with an exemplary
trajectory is depicted in Fig. 3 (upper right), where the
green areas represent zero velocity and the blue and red area
minimum and maximum motor velocity, respectively. From
the timely evolution of the total system energy depicted in
Fig. 3 (lower right) it can be observed that passivity and only
slightly larger braking time in comparison to time-optimal
control are achieved.

The previous two control laws require full knowledge
of the dynamics. Next, we consider the case of unknown
system parameters, i.e. link inertia and joint stiffness. We
only assume that the maximum and minimum values of
u = θ̇ are known.

E. Model free control I

The switching curves for time-optimal or near time-
optimal control depend on the system eigenfrequency and
motor velocity. Because the eigenfrequency is assumed to
be unknown, we cannot derive a switching curve to decide
on the control input in quadrant two and four. In quadrants
one and three, however, there are no switching curves in the
previous two methods. Therefore, the control law for both
model-based and model-free controllers may be the same in
these phase plane areas. To take this into account, following
control law was proposed in [15].

uMFI =

{

−sign(q̇)umax, ϕq̇ ≥ 0,

0, otherwise
(19)

In quadrants two and four, the motor velocity is set to zero,
i.e. the energy remains constant. This leads to an overall en-
ergetically passive behavior of the controlled oscillator. The
phase plane representation of the control law is illustrated
in Fig. 4 (upper left), the system energy for an exemplary
initial state in Fig. 4 (lower left).

It is important to notice that the equilibrium can only be
reached asymptotically with this control law, in other words
the joint cannot be stopped in finite time without frictional
or damping effects if the system trajectory does not coincide
with the first switching curve. In the controller presented
next, we modify this model-free approach to achieve faster
energy decrease.

F. Model free control II

As mentioned in Sec.III-B and Sec. III-D we want to avoid
applying maximum/minimum motor speed in the area en-
closed by the first switching curve and thex-axis. Generally,
we have no information about the maximum deflection of
the switching curve because the mass-spring eigenfrequency
is unknown. However, we know that its maximum width
is 2umax, see e.g. Fig. 3 (upper left). Therefore, we can
apply maximum velocity and achieve energy decrease for
|q̇| ≥ 2umax. For smaller link velocities, we then choose
u = 0. In summary, the control law can be written as

uMFII =







−sign(q̇)umax, ϕq̇ ≥ 0,

sign(q̇)umax, ϕq̇ < 0 ∧ |q̇| ≥ 2umax,

0, otherwise.
(20)

The according phase plane representation is depicted in Fig.
4 (upper middle). From the timely evolution of energy it
can be observed that the energy decreases monotonically and
faster than for the previous controller. However, if the initial
velocity is |q̇| < 2umax then the control law is identical with



Algorithm 1 Model-free controller III

flag ← false
while q̇ 6= 0 ∧ ϕ 6= 0 do
{Set/resetflag}
if |q̇| ≥ 2umax ∧ flag = false ∧ ϕq̇ ≤ 0 then
flag ← true

else if flag = true ∧ ϕq̇ > 0 then
flag ← false

end if
{Determine control input}
if ϕq̇ ≥ 0 then
uMFIII ← −sign(q̇)umax

else
if flag = true then
uMFIII ← sign(q̇)umax

else
uMFIII ← 0

end if
end if

end while

the previous one. In the following, a further modification for
improving braking performance is presented.

G. Model free control III

If the initial link velocity is |q̇| ≥ 2umax then the
system travels on an ellipse which has a larger distance to
±umax than the first switching curve if maximum/minimum
motor speed is commanded. In this case, one can continue
traveling with±umax even if |q̇| < 2umax and achieve faster
energy decrease. For the according control law, one has to
remember/save the the information about the initial velocity
when braking is initiated or a new quadrant is being entered
in the phase plane. In the sequel, this variable is denotedflag.
The control law is listed in algorithm Alg. 1, an example in
the phase plane is depicted in Fig. 4 (upper right).

In the example, we setflag to 1 when entering quadrant
two becausėq < −2umax and applyu = −umax until we
reach the first quadrant. When hitting the first quadrantflag
is being reset. The fourth quadrant is being entered atq̇ <
2umax which means thatflag remains inactive andu = 0
has to be applied.

Another possible extension for the presented controllers is
to commandu = q̇ if |q̇| ≤ umax in quadrant two and four. If
the motor travels with the same velocity as the link, then the
deflection, in other words potential energy, remains the same
while the kinetic energy is being reduced untilu = q̇ = 0.
If enough elastic torque torque is available, then this control
can lead to faster energy decrease than only choosingu = 0
in quadrant two and four. However, the discussion of this
extension is subject to future work.

H. Boundary control

In [14] the set of brakable states and the according time-
optimal trajectories were found for time-optimal braking of
joints with limited elastic deflection. Quasi-singular arcs may
occur if the maximum elastic joint deflection is lower than
the maximum deflectionϕS,max = u

ω
of the first switching

curve. When hitting the constraint, one must applyu = q̇ and
follow the maximum deflection until the switching curve is
reached. After hitting the switching curve, maximum motor
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intersects the switching curveS. An exemplary braking trajectory is
depicted for time-optimal (TOC), near time-optimal (NTOC)and model free
(MF I/II/III) control. The according motor velocities and timely evolution
of energies are depicted in Fig. 6.
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time-optimal in the middle, and the model free control in thelower figure.

velocity has to be commanded to reach the equilibrium. This
is exemplified in the phase plane trajectory from Fig. 5 and
the respective motor velocity in Fig. 6 (upper). Boundary
control is only possible if the system reaches the constraint
at |q̇| ≤ umax. Otherwise it is not brakable without violating
the maximum elastic deflection.

For the near time-optimal control law, we select the same
boundary control. The deviation from the time-optimal law
is that zero velocity is applied in the area enclosed by the
first switching curve, which results in passivity but in longer
braking time, see Fig. 6 (middle). In case the maximum
elastic deflection is known by the model-free controllers, one
can setu = q̇ as long asq̇ ≥ 0. This ensures no violation
of the deflection constraint, see Fig. 5. Of course, if the
deflection constraint is unknown, then it may eventually be
exceeded.

I. Controller comparison and discussion

In this section, we compare the controller performance
and comment on the applicability to nonlinear stiffness and
bounded motor dynamics, and the extensibility ton-DOF
elastic robots. Since the aim of this paper is to extend existing
model-free and model-based braking controllers and describe
their basic properties, the experimental verification is subject
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Fig. 7. Timely evolution of system energyV for all controllers in case of
linear stiffness and unconstrained elastic deflection (upper), linear stiffness
and boundary control (middle), and nonlinear stiffness andunconstrained
deflection (lower).

to future work.
a) Performance: For comparing the performance of the

different algorithms, we start with the same initial conditions
for all cases. In Fig. 7 (upper) the total system energy over
time is illustrated for the unconstrained, linear case and in
Fig. 6 (middle) for the constrained, linear case. The time-
optimal solution is of course the fastest, however, the energy
does not decrease monotonically. The near-time optimal
control law ensures passivity and is only slightly slower than
the time-optimal scheme. The methods without parameter
knowledge are passive, but show inferior performance and
only asymptotic convergence. For the selected initial condi-
tions the schemes proposed in this work show better perfor-
mance than the one described in [15]. However, as already
explained, the model-free approaches are identical in case
of boundary control (constrained case), and if|q̇| ≤ 2umax.
Among the model-free controllers, no. III performs best. The
only drawback comes rather from the implementation side.
By storing the information about the initial velocity, it is
assumed that the trajectory travels on a certain ellipse outside
the switching curve in the phase plane. If external torques
act on the joint, e.g. by a collision or coupling effects from
other joints in multi-DOF robots, then the system state can
be brought to the area enclosed by the first switching curve,
leading to an undesired motor input.

b) Nonlinear elasticity: The model-based controllers
described in this work were developed for joints with lin-
ear elasticity. If nonlinear joint stiffness is present, these
controllers will clearly not perform as good as the optimal
solution, which has to be found by solving a new optimal
control problem. However, we may now analyze whether the

two model-based controllers provide suboptimal, however,
feasible motor velocities if the system dynamics are being
linearized along the trajectory. For this we replace the
linear spring by the progressive, nonlinear torque/deflection
relationship of a FSJ mechanism [16]. The elastic torque for
this device is defined as

τJ,FSJ(ϕ) = 68.7
(

e12.5(ϕ−ϕmax(σ)) − e12.5(−ϕ−ϕmax(σ))
)

,

(21)
where we useϕmax(σ) = 10 rad. Alternatively, this could be
adjusted by a second motor. For sake of brevity we do not
take deflection constraints into account. For comparing the
controller performance, we select the same initial conditions
as in the unconstrained, linear case. The results are depicted
in Fig. 7 (lower). In this example, one can observe that
all model-based and model-free controllers show the same
principle behavior regarding braking time and passivity as
in case of linear stiffness. A full analysis and experimental
verification are still to be done in future research.

c) Limited motor dynamics: For analyzing the influence
of limited motor acceleration on the braking performance, we
assume that the motor has the PT1 dynamics

u′ =
1

Tms+ 1
u, (22)

whereTm is the time constant andu′ the new motor speed.
Furthermore, we add white noise with 1 kHz frequency
and10−6 W/Hz power spectral density to the link velocity,
which is e.g. larger than the noise in the DLR Hand Arm
System [7]. To determine the influence of limited motor
acceleration on the final braking time we choose the 95 %
rise time of the motor speed to be 5, 10, 15, 20, and 25 %
of the half periodic time of the mass-spring system, i.e.
approx.Tm = 3x

100
π
ω
, x = {5, 10, 15, 20, 25}. For linear joint

stiffness, unconstrained elastic deflection, and 25 % motor
acceleration time the timely evolution of total system energy
V is depicted in Fig. 8 (upper). It can be observed that the
model-free controllers and the near time-optimal controller
are not strictly passive anymore. This is because the motor
velocity and elastic deflection have the same sign in quadrant
two and four until the motor reaches zero velocity, c.f. Fig
4. This leads toV̇ > 0 according to (12). Due to the bang-
bang structure of the time-optimal control law, oscillations
now remain at the end of the braking motion. For avoiding
these, a different controller such as a well-tuned position
controller could be activated if most of the system energy
was removed as well as the elastic deflectionϕ and link
velocity q̇ go below a certain thresholdϕǫ and q̇ǫ.

The influence of motor acceleration capability on the final
braking time is depicted in Fig. 8 (lower). Here, we define
the final braking time as the time that is required until 95 %
of the initial energy was removed from the system. It can
be observed that increasingTm generally results in larger
braking time. While for the model-based controllers the
difference is only moderate, it is significant for the model-
free controllers, because the system trajectory has to pass
quadrant two or four with zero energy decrease one more
time.

d) Extension to n-DOF: Up to now, the described
controllers were suited for 1-DOF elastic joints only. For
braking a multi-DOF robot, intuition tells that simultaneous
braking of every joint results in a stopping motion of the
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Fig. 8. In the upper figure, the timely evolution of system energy V is
depicted for a mass-spring system with linear stiffness, unbounded elastic
deflection, PT1 motor dynamics, and noise in the link velocity. In the lower
figure, the influence of limited motor dynamics on the final braking time
is illustrated. Thex-axis indicates the ratio of motor acceleration time and
one half the periodic time0.5Tp of the oscillator, they-axis the ratio of
the braking timetf,x for limited motor dynamics and the braking timetf,0
for unlimited motor acceleration.

entire robot2. For achieving this, the 1-DOF controllers may
be implemented in the multi-DOF a) joint space, or b)
decoupled space.

In [14] we proposed a decoupling-based control scheme
which decouples both the dynamics and control region, i.e.
the motor velocities, for enabling SISO control in modal co-
ordinates. Because the approach is model-based, it is possible
to implement the time-optimal or near time-optimal control
law, which will most likely show a better performance than
the model-free control laws.

If control in joint coordinates is considered, then the
model-free controllers I and II can easily be implemented
while care has to be taken for the third controller (see
above). For the model-based methods, one has to linearize
the dynamics and approximate the ”eigenfrequency” of the
respective joint required to describe the switching curve,
because the real system eigenfrequencies obtained by eigen-
value computation cannot be assigned to a particular joint.
However, the performance and stability analysis forn-DOF
robots goes beyond the scope of this paper and is subject to
future research.

IV. B RAKING DISTANCE ESTIMATION

Up to now we were interested in how fast we can decrease
the system energy to achieve effective braking. For avoiding
unwanted contacts with obstacles or humans, it is further-
more beneficial to know at which position the robot will stop
and even more which trajectory it will take until standstill. A
priori knowledge of the braking distance may then be used
to initiate braking such that no possibly hazardous collision
occurs.

Let us consider the final braking timêtf,i as well as
the link trajectory q̂i(t), t ∈ [t0, t̂f,i] of each joint with
index i ∈ {1, . . . , n} can be predicted at start of braking,

2Certainly, proof has to be found in future work.

denotedt0. For a full n-DOF robotic manipulator, it is
then possible to make use of the forward kinematics to
combine the state estimation of each joint. One may predict
the final Cartesian position̂xPOI,tf ∈ R

3 and orientation
R̂POI,tf ∈ R

3×3 of a particular point of interest (POI)
along the robot structure as well as the according braking
trajectory x̂POI(t) and R̂POI(t), wheret ∈ [t0, t̂f ]. Here,
the estimated final time of the entire robot is the worst
case braking time of all joints, i.e.̂tf = max(t̂f,i), i ∈
{1, . . . , n}. Let an obstacle in the environment be represented
by a set of Cartesian points denotedXobs. The distance of
a POI on the robot structure with positionxPOI to the
obstacle3 can be determined byd = min dist(xPOI ,Xobs),
where the functionmin dist can e.g. be realized with the
GJK algorithm [17]. Given the full braking trajectory, it is
possible to estimate the smallest distance during stopping,
namely d̂min = min(min dist(xPOI(t),Xobs)), t ∈ [t0, t̂f ].
If d̂min > 0, then the robot will most likely not collide
against the object, while a collision will occur if̂dmin ≤ 0.

For the braking controllers considered in this paper, the
closed-loop link trajectory can be derived relatively simply.
The analytical solution for the time-optimal controller is
described in [13], the solutions for the other control laws are
omitted for brevity. In the following, we exemplarily describe
how the braking trajectory estimation of a single joint can
be extended to then-DOF case.

A. Example

For our analysis, we choose a double pendulum with
two links weighingm1 = m2 = 4 kg and having length
l1 = l2 = 0.5 m. The spring stiffnesses are set tokJ,1 =
kJ,2 = 400 Nm/rad, the maximum motor velocity isumax =
[2 2]T rad/s, the initial conditions areθ0 = [0 0]T rad,
q0 = [0 0]T rad, andq̇0 = [4 4]T rad/s, i.e. two times the
motor velocity.

For braking the robot, we use the decoupling approach
proposed in [14]. The modified controller is depicted in Fig.
9. We select the time-optimal control law for SISO braking
in modal coordinates. We seek to predict how far the robot
moves in the initial direction of travel and at which position
it will stop. When initiating braking, we therefore determine
the final and maximum link positions in the decoupled space.
After transformation to original space we obtain an estimate
for the maximum and final position of the entire robot.
The link velocities and positions are depicted in Fig. 10
(upper left) and Fig. 10 (upper right). In the latter figure,
the estimates of maximum and final link position at the very
fist instant of braking are depicted, which agree well with
the real values. This means that we obtain a feasible braking
distance estimation for this robot. The behavior of the robot
during braking as well as the braking distance estimation can
also be seen in the attached video.

The braking distance prediction takes the mass and stiff-
ness matrix into account only. A good estimation can be
accomplished if the system dynamics show only a small
deviation while braking. For the the results presented in Fig.
10 (top row), the eigenfrequencies vary0.291 % and2.055 %
for the first and second decoupled coordinate, respectively.
However, the estimation will deteriorate if non-negligible

3Of course, several obstacles and POI on the robot structure may be
considered. Furthermore, other obstacle representationsmay be used.



Fig. 9. Decoupling-based braking controller including braking distance estimation.
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Fig. 10. Double pendulum link velocities (left) and positions (right). In
the upper row the joint stiffnesses are constant, in the lower row they are
nonlinear. In the right column, the estimated maximum and final position
are depicted which were determined at the first instant of braking.

Coriolis torques are present and/or the mass and stiffness
matrix vary significantly. This is the e.g. the case for joints
with nonlinear stiffness. Figure 10 (lower row) shows results
when having a nonlinear torque/deflection characteristic (21)
in both joints. While braking is accomplished, we obtain a
poor braking distance estimation at braking initiation. Our
future research will therefore include the estimation of the
timely evolution of the system dynamics in order improve
the presented prediction method.

V. CONCLUSION

In this paper, we analyzed and compared different strate-
gies to brake an elastic robot joint. We proposed a modifi-
cation of the time-optimal control law to achieve passivity
and presented two modifications of a model-free control
law originally introduced in [15]. For the two model based
and three model-free controllers we derived the boundary
control in case of limited elastic deflection. Given the same
initial conditions, we compared the performance of each
controller by means of final time and passivity, and discussed
extensibility to n-DOF elastic robots. Finally, the braking
trajectories were found for estimating the braking distance
of each controller. The results were applied to a double
pendulum with linear joint elasticity. Given the initial state
only, we were able to provide a good estimate for the
maximum and terminal position. Being aware of the braking
distance enables to initiate braking such that no possibly
dangerous collision may occur. Our future work will consider
the extension of the braking controllers and braking distance
estimation to generaln-DOF manipulators.
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