
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1

Automatic Change Analysis in Satellite Images Using
Binary Descriptors and Lloyd-Max Quantization

Anamaria Radoi, Student Member, IEEE, and Mihai Datcu, Fellow, IEEE

Abstract—In this letter, we present a novel technique for
unsupervised change analysis, that leads to a method of ranking
the changes that occur between two satellite images acquired
at different moments of time. The proposed change analysis is
based on binary descriptors and uses the Hamming distance as a
similarity metric. In order to render a completely unsupervised
solution, the obtained distances are further classified using
vector quantization methods (i.e., Lloyd’s Algorithm for optimal
quantization). The ultimate goal in the change analysis chain is to
build Change Intensity Maps (CIM) that provide an overview of
the severeness of changes in the area under analysis. In addition,
the proposed analysis technique can be easily adapted for change
detection by selecting only two levels for quantization. This
discriminative method (i.e., between changed/unchanged zones)
is compared with other previously developed techniques, that use
Principal Component Analysis, or Bayes theory as starting points
for their analysis. The experiments are carried on Landsat images
at 30 meters spatial resolution, covering an area of approximately
59 × 51 km2 over the surroundings of Bucharest, Romania, and
containing multispectral information.

Index Terms—Change analysis, binary descriptors, Hamming
distance, Lloyd-Max quantization, multitemporal satellite images.

I. INTRODUCTION

THE past few years have witnessed an increased interest
towards unsupervised change detection techniques. Un-

like supervised methods, the latter techniques directly compare
two multitemporal images, without having any other type
of information regarding the contained classes or a priori
distribution of the change/unchanged states. Under these as-
sumptions, a challenging step is to find the optimal threshold
to discriminate between change and no change.

The majority of the change detection methods are developed
based on the analysis of the difference image. Other techniques
use Change Vector Analysis to represent the change in the
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n-dimensional spectral space and to show that each class of
change has a distinct spectral signature [1].

In [2], two techniques based on the Bayes theory are
proposed for the analysis of the difference image. The first
approach assumes that the pixels in the difference image are
independent of one another, and computes the optimal thresh-
old by minimizing the error probability, which, in Bayesian
terms, translates into maximizing the posterior conditional
probability. The second technique uses the Besag’s iterated
conditional modes for solving a MRF1-based model, which
considers that a pixel belonging to a certain class (change/no
change) is likely to be surrounded by pixels belonging to the
same class. Although the spatial contextual hypothesis is likely
to be true in most cases, the problem of convergence be-
comes problematic when changes appear in too many scattered
places. However, the exploitation of contextual information
with MRF models is not well suited for on-line applications
due to their high computational complexity. Both techniques
are based on the estimation of statistical parameters using the
Expectation - Maximization (EM) algorithm.

Other approaches consist of linear transformations [3]. For
example, Principal Component Analysis (PCA) is applied in
[4] over non-overlapping blocks of the difference image in
order to extract the main directions of change. In the same
paper, the challenging problem of searching the threshold
between change and no change is solved by introducing a
K-Means step (K = 2).

In this paper, we propose a multi-level change detection
method to assess the degree of change suffered by an area
between two moments of time. The system provides a fast
and unsupervised diagnosis of change, that does not require
either the availability of any type of a priori information or
any learning phase. To this end, we start our analysis from
two images acquired at different moments of time over the
same area. For each pixel inside each image, we build a
binary descriptor representing the gradients in the neighbor-
hood around that pixel. Next, the similarity for each pixel is
measured by applying the Hamming distance over the two
temporal binary descriptors computed at the same location.
Finally, Lloyd Max’s algorithm is used to form the change
map representing the intensity of change for each location.
Furthermore, the method can be extended to multispectral
images, by a simple concatenation of the extracted binary
descriptors for all channels.

The rest of the paper is organized as follows. Sections II
and III present the proposed method for unsupervised change
detection. The results obtained for synthetic and real data are
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Fig. 1. Block diagram of the proposed change analysis method.

reported in Section IV, whilst the conclusions are summarized
in the last section.

II. PROPOSED CHANGE ANALYSIS METHOD

The main objective of the present paper is to build a simple
and effective unsupervised method for change analysis. In
order to solve this problem, we propose binary descriptors,
that are computed in each point of the image. The construction
of these descriptors imply simple bit-strings, which can be
easily compared by computing the Hamming distance. This
operation can be performed in a fast manner using a XOR
and a counter, instructions that are done extremely fast on
modern CPUs. The last step towards an automatic assignment
of change level is the separation of the values yield by
the Hamming distance into categories of variation. This is
achieved by applying the Lloyd’s algorithm for quantization.
The procedure is summarized in Fig. 1.

Let us denote by I(t1) and I(t2) two gray-level images of
size Nx ×Ny , acquired at two different times, t1 and t2.

A. The Fast Way Towards Constructing Binary Descriptors

The idea behind binary descriptors is that of finding a simple
and fast way to compare feature points while requiring a small
amount of memory. In order to construct local binary descrip-
tors at pixel-level, we start from the binary test used also
to build BRIEF (i.e., Binary Robust Independent Elementary
Features), in [5]. However, BRIEF is designed especially for
object retrieval in a test image, and finding points of interest
(e.g., FAST2 corner detection [6]) in the test image figures
strongly in the success of this technique.

In our setup, the binary descriptors are calculated separately
in each image for each pixel, as detailed below.

1) Binary descriptor: In the following, let us consider S×S
square neighborhoods around each test pixel. For simplicity,
let us consider S to be odd. For one pixel, a binary test τt
applied on a test pixel P and its neighbor O, at time t, is
defined as:

τt(O,P) =

{
1 if I(t)(O) < I(t)(P)

0 otherwise,
(1)

where I(t)(O) and I(t)(P) are the pixel intensities at points
O = (Ox, Oy)

T and P = (Px, Py)
T , respectively, at time t.

In order to assess the differences in all points for precise
change detection, we perform binary tests considering S × S

2Features from Accelerated Segment Test

patches around each pixel, in both images. More precisely,
considering a pixel O = (Ox, Oy)

T , with bS2 c < Ox < Nx −
bS2 c, b

S
2 c < Oy < Ny − bS2 c, but placed in different images

(e.g., two co-registered satellite images), we construct two n-
bits descriptors, one for each image.

There are many options for placing the test locations, i.e.,
the pairs (O,Pi), in a patch around a pixel. Among all
choices, the following is convenient because it has a physical
interpretation (i.e., it represents the signs of the gradients in
all directions around each pixel):

O = (Ox, Oy)
T

Pi = (Pxi
, Pyi

)T ,

where O = (Ox, Oy)
T is the pixel around which the patch is

considered, Ox − bS2 c ≤ Pxi ≤ Ox + bS2 c, and Oy − bS2 c ≤
Pyi
≤ Oy + bS2 c.

The number of binary tests, and, thus, the length of the
descriptor for each point is equal to n = S2. As a remark, we
could have taken n = S2 − 1, by excluding the test between
point O and itself, but taking this test into consideration will
not influence the future results (i.e., the Hamming distances),
as τt(O,O) = 0.

2) Preprocessing step: The binary tests take the informa-
tion at pixel level and are, therefore, very noisy. Pre-filtering
the images yields an increase in the stability of the change
detection algorithm. Moreover, in areas where there is no
change, the elements of both descriptors at the same point
are likely to repeat more often if the images are smoothed
before performing the binary tests. This phase is the most
time-consuming part of the proposed method depending on
the type of filters chosen for smoothing. Using a simple box
filter, which is less time-consuming, serves our purposes well
and can be regarded as a good compromise if compared to
Gaussian-like low-pass filters. In the experimental part of the
paper, we show the results for both filters.

B. The Hamming Distance as a Similarity Metric
In information theory, the Hamming distance between two

binary vectors of equal length is the number of positions at
which the corresponding symbols are different. For two binary
descriptors B1 and B2, of length n, the Hamming distance is
equal to:

H(B1,B2) =

n∑
i=1

B1(i)⊕B2(i), (2)

where ⊕ is the modulo 2 addition between two binary values,
whilst B1(i) and B2(i) are the ith elements of the descriptors.

In our case, the Hamming distance comes as a natural choice
because it measures the number of times when the binary tests
differ for each patch representing the same geographical area,
at different moments of time. In fact, the distance measure
assesses the changes in gradient, in time, along all directions
around the analyzed point (or, pixel). This is the rationale upon
which the proposed change analysis algorithm is based.

Additionally, for a fixed length n of the descriptors, the
Hamming distance is a metric for the space {0, 1}n. Besides
its simplicity, the metric property of the Hamming distance
gives it added values if compared to other similarity measures.
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III. CIMS

In order to assess the level of change in the bitemporal
images, Change Intensity Maps (CIM) are built using the
Lloyd-Max’s algorithm for quantization [7], [8], which is
briefly reviewed below.

Lloyd-Max’s algorithm answers to the following problem
of quantization: For a signal x with a probability density
function pX , find a quantizer with M representative levels
that minimize the mean squared error:

MSE = E
[(
X − X̂

)2]
, (3)

where X̂ is the quantized version of the random variable X .
The solution to this problem is obtained by successively

applying the following formulas until convergence:

tq =
1

2
[x̂q−1 + x̂q] , q = 1, 2, . . . ,M − 1 (4a)


x̂q =

∫ tq+1

tq
xpX(x)dx∫ tq+1

tq
pX(x)dx

, q = 0, 1, 2, . . . ,M − 1 (4b)

where {tq}q=1,...,M−1 are the M − 1 decision thresholds,
and {x̂q}q=0,...,M−1 are the M representative levels between
two successive decision thresholds. For an unknown distri-
bution pX , x̂q in equation (4b) can be approximated with
x̂q = 1/‖Tq‖

∑
x∈Tq

x, where Tq = {x|tq ≤ x < tq+1} and
‖·‖ represents the number of elements in a set.

As already mentioned, the similarity between the two im-
ages is measured using the Hamming distances. In order to
build the change maps, these distances are quantized with M
levels (M ≥ 2). In particular, if M = 2, the distinction is made
between insignificant versus medium or important changes,
whilst, if M = 3, we divide the changes into three groups
that take into account the distribution of changes inside the
images. The number of change levels is established by the
user, depending on the application.

The choice for the Lloyd-Max’s quantization is argued by
the fast and simple manner to find optimal thresholds (in the
sense of minimizing the expected quantization error) based on
the distribution of the distances on the area of analysis.

IV. EXPERIMENTS

For the experimental part, we used the Landsat dataset avail-
able online at [9]. Two experiments are conducted, namely:
binary change detection on synthetic images and multi-level
change detection on real datasets.

A. Detection of Synthetic Changes

In what follows, we consider two gray-level images of
200×200 pixels, namely, an original image and a synthetically
generated one. The former is obtained by inserting land-cover
changes in the original image, in random places, and, also, by
slightly modifying the illumination level. In order to assess
the effectiveness of the method with respect to noise, we
additionally add white Gaussian noise, with different signal-
to-noise ratios (SNRs). The performance of the proposed
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Fig. 2. Change detection performance comparison between the proposed
algorithm and the algorithms proposed in [2] and [4], for different levels
of noise.
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Fig. 3. Change detection performance for binary descriptors and Lloyd Max’s
two-levels quantization under no noise conditions, different patch sizes and
various smoothing filters.

algorithm with M = 2 levels of quantization is compared
against the methods proposed in [2] and [4]. The results are
reported in Fig. 2. In almost all noise scenarios, the proposed
method outperforms the others, whilst a better performance
is obtained when the images are smoothed. Smoothing can
be skipped when dealing with a low level of noise, but it is
mandatory when working with noisy data, and this happens in
most of the real cases. If the level of noise is very high, we
observe a slightly better performance of the other methods that
report a high number of true negatives (i.e., correct no change
detection) under the assumption that the number of changed
pixels in the image is smaller than the number of unchanged
pixels. Fig. 3 shows the change detection performance when
different low-pass filters are considered for pre-filtering and
various patch sizes are used for building the binary descriptors.
The best performance is achieved for a Box 3× 3 smoothing
filter and a patch size of 9× 9 pixels. These settings are used
for change detection in Fig. 4.

B. CIMs

The goal of this experiment is to build Change Intensity
Maps that show the degree of modification on a scale that
uses M (M > 2) levels of quantization. Two cases are
shown in Fig. 5, namely the construction of the Palace of
Parliament (173 × 119 pixels) and Morii Lake (191 × 191
pixels) in Bucharest, Romania, between 1984 and 1992. All
the experiments are carried on multispectral Landsat 7 images,
for which only the first three bands are shown.

The aim of the proposed multi-level approach for change
detection is to discover all changes and to determine the opti-
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(a) Original image (b) Synthetic change (no noise) (c) Synthetic change (SNR=20 dB) (d) Ground truth

(e) Proposed method (no noise) (f) PCA K-Means (no noise) (g) EM-based (no noise) (h) MRF-based (no noise)

(i) Proposed method (SNR=20 dB) (j) PCA K-Means (SNR=20 dB) (k) EM-based (SNR=20 dB) (l) MRF-based (SNR=20 dB)

Fig. 4. Binary change detection of synthetic changes on Landsat 7 images (NIR band). The second and third rows show the outputs of the proposed method
with 2 levels of quantization and also the results obtained by applying the methods described in [4] and [2], in two cases: no noise and 20 dB additive white
Gaussian noise.

mal threshold values to be applied on the similarity measures.
Assigning levels of change to each pixel, the method is able
to provide more information for a user regarding the areas that
were effected by major, medium, or minor changes. As shown
in Fig. 5, as the number of quantization levels increases, the
areas of major changes are better distinguished (see the red
colored zones), whilst the other changed areas confirm the fact
that transformations occurred, but they are not as important
(see the yellow colored zones).

In a particular binary change detection scenario (i.e., M = 2
quantization levels), the major and major-to-medium changes
interfere, resulting in a higher number of changes detected by
the proposed method. In order to evaluate the binary change
detection methods, the following measures are computed: true
positives (TP), true positive rate (PTP = TP/N1× 100), true
negatives (TN) and true negative rate (PTN = TN/N0×100),
correct classification rate or overall accuracy (PCC = (TP +
TN)/(N0 + N1) × 100), false alarms (FP), false alarm rate
(PFP = FP/N1 × 100), missed alarms (FN), missed alarm
rate (PFN = FN/N0 × 100), and error rate (PE = (FP +
FN)/(N0 + N1) × 100). The results for the binary change
detection are shown in Fig. 5 and in Table I.

C. Average Running Time

Furthermore, the method proposed in this paper is efficient
in terms of execution time if compared to EM, MRF, and PCA
K-Means based methods. The average running times are shown
in Table II for gray-level images of approximately 200× 200
pixels. The method can be designed to make use of parallel
architecture for computing the binary descriptors of the images
in parallel and this will further decrease the computation time.

All the experiments were carried on a 2.3GHz 5-core Intel HP
EliteBook computer running Windows 7 operating system.

V. CONCLUSIONS

This paper proposes a novel method for unsupervised multi-
level change detection in satellite images. The technique is
based upon the optimal quantization of the Hamming distances
between binary descriptors built at pixel level, rendering a
suitable method for building Change Intensity Maps that assess
the level of change in an area. In terms of binary change
detection, the experiments show that the proposed algorithm
performs well, even under noisy conditions and variations of
illumination.

There are several advantages of using this technique for
change analysis. Firstly, from a methodological viewpoint,
the method is local (i.e., it takes into account the changes
that occur in the area around each pixel). In the same time,
it has the capability of reporting these local changes to the
changes that happen in the whole area of analysis. Secondly,
from the implementation viewpoint, the method implies simple
binary descriptors, that are fast to compute and to compare
with modern CPUs. These facilities are beneficial in terms of
on-line change analysis and unsupervised observation of the
Earth’s surface.
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