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Abstract An approach is developed to compute quasi-impulsive maneuvers to steer
the orbital elements of a spacecraft to a desired value. Using Gauss Variational
Equations it is possible to define the location along the orbit as well as the mag-
nitude of the maneuver(s) so that specific orbital elements can be changed with little
influence on the others. The possibility to include the effect of the zonal terms of
the gravity model of the Earth and of the atmospheric drag allows an accurate eval-
uation of the time required to reach the maneuvering location. Including a model
of the propulsion system makes the simulation more realistic, if compared with an
impulsive maneuver implementation, since a burning arc can replace the istanta-
neous change of the orbital elements, which is instead associated with the impulsive
approach. Simulations have been performed to compare perturbed and unperturbed
cases and the results from the comparisons are presented.

1 Introduction

The majority of spacecraft, once deployed, do not follow a pure natural motion
for their entire lifetime. Rather, every now and then they require an orbital maneu-
ver in order to alter their state or, equivalently, their orbital elements. According to
the mission requirements, different constraints can be imposed on the maneuvers
concerning the direction of the thrust, the fuel consumption, the burning time, etc.
When modeling a ∆V , it can be decided to follow an impulsive or a continuous ap-
proach, depending whether the assumption of zero burning time can be held or not.
As a matter of fact, when the burning time is short compared to the orbital period,
the aforementioned assumption is valid and the application of the first approach is
feasible. The simplicity associated with the computation of the required ∆V makes
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the impulsive approach widely used in the preliminary analysis of a transfer. Refs.
[5, 6, 8, 9, 10, 16] are examples of investigations on the impulsive maneuvering
approach. On the other side, no burning time assumptions are required to apply the
continuous approach, but in this case the modeling of the transfer involves more
complexity, being the required ∆V is spread along an arc of the trajectory. Studies
on the continuous approach can be found in Refs. [11, 12, 13]. These works are
particularly interesting because the authors evaluate the maneuvers exploiting the
Gauss Variational Equations (GVE). The peculiarity of the GVE is that they show
the effects of a perturbing force on the orbit elements of the spacecraft, regardless
on the nature of the force, which can be natural (deriving from the geopotential or
atmospheric drag effect) or artificial (due to the activation of a thruster). Using the
GVE, Schaub & Alfriend [14] developed an impulsive feedback control for estab-
lishing specific mean orbit elements for spacecraft in a formation flying environ-
ment, while requiring only 1 or 2 impulses. Beigelman & Gurfil [3] dealt with the
geostationary collocation problem and proposed an impulsive strategy based on the
differences in the orbit elements and on the GVE. Similarly, Anderson & Schaub
[1] combined the knowledge of the differential orbit elements of 2 spacecraft with
the GVE and developed an N-impulse feedback control strategy. As can be seen, the
use of the GVE finds its perfect application in a coordinated flight mission, where
multiple spacecraft are employed and relative distances must be respected. In this
type of missions in fact, it is useful to express the relative motion in terms of relative
orbital elements and use the mean orbital elements to have a clear overview of the
long-term behaviour. In such a framework no large element changes are needed and
the required maneuvers are only aimed at preserving the relative motion through
applying small elements variations to counteract the effect of the perturbations (or
more exactly, the differential effect of the perturbations). To evaluate the required
control actions, the GVE become helpful.

The challenge associated with the GVE lies in the coupling of the equations,
since the application of the thrust in one direction can affect more than one orbital
element. On the other side, when this coupling is properly exploited an advanta-
geous maneuver can be designed to change specific elements with theoretically no
effect on the others.

In order to make the simulation more realistic, the knowledge of the propulsion
system can be employed and a finite duration of the control actions can be evaluated.
Nevertheless, the need for changing the orbital elements only by a small amount
ensures the control actions to remain very short, which motivates the definition of
quasi-impulsive maneuvers.

As mentioned above, the choice of using the impulsive or the finite approach
depends mainly on the duration of the control action, but when this parameter is
small it becomes harder to choose: on one side the impulsive approach is highly
simple, on the other side the finite approach can lead to better results. In the quasi-
impulsive approach, the problem to be solved has been based on the equations and
approximations typically used in the impulsive approach in order to keep simplicity
and ensure easy resolution. At the same time though, it has been extended to im-
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prove the fidelity of the simulation through including equations expressing the finite
duration of the control actions.

In this work the authors dealt with maneuvers to change the semimajor axis (a),
the eccentricity (e) and the inclination (i), without significantly affecting the other
orbital elements, for a satellite in low Earth orbit (LEO). The intention of focusing
only on those three elements has been dictated by the concept of the J2-invariant
orbits [15], which in recent years has been widely accepted and applied. At the basis
of this method lies the assumption that all the spacecraft in a given formation are
perturbed only by the J2 term, then natural relative orbits can be analytically found
matching the rates of the affected mean elements and finding the (a, e, i) triplet
for each agent, since the imposed constraints depend only on these three elements.
This means that the relative motion can be controlled by only controlling 3 out of 6
elements, which in turn explains the interest of this paper.

Nonetheless, to increase the accuracy of the model, the effect of perturbations
other than only J2 have been considered and their inclusion has been discussed.

The paper is organised as follows. In Section 2 the problem is introduced along
with the used models. The control strategy is presented in Section 3, while Section
4 deals with numerical simulations and presents single test examples as well as
Monte-Carlo tests campaigns. Finally, conlusions are given in Section 5.

2 Problem Statement

When projecting a coordinated flight mission, with multiple spacecraft involved, a
key role for the success of the whole mission is played by the relative motion among
the agents; hence it is vital to develop strategies to control this feature. Let us con-
sider for example the scenario described in [17] for a manned Mars mission. Due
to the huge mass required, the plan for the deployment of the space station consists
in building and launching several spacecraft at different times and perform an in-
orbit assembly to obtain the final structure. In such a framework, it looks unrealistic
that each element is immediately assembled right after the launch. Rather, it is rea-
sonable to assume that it will spend some time in orbit, with the outcome that for
most of the time a certain number of spacecraft will fly together in a cluster. All the
spacecraft will have similar orbital elements and will fly in the neighbourhood of a
nominal orbit used as reference (it could be the orbit of a particular agent, the orbit
of the cluster barycenter, a theoretical orbit, etc.).

In a likely scenario, the use of a low Earth orbit is envisaged with first mean or-
bital elements for the nominal orbit (a, e, i) = (7000 km, 0.001, 50 deg) (through-
out the paper these values will be referred to as the nominal values). This means that
only the gravitational potential of the Earth and the atmospheric drag significantly
affect the motion of the satellites.

If only the J2 term perturbation would be included, the use of the J2-invariant or-
bits would be natural. In such a framework only the evolution of the right ascension
of the ascending node (RAAN) Ω , of the argument of perigee ω and of the mean
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anomaly are affected, constraints to match the rates Ω̇ , ω̇ and ˙ of the different
agents are imposed and natural relative orbits can be found. The initial values for
a, e, and i can be chosen in order to meet the constraints, while those for Ω , ω and

can be properly selected to respect the relative distances. Conversely, when other
perturbations are included the aforementioned constraints based on the mean ele-
ments rates must be adapted and natural relative orbits are not available anymore.
On the other side the effect of perturbations like higher order of the geopotential or
atmospheric drag is much smaller than the effect of the J2 term, so much that the ap-
plication of the J2-invariant orbits could still be feasible. The authors propose then
to keep exploiting only the J2 term to find the initial configuration, while a more
accurate model can be employed to simulate the satellites motion and to evaluate
the location of the maneuvers required to control a, e and i, while minimizing the
changes in Ω , ω and .

At this point it must be remembered that the J2-invariant orbits guarantee all
satellites having the same rate of change for the argument of latitude (θ ), but nothing
can be said for the argument of perigee or the mean anomaly. These two elements
may still change at different rates causing a drifting of the lines of perigee and then
a change in the geometry of the relative orbits. This means that proper actions must
be taken to control ω and , but they are not discussed in this work.

Let us suppose that at a certain time, an agent of the cluster requires a correction
in its mean elements. To see the effect of a control vector on the osculating elements
the GVE can be used. The following system shows the equations when the control
action u = (up uθ uh) is given in the Spθh orbital frame, where S is the origin of
the reference frame and is coincident with the satellite, the axis p is aligned with the
position vector, the axis h is aligned with the angular momentum vector, the axis θ

is consequently placed in order to have a right-hand oriented frame [2]:

da
dt

=
2a2

h

(
esin( )up +

p
r

uθ

)
(1a)

de
dt

=
1
h

{
psin( )up +[(p+ r)cos( )+ re]uθ

}
(1b)

di
dt

=
r cosθ

h
uh (1c)

dΩ

dt
=

r sinθ

hsin i
uh (1d)

dω

dt
=

1
he

[−pcos( )up +(p+ r)sin( )uθ ]−
r sinθ cos i

hsin i
uh (1e)

d
dt

= n+
η

he
[(pcos( )−2re)up− (p+ r)sin( )uθ ] (1f)

where r is the orbital radius, h the angular momentum, p the semilatus rectum,
the true anomaly, η =

√
1− e2 an additional eccentricity measure, n =

√
µ

a3 the

mean motion and µ = 398604.415 km2/s3 the gravitational parameter of the Earth.
When the more compact matrix form is employed, the GVE can also be expressed



Quasi-Impulsive Maneuvers to Correct Mean Orbital Elements in LEO 5

by
ė = [0 0 0 0 0 n]T +B(e)u (2)

with e = (a e i Ω ω )T denoting the osculating orbital elements vector. As can be
seen, the GVE are based on the osculating elements, hence to study the effect of u
on the mean ones e, Eq. (1) or (2) must be coupled with a transformation

e = f (e) (3)

which leads to

ė =
(

∂e
∂e

)T de
dt
≈ de

dt
= [0 0 0 0 0 n]T +B(e)u. (4)

In Eq. (4) the approximation derives from the transformation between osculating
and mean elements taken from Brouwer’s theory, which shows how the sensitivity

matrix
(

∂e
∂e

)T
is basically an identity matrix with the off-diagonal terms being O(J2)

[13]. In other words, it can be assumed that when a control action is applied to
change the generic element œ, the effect on both the osculating and the mean values
will be the same and they will change by the same amount.

Please note now that the GVE use the current elements of the satellite. In this
work the authors assumed that a certain amount of time will pass between the com-
putation and the application of a control action, then in the computation phase a
prediction of the orbital elements values is required. Since predicting e is much eas-
ier than predicting e and the difference between B(e) and B(e) is negligible, it has
been decided to introduce this second approximation and use the matrix B(e).

Finally, the matrix form of the GVE becomes

ė = [0 0 0 0 0 n]T +B(e)u. (5)

In the rest of the paper only mean orbital elements will be used, then in order to
relieve the notation, the overline symbol is dropped.

As shown in [14], three strategies can be used to correct the elements of a satel-
lite while maximizing the effect of the control action and minimizing the unde-
sired change on the other elements: 1) a pair of impulses (one at apogee and one
at perigee, in any order) aligned with the velocity vector can correct only the (a,
e) pair; 2) a single impulse (at the critical argument of true latitude) aligned with
the angular momentum vector can correct only the (i, Ω ) pair; 3) a pair of impulses
(one at apogee and one at perigee, in any order) aligned with the apoaxis can correct
only the (ω , ) pair. The interest in correcting a, e and i pushed then towards the
investigation of the first and the second strategy which from hereon, due to the direc-
tion of the applied thrust, will be denoted respectively as IPM (In-Plane Maneuver)
and OPM (Out-of-Plane Maneuver). With respect to [14], in this work the authors
spread the ∆V required by each impulse over an arc of trajectory. Denoting the lo-
cations where the impulses should be provided if the maneuvers were impulsive as
nominal points, it is trivial that during a burning arc the satellite moves and that the
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optimal conditions (which hold at those particular points) are not held for the entire
thrusting time. The overall result is that at the end of the control action small differ-
ences between the desired and the current value of the elements can be experienced;
throughout the paper these differences are denoted as errors. The spreading action
is performed in a way similar to what was done in [11], but with the difference that
the 2 sub-arcs separated by the nominal point could have different lengths. To limit
the previously cited errors it is necessary to limit the maximum deviation from the
optimal condition, by imposing a maximum value for the firing time.

3 Presentation of the Control Strategy

To introduce the developed strategy, let us start having a look at the path followed
by the satellite, from the computation until the execution of a control action. In Fig.
1 several points and arcs can be distinguished. Point O denotes the origin, i.e. the
position where the change of the orbital elements is noticed, the maneuvers are com-
puted and the data are stored on-board. Starting from point O, the satellite follows a
sequence of coasting and burning arcs (colored in black and blue respectively) and
reaches the final point E where the correction of the orbital elements is completed.
The black point M denotes the nominal point which is located approximately at the
center of the burning arc, the blue points B and E highlight the beginning and the
end of the control action and the red point C represents the check point, i.e. the lo-
cations before the beginning of the control action where the maneuver strategy is
checked. As a matter of fact it may happen that at point O the required maneuver is
wrongly computed, due for example to errors in the measurements. In such a case
the mistake can be noticed and the correction can be provided on time.

O

ME
B

C

s1

s2
s3

s4

Fig. 1 Control action scheme with overview of the required points and trajectory arcs.

At the beginning of the computation it is supposed that the current mean ele-
ments eO as well as the changes to be applied ∆e are known. The maneuver strategy
(i.e. the location of the points, the length of the arcs, the consumed mass, etc.) is
evaluated through the resolution of a system of nonlinear equations obtained by
constraining, for each point and for each element œ, the match of the element val-
ues before the point and after the point. Inside a segment the element œ evolves
according to the equations of motion, which always include the natural dynamics
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and in the burning arcs are properly adapted to take into account the effect of the
control action.

Given two subsequent times t1 and t2, the variation of the element œ can always
be computed as

∆œ = œ(t2)−œ(t1) =
∫ t2

t1
œ̇(t)dt ≈ œ̇(t2− t1). (6)

where œ̇ = 0.5(œ̇(t1) + œ̇(t2)) is an average value of the element rate within the
considered time interval. Due to the slow variation of the secular rates of change of
the orbital elements, the approximation introduced in Eq. (6) can be applied light-
ening then the complexity of the model and the computational burden which would
be associated to the evaluation of the integral term.

This basic procedure is applied in each arc and for each orbital element, then
expressions on the example of Eq. (6) are detected and used as constraints to eval-
uate the maneuver strategy. The expressions describing the rate of the mean orbital
elements required to develop such constraints can be found in [18].

With reference to Fig. 1, given two generic subsequent points X and Y and the
enclosed arc sξ , for the mean element œ it can be shown that

œY = œX +∆œN +∆œC (7)

where ∆œN and ∆œC denote the variation of œ due to natural dynamics and control
action, respectively. When these terms are given explicitly and Eq. 7 is written for
each œ, it expands into

aY = aX + ȧξ ∆ tξ +δl∆aξ

eY = eX + ėξ ∆ tξ +δl∆eξ

iY = iX + i̇ξ ∆ tξ +δl∆ iξ
ΩY = ΩX + Ω̇ξ ∆ tξ +δl∆Ωξ

ωY = ωX + ω̇ξ ∆ tξ +δl∆ωξ

Y = X + ˙
ξ ∆ tξ +δl∆ ξ

(8)

which is coupled with the following expressions obtained from the GVE:
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∆aξ = 2(1± eξ )

√
a3

ξ

√
µ

√
1− e2

ξ

∆vξ ,θ

∆eξ =±2
√pξ√

µ
∆vξ ,θ

∆ iξ =
rξ

hξ

cosθξ ∆vξ ,h

∆Ωξ =
rξ

hξ

sinθξ

sin iξ
∆vξ ,h

∆ωξ =∓
√pξ

eξ

√
µ

∆vξ ,p−∆Ωξ cos iξ

∆ ξ =±
√aξ (1∓ eξ )

2

eξ

√
µ

∆vξ ,p

(9)

In the above systems of constraints (8) and (9), it holds that:

• αk denotes...

... the value of the parameter α at point k, if k ∈ [X Y ]

... an averaged value of the parameter α within the arc sk, if k = ξ

• ∆αξ denotes...

... the variation of the element α due to the control action, if α ∈ [a e i Ω ω ]

... the duration of the arc, if α = t

... the required ∆V , if α = v; the addition of a p, a θ or an h at the end of the
subscript is used to highlight the direction of the velocity component

• α̇ξ denotes the natural rate of change of the element α

• δl denotes the Kronecker δ defined as

δl =

{
0: if l is a coasting arc
1: if l is a burning arc.

Double signs in system (9) are associated to the location of the burning arcs: the
upper/lower sign is used for the arcs near the perigee/apogee.

The complete system of nonlinear equations to be solved can be finally retrieved
writing Eq. 8 and 9 for all of the arcs and including the additional constraints

∆œ = ∑
ξ

∆œξ ∀œ (10)

which ensures that for each element œ, the total variation obtained through the dif-
ferent control actions equals the desired change.

When deducing system (9) a source of error has been introduced, since the sin( )
and cos( ) terms of Eqs. (1a, 1b, 1e, 1f) have been replaced with 0, 1 or -1. This sub-
stitution is actually valid when the satellite is at the apogee/perigee and there would
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be no associated errors if the maneuvers were impulsive [14], since they would be
performed exactly at the apogee/perigee. Conversely in the proposed strategy the
cited trigonometric terms change with time, because the maneuver is spread along
a burning arc around the nominal point. Given the requirement of limiting the max-
imum burning time, the maximum ∆ wrt to the apogee/perigee is limited as well,
then the proposed approximation is still acceptable. The only drawback is that, as
already mentioned, small errors can be experienced.

Leaving the sine and cosine terms in (9) would probably lead to more accurate
results, but the computational burden associated to the resolution of the system of
nonlinear equations would be higher. For this reason this option has been excluded.

One last remark concerns the direction of the thrust, which has been kept constant
(in the Spθh frame) in each control action, in order to improve the fidelity of the
maneuvers.

The system obtained combining Eqs. (8), (9) and (10) represents the general
formulation of the problem and must be verified for each pair of subsequent points
X and Y of the path followed by the spacecraft. To develop a particular strategy, the
problem needs to be customized using the required elements correction ∆e with the
proper sequence of points and term δl .

3.1 OPM Strategy

The OPM strategy is used to correct i through a single out-of-plane control action,
which means assuming ∆e = [0 0 ∆ i 0 0 0]. The path followed by the spacecraft is
then exactly the path represented in Fig. 1, requiring 2 coasting arcs, 2 burning arcs
and a sequence of 5 points SOPM = [O C B M E]. To determine the OPM strategy, the
system given by Eqs. (8), (9) and (10) must be verified for each pair of subsequent
points X and Y separated by an arc sξ with (X ,Y )∈ SOPM and ξ ∈ [1,4]. The burning
arcs can be distinguished from the coasting ones through the term δl , which is given
by

δl =

{
0: if l ∈ [1 2]
1: if l ∈ [3 4] .

3.2 IPM Strategy

The IPM strategy corrects a and/or e and consists of two separated in-plane control
actions, occurring one at the apogee and one at the perigee, in any order. The chance
to outline a single control action as 2 burning arcs following 2 coasting arcs leads
to an IPM overall path composed by 4 coasting arcs and 4 burning arcs; this path is
pictured in Fig. 2 in a manner similar to what was shown in Fig. 1. The subscripts
1 and 2 associated to the points [C B M E] denote then the number of the control
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action. Please note that Fig. 2 refers to the case where the first nominal point M1 is
the perigee and the second one M2 is the apogee; nonetheless the opposite case with
M1 as apogee and M2 as perigee remains possible if the origin O would be located
after the perigee and before the apogee.

O

M1

B1

E1

C1

M2

E2

B2

C2

s1

s2
s3

s4

s5

s6

s7

s8

Fig. 2 IPM scheme with overview of the required points and trajectory arcs.

In the IPM case, the system obtained combining Eqs. (8), (9) and (10) must be
solved assuming ∆e = [∆a ∆e 0 0 0 0], (X ,Y ) ∈ SIPM and ξ ∈ [1,8]. SIPM is the se-
quence of points followed by the spacecraft and is given by [O C1 B1 M1 E1 C2 B2 M2 E2].
The term δl is finally specified by:

δl =

{
0: if l ∈ [1 2 5 6]
1: if l ∈ [3 4 7 8] .

3.3 Results Validation

The results obtained in each strategy has been validated integrating the equations
of motion of the satellite in cartesian coordinates. Through the resolution of the
system of nonlinear equations the entire control scheme is determined and all the
maneuver-related parameters (the orbital elements of the points, the lenght of the
arcs, the consumed masses, the required ∆V , the direction of the thrust, etc.) are
known. The duration of the arcs and the direction of the thrust are then passed to the
integrator, which evaluate the motion from the current position O until the execution
of the last control action. For each burning arc the variation of the orbital elements
provided by the thrust is retrieved accurately excluding the contribution due to the
natural dynamics. Then the real overall variations ∆eR obtained with all the control
actions are compared with the desired changes ∆e and the errors are quantified.

4 Numerical Simulations

For both types of maneuver (OPM and IPM), the computed strategy has been veri-
fied integrating the equations of motion in cartesian coordinates. The model used for
the propagation of the satellite motion includes the perturbation of the geopotential



Quasi-Impulsive Maneuvers to Correct Mean Orbital Elements in LEO 11

and of the atmospheric drag. Regarding the geopotential only the even zonal terms
have been considered, since they are the only ones influencing the mean orbital ele-
ments, while tesseral and sectorial terms affect only the short-term and the long-term
variations in the osculating elements [4]. For what concerns the drag perturbation,
an exponential model for the atmospherical density has been assumed.

Due to the transformations and approximations involved in the problem (transfor-
mation between osculating and mean elements, use of mean elements in the GVE,
etc.) it is expected that at the end of a given maneuver the desired changes ∆e will
be affected by small errors. For this reason, the two types of maneuver have been
treated separately and tests in a Monte-Carlo fashion have been conducted to relate
the obtained errors to the desired ∆e.

In agreement with the proposed mission scenario, which envisages the construc-
tion of a giant structure through multiple rendez-vous and dockings of separate
spacecraft, the involved agents are expected to have masses and volumes on the
order of tens of tonnes and hundreds of cubic meters, respectively. Hence they have
been modeled on the ATV [7] with a mass of m = 30 t and a cylindrical shape
with base diameter d = 5 m and side length l = 15 m. Finally it has been guessed
CD = 2.2. Each maneuver can be performed using 4 thrusters, each characterised by
a nominal thrust T = 220 N, specific impulse Isp = 270.22 s and minimum impulse
bit MIB = 8 Ns.

In the following at first an example for OPM and one for IPM are presented to
compare the unperturbed and the perturbed cases, then the Monte-Carlo simulation
campaign is discussed.

4.1 Maneuver Examples

In this section an example for the OPM and one for the IPM is presented. For each
type of maneuver, 4 cases have been studied to compare the effect of the different
perturbations:

1. keplerian motion
2. zonal terms up to J2
3. zonal terms up to J6
4. zonal terms up to J6 and atmospheric drag.

4.1.1 OPM Example

For the illustration of the OPM the osculating elements given in Table 1 denote the
initial conditions, i.e. the state of the satellite at point O. This is the location where
the need for an inclination change ∆ i =−0.0582 deg is noticed.

From the computation of the maneuver it results that the thrusters are activated
for approximately 262.51 s, providing a ∆V = 7.7114 m/s and consuming a mass
of propellant mp = 87.1726 kg.
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Table 1 Satellite initial osculating elements for the OPM

Element Value Units

a 7000.8469 km
e 0.0011
i 50.5583 deg

Ω 87.4406 deg
ω 119.2945 deg

275.3817 deg

A comparison of the 4 considered cases showed very tiny differences in the ob-
tained solutions. Due to the limited short duration of the maneuver, the inclusion of
the perturbation has no perceivable effect on parameters like the ∆V , the firing time
and the consumed mass. The perturbing actions affects instead the waiting time, i.e.
the time required to reach the location where the thrusters are turned on. However,
even for this parameter, the biggest difference is on the order of few seconds and
can be seen between case 1 and case 2, since it is due, as expected, to the J2 term.
Differences between cases 2, 3 and 4 are less than a hundredth of a second. Ta-
ble 2 summarizes the waiting times ∆ tw and the firing times ∆ t f for each of the 4
considered cases. The evolution of the elements is shown in Fig. 3 for Case #2.

Table 2 Results of the OPM Example

Parameter Case 1 Case 2 Case 3 Case 4 Units

∆ tw 2216.2402 2214.2967 2214.2985 2214.2985 s
∆ t f 262.5086 262.5100 262.5100 262.5100 s

4.1.2 IPM Example

For this example the state of the satellite at point O is given in Table 3. The desired
semimajor axis and eccentricity changes are ∆a =−7.9824 km and ∆e = 0.0013.

The transfer strategy is composed by two maneuvers requiring an overall ∆V
of 5.0508 m/s, which translates in 57.1252 kg of propellant. The first maneuver is
performed at time t1 ≈ 1150.53 s and lasts for ∆ t f ,1 = 12.61 s, the second one takes
place at time t2 ≈ 3995.14 s and lasts for ∆ t f ,2 = 159.41 s.

Similarly to Sect. 4.1.1, the results are presented in Table 4, showing that the
effect of the perturbations can be seen only on the waiting times. Fig. 4 provides an
overview of the elements evolution from Case #2 .
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Fig. 3 Element evolutions in the OPM example (case #2). In each subfigure the blue and the
black lines represent the osculating and the mean element, respectively. The green line marks the
burning arc. The cyan line highlights the new mean inclination that should be achieved with the
control action.
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Fig. 4 Element evolutions in the IPM example (case #2). In each subfigure the blue and the black
lines represent the osculating and the mean element, respectively. The green and the red lines
correspond to the burning arcs. The cyan lines highlight the new semimajor axis and eccentricity
that should be achieved with the control actions.
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Table 3 Satellite initial osculating elements for the IPM

Element Value Units

a 7000.4828 km
e 0.0010
i 49.9767 deg

Ω 241.8717 deg
ω 10.9910 deg

261.9797 deg

Table 4 Results of the IPM Example

Parameter Case 1 Case 2 Case 3 Case 4 Units

∆ tw,1 1150.7225 1150.5358 1150.5357 1150.5357 s
∆ t f ,1 12.6126 12.6126 12.6126 12.6126 s
∆ tw,2 2832.3900 2831.9193 2831.9190 2831.9189 s
∆ t f ,2 159.4123 159.4123 159.4123 159.4123 s

4.2 Monte-Carlo Results

The Monte-Carlo campaign of simulations has been conducted to relate the unde-
sired errors obtained at the end of a maneuver with the desired mean elements vari-
ations that the maneuver should provide. In addition, from the obtained results, an
overview of the maneuvers attainable with the given propulsion system is available.

In order to limit the undesired errors due to the spreading of the ∆V , a maximum
duration of 5 minutes has been assumed for each firing action. Similarly, a minimum
firing time of approximately 0.03 s has been imposed according to the MIB.

The minimum firing time has actually a double function, since it can be indirectly
used to distinguish between cyclic and non-cyclic solutions. In the performed anal-
ysis, when the magnitude of the errors are above a certain threshold, the solution is
called cyclic because a new maneuver is required to correct those errors, with the
overall result that a longer time is required to complete the process. On the other
side, when the errors do not exceed the threshold, the solution is non-cyclic and no
additional corrections are required. Hence, to develop this distinction the threshold
must be defined. To this end, once the propulsion system (and then its thrust level)
is known, the GVE can be easily used to estimate the change in orbital elements
which would be achieved for a given firing time. The minimum changes (i.e. the
changes associated to the minimum firing time) can then be used as threshold for
the maximum acceptable errors Emax, since it is trivial that changes below these
values cannot be achieved. In this study, there were no constraints on the total time
required to complete the maneuver, nonetheless the authors decided to keep this pa-
rameter bounded, then the attention has been directed only towards the non-cyclic
solutions, while the cyclic ones have been considered unacceptable.
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One last remark concerns the included perturbations. Some preliminary tests, as
well as the examples shown in Sect. 4.1.1 and 4.1.2, showed that the inclusion of
high order zonal terms and atmospheric drag produces no significant differences in
the obtained results. For this reason, in order to lighten up the computation burden,
in the Monte-Carlo campaigns only the J2 term has been used to perturb the motion.

4.2.1 Simulation Campaign for OPM

In this first campaign of tests, OPMs to change only the inclination by an amount ∆ i
have been simulated. In each simulation a different ∆ i, as well as a different set of
initial conditions eO, has been used. In building the vector eO the last elements Ω , ω

and were allowed to vary freely in the range [0 360] deg, while the first ones a, e
and i were picked in a neighbourhood of the nominal values. Concerning the desired
∆ i, the considered values are both positive and negative, with the maximum value
(in magnitude) depending on the maximum firing duration requirement. Results are
presented in Fig. 5, where each subfigure is dedicated to a different orbital element.
On the x-axis there is the change ∆ i to be applied, while the y-axis shows the er-
ror of the considered mean element. Please note that Fig. 5(c) shows a percentage
error, since the error obtained at the end of the maneuver is compared with the de-
sired change. Starting the analysis with this subfigure, at first a reasonable threshold
of 1% has been assumed valid, but afterwards the results showed that the obtained
errors are even 1 order of magnitude smaller, then no constraints are imposed by
the inclination error. Conversely, from the other subfigures, in which the horizon-
tal red lines represent the maximum acceptable error Emax, it can be seen that only
when |∆ i| is below a certain threshold the maneuver is always non-cyclic and then
acceptable. The |∆ i| thresholds associated to the different elements are shown in
the second column of Table 5. The bar (\) in the third row marks the fact that no
constraints must be imposed on ∆ i to keep the inclination error under the maximum
value Emax. Using again the GVE, for each element the correspondent |∆ i| thresh-
old can be associated to a time interval representing the maximum firing time over
which the element error exceeds the threshold and the maneuver could be cyclic.
The six time values can be retrieved in the last column of Table 5.

From Table 5 it can be seen that the maximum times are not equal for all the
elements. For example after a 100 s control action, the errors on a, e and i would be
below the maximum acceptable error, but nothing could be said for the remaining
elements Ω , ω and . For this reason, to guarantee that all of the final errors are
acceptable, the maximum duration of an OPM should not be longer than 17 s, which
is the minimum among the six times in Table 5: a maneuver shorter than 17 s always
produces errors small enough to be neglected, a maneuver longer might produce
errors big enough to require a new control action for canceling them.
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Fig. 5 Mean elements errors at the end of the OPM strategy: (a) semimajor axis (b) eccentricity
(c) inclination (d) longitude of the ascending node (e) argument of perigee (f) mean anomaly.



18 Federico Fumenti, Markus Schlotterer and Stephan Theil

Table 5 Approximate error and time thresholds for the OPM

Element |∆ i| [deg] Time [s]

a 0.024 108
e 0.037 167
i \ 300

Ω 0.003 17
ω 0.005 24

0.005 24

4.2.2 Simulation Campaign for IPM

The second series of tests dealt with IPMs to change semimajor axis and eccentricity
by an amount ∆a and ∆e. Similarly to what has been done for the OPM case, each
simulation is characterised by a different pair (∆a, ∆e) and a different set of initial
conditions eO. Results are presented in Fig. 6, with each subfigure associated to a
different orbital element. The x-axis is associated to ∆a, the y-axis to ∆e and the z-
axis to the error obtained at the end of the maneuver. For a matter of clearness, this
time the error thresholds are not plotted. Moreover, since an in-plane applied ∆V has
a stronger impact than an out-of-plane one on ω and , the errors on these elements
are now bigger. Nonetheless they usually have the same order of magnitude and
opposite sign, with the consequence that the argument of latitude is almost zero. For
this reason, in Fig. 6 the error on the argument of latitude replaced the errors on
argument of perigee and mean anomaly.

To better understand which (∆a, ∆e) pairs can produce non-cyclic solutions, all
the subfigures from Fig. 6 have been projected and analysed in the xy-plane. The
final result is given in Fig. 7. All the tests used a (∆a, ∆e) pair inside the external
black rectangle, but only those inside the green bounded area lead to non-cyclic
maneuvers and can be considered acceptable. When the analysis is based on ω and

instead of θ , the acceptable area shrinks considerably and non-cyclic maneuvers
can be obtained only using (∆a, ∆e) pairs inside the blue bounded region.

5 Conclusions

An approach to compute quasi-impulsive maneuvers aimed at steering the mean
orbital elements of a spacecraft to a desired value has been presented. When per-
forming a transfer to change some of the spacecraft orbital elements, sometimes it
is enough to achieve the desired values neglecting the undesired changes obtained
on the other elements. Nevertheless there are cases where those changes are unac-
ceptable and then particular attention must be paid on the maneuver strategy.

In this paper two strategies have been studied to provide small changes in semi-
major axis and eccentricity or in inclination while minimizing the errors on the other
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(a) (b)

(c) (d)

(e)

Fig. 6 Mean elements errors at the end of the IPM strategy: (a) semimajor axis (b) eccentricity (c)
inclination (d) longitude of the ascending node (e) argument of latitude.
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Fig. 7 Map of (∆a, ∆e) pairs acceptability

elements. These errors are difficult to predict due to the different sources on which
they depend, then wide campaigns of simulations have been performed to use the
statistical approach for better understanding the behaviour of the problem.

Example tests have been presented and discussed for each strategy.
The inclusion of the zonal terms of the gravity model and of the atmospheric

drag guarantee high accuracy of the model. The obtained results showed that no big
differences can be seen in the thrust duration and direction, but a better evaluation
of the maneuvering location can be achieved.

The knowledge of the propulsion system parameters allows an high fidelity ma-
neuver simulation, inasmuch as any required ∆V is spread along an arc of the tra-
jectory. The corresponding control actions have then a finite duration, but the small
changes in the orbital elements keep them short enough to accept some simplifying
assumptions typically used in the impulsive method. The presented quasi-impulsive
approach results then from this combination of the impulsive and the finite ones.

Due to the assumed models, the obtained changes ∆eR do not match perfectly
the desired changes ∆e and some errors can be experienced. Comparing these er-
rors with some reference thresholds, it is possible to distinguish between acceptable
solutions (the errors are below the thresholds) and unacceptable solutions (the er-
rors are above the thresholds and require a new maneuver to be canceled). Since the
magnitude of these errors grows with the magnitude of the desired changes, a range
of ∆e guaranteeing acceptable solutions can be identified.
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O’Sullivan S, Sinzig B, Treffer M, Valavanoglou A, van Quickelberghe M, Walpole M, Wes-
sels L (2006) Project M3 - a study for a manned Mars mission in 2031. Acta Astronautica
58:88-104

18. Zhong W, Gurfil P (2013) Mean orbital elements estimation for autonomous satellite guidance
and orbit control. Journal of Guidance, Control, and Dynamics 36(6):1624-1641




