
Figure 1: The basic structure of the proposed method combining a hash map for search of the
top level octree nodes.

Sparse Volumes

[1] Teschner M., Heidelberger B., Müller M., Pomeranets D., and Gross M. 2003, Optimized spatial hashing for collision detection of
deformable objects. In Proceedings of the Conference on Vision, Modeling and Visualization. 47-54

[2] Sparsehash. 2009. Version 2.02 http://goog-sparsehash.sourceforge.net (Accessed: 22.03.2015)

[3] Hornung A., Wurm K.M., Bannewitz M., Stachniss C., 2013, OctoMap: An efficient probabilistic 3D mapping framework based on
octrees. In Autonomous Robots.

[4] Laine S. and Karras T., Efficient Sparse Voxel Octrees, in Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, 2010

This work was supported by the HRSST.

References Acknowledgements

3. Hash-Tables
To access the voxel at index coordinates (𝑥, 𝑦, 𝑧), we begin by
computing the following signed rootKey

where & and ~ denote, respectively, bit-wise AND and NOT
operations. At compile time, this reduces to just three hardware
AND instructions. Similar to [1], the rootKey is further processed
to a hash.

Here, N is the constant length of the hash being generated, the
three constants are large prime numbers, ^ is the binary XOR
operator, & is the bit-wise AND operator and << is the bit-wise left
shift operator. Finally, google::dense_hash_map from [2] is applied
to store and search the octree root nodes.

1. Abstract
Modern emergence of automation in the industry and everyday

life is leveraged by extensive research in mobile robotics.

Novel 3D sensors such as laser scanners or cameras enable

cars to drive autonomously, UAVs to observe critical

environments, or an underwater robot to construct pipelines.

However, 3D sensor samples do not provide the intrinsic

information a robot needs to operate on. Voxel based shape

modelling has been identified as a fruitful solution. However, its

application is limited to small areas since processing and

visualization of large environments is very challenging. Dense

voxel grids allow fast data access but suffer from a large

memory overhead. Modelling an area of 100x100x100m with a

resolution of 1cm would result in a 3.7TB memory requirement.

Motivated by this, sparse voxel octrees (SVO) [4] have been

proposed. These however, increase the data access

complexity from 𝑂(1) to 𝑂(𝑑) with 𝑑 being the depth of the

octree. This means, that the larger a scene, the slower the data

access. This works proposes a constant data access scheme

for huge 3D environments combining hash tables with SVOs.

4. Conclusion and Outlook
Voxel based 3D models enable an environment to be
approximated from data streams of multiple 3D sensors.
Applying the proposed approach, the tremendous amount of
data can be fused to a consistent and large 3D model of a citiy or
large countryside. We would like to evaluate the implication of
the approach for the security relevant modelling of dynamic
environments, where automated monitoring of the condition
(e.g. road roughness) and geometrical properties (e.g. obstacles)
is of interest.

2. Proposition
We propose to combine octrees with hash tables (Figure1) leading to sparse voxel
representation well suited for efficient storage and fast data access. The hash table is
used to access SVO root nodes, which further contain an octree in itself. Since the
internal octrees are constructed of small depth (𝑑 = 1), this dramatically decreases
the access time complexitiy to O(db). For a standard octree of depth d = 16, this is a
speedup of factor 16. The access time comparison is shown in Table 1.

The novel efficient data structure is further applied for incremental 3D modelling
from camera based 3D sensor illustrated in Figure 2.

for Large Scale 3D Modeling

Eugen Funk

Department: Information Processing of Optical Systems

Institute: Optical Sensor Systems
Berlin, Germany

eugen.funk@dlr.de

7.-8. Mai 2015

Urania - Berlin

int rootKey[3]= {x&~ ((1<<Log2x)-1),

y&~((1<<Log2y)-1),

z&~((1<<Log2z)-1};

unsigned int rootHash=(1<<Log2N-1) &

 (rootKey[0]*73856093 ^

 rootKey[1]*19349663 ^

 rootKey[2]*83492791);

Access Time Max Resolution

Octree
d=16

6.43 𝜇𝑠 327683
327𝑚 3@1cm

Octree [3], 𝑑 = 16 2.55 𝜇𝑠 327683
327𝑚 3@1cm

Hashed-Octree 0.45𝜇𝑠 ∞

Figure 2: a) Flight over a chapel, b) corresponding voxel based 3D model, c) zoom on the
wall pattern of the chapel.

Table 1: Access time and resolution performance.

a b

c

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31017568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

