
I.Bürger et al. 

Page 1 of 16 

Considerations on the H2 desorption process for a combination 
reactor based on metal and complex hydrides 
I. Bürger, M. Bhouri, M. Linder,  

Institute of Technical Thermodynamics, German Aerospace Center (DLR), D-70569 Stuttgart, 

Germany, email: inga.buerger@dlr.de 

 

Abstract  

Hydrogen storage systems based on the combination reactor concept are promising for application of 

future complex hydride materials with high storage capacities and low reaction kinetics at moderate 

operating temperatures. In such a reactor, a fast reacting metal hydride is added to a complex hydride 

material in a separate compartment of the tank combining the advantages of the high storage capacity 

of the complex hydride with the high reaction rate of the metal hydride. In the present publication, 

three issues regarding the desorption performance of such a reactor are discussed based on 

analytical considerations and 1D simulations. First, it is studied whether the optimal reactor design 

based on a tubular geometry that has been previously determined for the absorption reaction also 

enables satisfying desorption performances. It can be concluded from the corresponding simulations 

that based on the properties of the present reference materials LaNi4.3Al0.4Mn0.7 and 2 LiNH2–1.1 

MgH2–0.1LiBH4–3 wt.% ZrCoH3, the hydrogen desorption performance of the materials in this reaction 

geometry is good. Second, it is shown that besides the geometry of the reactor, also its module size is 

important, as it can be crucial for the thermal management during the desorption. A methodology was 

developed that allows to analytically determine a first estimate for the best minimum module size 

configuration – only based on the desorption rate of the basic material. This approach is confirmed by 

time dependent 1D simulations applying a validated model for the reference materials. Third, the 

influence of a realistic periodic desorption load on the performance of a combination reactor is studied. 

The results clearly show that since the addition of a MeH material enables much smaller module sizes, 

it is advantageous for the thermal management of complex hydride based reactors and increases their 

flexibility.  
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1. Introduction 

It is discussed in several scenarios of our future energy system that hydrogen can play an important 

role as environmental friendly energy carrier [1,2]. However, one bottleneck for a closed hydrogen 

cycle is still the efficient storage of this lightweight gas. Amongst others, one possibility is the utilization 

of solid state storage materials, which is a rather safe and long-term storage option. However, so far 

suitable materials still lead to quite heavy systems [3]. Thus, recently the focus of the application of 

these materials has been shifted from passenger cars to heavy duty vehicles, e.g. forklifts [4,5]. 

Besides classical metal hydrides (MeH) that are already considered for real-life appliations, promising 

solutions based on complex hydrides (CxH) are still under investigation. These kind of materials show 
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improved H2 storage capacities, thus they are in principle able to overcome the obstacle of poor 

gravimetric storage density common for metal hydrides [6,7]. However, these materials usually show 

low reaction rates at temperatures below 100 °C due to kinetic limitations of their conversion reaction 

with hydrogen [8,9]. One possibility to use the high storage capacities of these materials and to 

overcome their limitation in reaction dynamics is a combination reactor concept that has been 

presented by the authors before [10,11]. The idea of this concept is the combination of a fast reacting 

metal hydride material with a slowly reacting complex hydride material that shows a very high storage 

capacity. In these previous works, this concept has been presented and discussed including a model 

validation for the absorption and the desorption processes. Based on the validated model for two 

reference materials, it is now possible to investigate various suitable tank designs. E.g., in a recent 

study, the absorption process has been investigated and an optimal geometry for the reference 

materials has been defined [12]. As for motive applications the fuelling of the gas has to be very fast, 

the absorption process is very sensitive towards reactor geometry and material properties. Thus, it is 

likely that the absorption requirements will define the overall geometry of a corresponding tank. 

However, for technical applications, not only the absorption process, but also the desorption process 

has to be considered. The most common scenario for a desorption process in mobile applications is 

the coupling to a HT-PEM fuel cell, where the exhaust heat of the fuel cell is used in order to supply 

the required heat for the desorption reaction to the hydride storage material [13–15]. For complex 

hydrides the desorption rates at fuel cell relevant pressures > 1.7 bar and temperatures (HT-PEM, 170 

°C) are usually quite low. Therefore, it is not trivial to combine high storage efficiencies (full capacity) 

with fast discharging dynamics in a practical application, e.g. due to heat management problems.  

In the present paper, the main characteristics of a desorption process as well as the resulting 

challenges are discussed considering the two reference materials that have previously been used for 

model validation: LaNi4.3Al0.4Mn0.7, in the following abbreviated as MeH material, and 2 LiNH2–

1.1MgH2–0.1LiBH4–3wt.% ZrCoH3, in the following abbreviated as CxH. It is obvious that with the 

effective storage capacities of 1.2 wt.% and 3.2 wt.% for the MeH and CxH material, a final reactor 

design will still not be sufficient to fulfil the system target values of the DOE for gravimetric and 

volumetric densities. However, for these two materials, validated models exist and the general 

principle of the combination reactor concept has been proven. Thus, these materials are chosen as 

reference materials for the present publication. 

The design of the basic reactor geometry for this study has been taken from the previously published 

optimization process of the absorption reaction [12]. Starting from this publication, it will be first 

checked whether this geometry is also suitable for a generalized desorption scenario. Then in the 

second part, a new aspect – the module size of a modular hydride reactor – is discussed, since it 

influences the thermal management of the reactor and thus highly affects the desorption process (e.g., 

coupling to a fuel cell. In order to clarify the wording in this manuscript, the size of a module always 

refers to the mass of hydride that desorbs hydrogen at the same time. Furthermore, when the 

desorption rate is mentioned it corresponds to the effective desorption reaction rate of the pure 

material, while the discharging rate corresponds to the discharging process of the overall tank. 
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Finally, in the third part, more realistic dynamic operation scenarios are discussed. Therefore, the 

basic model is extended to capture the MeH reabsorption process of hydrogen during low load 

conditions.  

1 Model formulation 

1.1 Geometry 

For modelling purposes, in this paper a simple axisymmetric 1D geometry has been applied that 

represents the cylindrical shape of a tube-shaped reactor, compare Figure 1 and [12]. The metal 

hydride material is located in the center with a radius rMeH = dMeH. In the annulus of the tube, the 

complex hydride is inserted and the thickness of this layer can be varied corresponding to the ratio ξ = 

dCxH/ dMeH. The resulting volumetric fraction of the CxH material is referred to as εCxH = VCxH / Vtotal. 

Both materials are separated by a gas permeable separation layer (GPSL). As this layer consists of a 

thin stainless steel mesh, the heat and mass transfer resistances at this boundary are negligible. The 

thickness of the stainless steel wall dS.S separating the hydride container from the heat transfer fluid is 

considered according to the following equation [12] 

𝑑𝑑S.S =
2𝑟𝑟𝑜𝑜

1 + 20
𝑆𝑆
𝐾𝐾
𝑃𝑃 𝜐𝜐

, (1) 

where ro is the external diameter of the stainless steel tube and P is the maximum applied pressure. 

The remaining parameters have been taken for stainless steel 1.4571 at a maximum temperature of 

250 °C: design strength K = 186 Nmm-2, safety factor S = 1.5 and the utilization factor of the allowable 

design stress v = 0.065. The geometries used for simulations in this study are summarized in Table 1. 

1.1.1 Model equations 

For the presented simulations, the model is implemented into the FEM software COMSOL 

Multiphysics and rate equations, the mass balance of the gas as well as the total energy balance are 

considered for the metal hydride and the complex hydride domains. For the steel wall, only an energy 

balance of the solid is considered. The values for the respective properties as well as all assumptions 

can be taken from the previous publication, where this model has been validated [11]. 

The rate equations can be written as  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑟𝑟R. (2) 

where X is the transformed fraction, 𝑟𝑟R is the effective reaction rate for the materials as function of 

temperature and pressure given in s-1. The corresponding equations are summarized in the following 

Equations 3-5. More details can be found in [10,11,16]. 

Desorption of the CxH material (Li-Mg-N-H), 1st step, 0< XI<0.67: 

𝑟𝑟R,des,CxH,I =
𝜕𝜕𝑋𝑋I

𝜕𝜕𝜕𝜕
= 2.35 ∙ 1012 [s-1] ∙ exp�

−131800[Jmol-1K-1]
ℜ𝑇𝑇 � ∙ 1.5(1− 𝑋𝑋I)[−ln (1− 𝑋𝑋I)]0.33 ∙ ln �

𝑃𝑃eq

𝑃𝑃
� (3a) 

Desorption of the CxH material (Li-Mg-N-H), 2nd step, 0.67< XII<1: 

𝑟𝑟R,des,CxH,II =
𝜕𝜕𝑋𝑋II

𝜕𝜕𝜕𝜕
= 3.044 ∙ 1015 [s-1] ∙ exp�

−161400[Jmol-1K-1]
ℜ𝑇𝑇 � ∙ �1 −

0.001515
𝑤𝑤𝑤𝑤max ∙ 0.33

(𝑃𝑃 − 1.1[bar])� (3b) 

Desorption of the MeH material: 
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𝑟𝑟R,des,MeH =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 20 [s-1] ∙ exp�
−16500[Jmol-1K-1]

ℜ𝑇𝑇 � ∙ (1 −𝑋𝑋) ∙ ln �
𝑃𝑃eq

𝑃𝑃
�. (4) 

Absorption of the MeH material:  

𝑟𝑟R,abs,MeH =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 100 [s-1] ∙ exp�
−21000[Jmol-1K-1]

ℜ𝑇𝑇 � ∙ (1− 𝑋𝑋) ∙ �
𝑃𝑃 − 𝑃𝑃eq

𝑃𝑃eq
�  . (5) 

In case of ”reabsorption” conditions during the desorption reaction (see Section 2.3), 𝑟𝑟R is described by 

an IF condition: IF the system pressure is below the desorption equilibrium pressure, the equations for 

𝑟𝑟R,des,MeH are valid. IF the system is above the absorption equilibrium pressure and IF already more 

than 1% of the transformed fraction has been desorbed, 𝑟𝑟R is characterized by the equations for 

𝑟𝑟R,abs,MeH.  

When Darcy´s law, ∇𝑃𝑃g = − 𝜇𝜇
𝐾𝐾
∙ 𝑣𝑣g,����⃗    is applied for the description of the gas velocity, 𝑣𝑣g���⃗ , the equation of 

the mass balance of the gas phase in terms of gas pressure Pg is given by 

𝜀𝜀
𝑀𝑀
ℜ𝑇𝑇

𝜕𝜕𝑃𝑃g

𝜕𝜕𝜕𝜕
− 𝜀𝜀

𝑃𝑃g𝑀𝑀
ℜ𝑇𝑇2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− ∇ �𝜌𝜌g
𝐾𝐾
𝜇𝜇
∇𝑃𝑃g� = −(1 − 𝜀𝜀)𝑟𝑟R𝑤𝑤𝑤𝑤max𝜌𝜌𝑠𝑠 − 𝑚̇𝑚𝑑𝑑𝑑𝑑𝑑𝑑, (6) 

where M is the molar mass of H2, ℜ is the real gas constant, T the temperature, ρg the density of the 

gas, K the permeability of the powder bed, µ the viscosity of H2, ε the porosity of the bed, wtmax the 

maximum hydrogen storage capacity of the material and ρs the solid density. 𝑚̇𝑚𝑑𝑑𝑑𝑑𝑑𝑑 refers to the mass 

of hydrogen that is removed from the reactor, see Section 1.1.2. 

For the energy balance of the system, local thermal equilibrium (LTE), 𝑇𝑇 = 𝑇𝑇g = 𝑇𝑇s, is assumed leading 

to 

�(1 − 𝜀𝜀)𝑐𝑐p,s𝜌𝜌s + 𝜀𝜀𝑐𝑐p,g𝜌𝜌𝑔𝑔�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑐𝑐p,g𝜌𝜌g
𝐾𝐾
𝜇𝜇
∇𝑃𝑃g∇𝑇𝑇 − ∇ ∙ (−𝜆𝜆eff∇𝑇𝑇) 

                                                          −(1 − 𝜀𝜀)𝑟𝑟R𝑤𝑤𝑤𝑤max𝜌𝜌𝑠𝑠∆R𝐻𝐻 . 

(7) 

The expression on the left hand side of Equation 7 refers to the accumulation of enthalpy in the gas as 

well as in the solid phase with the heat capacity of the gas and solid cp,s/g. On the right hand side, 

convective heat transfer of the gas phase, heat transfer by thermal conduction in the powder and a 

heat source due to the reaction are accounted for, where ∆RH is the enthalpy of the desorption 

reaction. In case of “reabsorption”, in analogy to the IF condition for the effective reaction rate 

mentioned above, another IF condition has been applied on the enthalpy of reaction.  

1.1.2 Initial and boundary conditions  

The initial condition for the temperature of the tank is given by the constraints of a HT-PEM fuel cell, Ti 

= Tsteel,i = 170 °C, and the initial pressure is set to Pi = 20 bar. This pressure is below the fuelling 

pressure of 70 bar, however, as in the first seconds H2 is only released from the void space of the 

reactor, this behavior is not relevant for the present considerations. Furthermore, in the initial state, 

both materials are fully in the absorbed state.  

For the energy equation, the boundary condition at the center is a symmetry condition. At the outer 

surface, a heat flux from the steel wall to the heat transfer fluid has been assumed that is 

characterized by a heat transfer coefficient of α = 600 Wm-2K-1, compare [11]. The most important 

boundary condition during desorption experiments, however, is given by the mass flow rate of H2 that 
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is removed from the system and consumed by the fuel cell. This flow rate is implemented as a 

(negative) source term in the gas balance of the system (see Equation (6)), and it causes the 

characteristic decrease in system pressure that results in the endothermal desorption reaction and the 

corresponding temperature decrease. Thus, this mass flow rate is a very important variable for the 

simulations and has to be chosen in a reasonable way. For the present simulations, the storage 

capacity of the reactor has been related to the storage discharging time in order to be able to compare 

different scenarios and different reactor designs. E.g., in the present basic case it has been assumed 

that the storage capacity of the MeH and the CxH in a reactor with a length of 1 m is deploited in 3 h. 

Thus, the required desorption H2 flow rate rdes is given in s-1 as 1/10800 s = 9.26 10-5 s-1, and the 

resulting mass flow rate is calculated as  

𝑚̇𝑚des = 𝜌𝜌s𝑤𝑤𝑤𝑤max(1 − 𝜀𝜀) ∙ 𝑟𝑟des ∙ 𝐴𝐴tube  ∙ 𝐻𝐻, (8) 

where Atube refers to the perpendicular cut of tube axis that corresponds to the geometry of the model 

and the height of the reactor is defined as H = 1 m. For the termination of the simulation, the following 

condition has been applied: as soon as the pressure reaches a value below 1.7 bar - the minimum 

working pressure to supply the fuel cell - the simulation is terminated. Besides simulations with a 

constant desorption H2 flow rate, also simulations with periodic H2 flow rates (thus, varying values of 

the source term) have been performed, see Section 2.3.  

2 Results and Discussion 

The general effect of the addition of a MeH material to a CxH material in a combination reactor has 

already been discussed in a previous publication [11] and can be summarized as follows: 

• The addition of the MeH to the CxH material stabilizes the pressure in the system: As the 

reation rate of the MeH is several orders of magnitude higher than the rate of the CxH, the 

pressure in the system will not fall below the equilibrium pressure of the MeH material as long 

as the MeH can desorb hydrogen. 

• The efficiency of the hydrogen storage in the CxH material is improved since, as long as the 

MeH is stabilizing the pressure, the CxH material can desorb at its own desorption rate. Thus, 

the MeH is just desorbing as much H2 as to meet the demand of hydrogen for the fuel cell. 

• The temperatures in the reactor decrease due to the endothermic reaction. As the MeH is 

placed at the center of the tube, where the lowest temperatures appear, this region of the 

reactor is efficiently used as the MeH still shows sufficient kinetics even at low temperatures. 

(< 150 °C).  

The goal of the present publication is to study these effects in more detail and derive suggestions for 

future tank design of similar reactors. First, the effect of varying geometries is studied in Section 2.1, 

and the optimum reactor design for absorption determined in a previous publication is evaluated with 

respect to desorption constraints. Then, in Section 2.2, the minimum module size for a satisfying 

desorption performance is discussed, when the effective reaction rates of the materials are known. 

This minimum module size is important for applications requiring a substantial thermal management, 

e.g. sufficient heat transfer at a specific temperature level, when a tank is coupled to a HT-PEM fuel 

cell. Finally, the dynamic performance of a combination reactor is studied when the H2 flow rate shows 
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a dynamic behavior, and the observed effects are explained by the effective desorption rates of the 

different materials, see Section 2.3. 

2.1 Optimum reactor design for desorption 

In a previously published study, an optimum geometry for a combination reactor has been determined 

with respect to a short filling time leading to a reactor with a geometry of dMeH = 10 mm and ξ = 1.25 

[12]. In this section, it is now studied whether this radial geometry determined for absorption is also 

useful for the constraints that apply during desorption operation. Therefore, starting from the optimum 

absorption geometry, different geometric parameters are varied in the following, where always a 

scenario with a complete desorption in 3 h is considered.  

2.1.1 Variation of the ratio ξ 

First of all, the effect of varied values for ξ on the desorption performance is studied in analogy to the 

absorption study [12]. Figure 2 shows the corresponding transformed fraction plot for ξ values of 0.5 to 

4, for a discharging time of 3 h. Additionally, the values for volumetric ratio (εCxH=VCxH/Vtotal), storage 

capacity and stored H2 per m length of reactor are summarized in Table 1 for the different cases (A, D, 

E, F). In case of absorption there exists a clear optimum regarding the minium fuelling time as it has 

been shown in a previous publication [12]. In contrast, for the desorption process the decision on an 

optimum is not clearly defined as there is not only one single criterium that has to be met. For the 

combination reactor, the optimal value is rather a trade-off between discharging efficiency and CxH 

volumetric ratio. For a value of ξ = 0.5 (green), the discharging efficiency is very high, however, with 

εCxH= 0.56, the tank mainly consists of MeH material. On the other hand, for ξ = 4 (turquoise), the 

discharging efficiency is very low as the desorption is interrupted early. Therefore, a value of 1.25 

(black), which has been the optimum for absorption is also suitable for the discharging process leading 

to a CxH fraction of εCxH = 0.8.  

2.1.2 Variation in dMeH 

Next to a variation of ξ, also the radius of the MeH material dMeH at the center has been varied from 10 

to 5 and 15 mm, and the optimum values for each ξ have been adapted from the analogous 

absorption simulations. Figure 3 shows the corresponding absolute mass of hydrogen that is desorbed 

in each case per m length of reactor (compare also Table 1). From this plot it is obvious that in case of 

the reactor with dMeH
=15 mm (red), the MeH dominates the combination reactor as more hydrogen is 

actually stored in the MeH (23.5 g, dashes) than in the CxH (16.5 g, solid). In case of the 5 mm reactor 

(orange) this ratio is much better with 2.6 to 8.2 g. However, the total mass of H2 stored per m length 

of reactor is very small. Thus, it can be concluded that for desorption a geometry using dMeH = 10 mm 

(black), shows a good trade off between performance and stored H2 per m.  

 

Summarizing the parameter study on the optimum reactor geometry, it is obvious that the optimum 

geometry for absorption is also applicable for the desorption process.  
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2.2 Discussion of minimum module size for desorption process 

As it has been concluded in the previous section, a reactor design that is optimal with regards to the 

absorption process - filling time - is also suitable for a general desorption scenario. However, for the 

desorption process also the module size of the overall tank can be crucial, as it will be shown in the 

following. 

In this section, the correlation between the effective reaction rates of the materials as well as the 

discharging time of the storage reactor and the minimum possible reactor module size is discussed. 

Furthermore, it is introduced how this module size can influence the thermal management of a reactor 

during desorption operation. As mentioned before, the module size always refers to the mass of 

hydride that desorbs hydrogen at the same time, thus it is independent of any geometric assumption.  

First, two basic scenarios are depicted in Figure 4, in order to explain the effects of different module 

sizes on the operation procedure. In both cases, a total mass of 5 kgH2 is stored in 10 elements of the 

same dimensions and the reactor is operated for 10 h until it is compeletely discharged:  

I. In the 1st case, 5 (out of 10) elements are connected to one module. They are heated up to the 

nominal operation temperature and operated for the first 5 h. Each element is desorbing 

hydrogen with a rate of 0.1 kgH2 per h resulting in an overall H2 discharging rate of 0.5 kgH2h-1 

of the whole module. After 5 h, the second module has to be in operation. Therefore, the next 

5 identical elements are heated up and the same H2 flow rate is desorbed by the material in 

this module. So, hydrogen has been delivered at a discharging rate of 0.5 kgH2 h-1 to the fuel 

cell during 10 h of operation. In this case, it is possible to use hydride materials with very low 

effective (desorption) reaction rates, as the size of the two modules is rather big, and the 

material in the single elements has to desorb H2 at a rather low rate. However, this system is 

not very flexible concerning cold start ability and/or heat losses, as a very big part of the 

overall tank has to be heated up and kept at operation temperature at the same time.  

II. In the 2nd case, only 1 element is heated up to operation temperature at the same time, so in 

this case one element refers to one module. Thus, in this module the effective desorption 

reaction rate of the materials has to be sufficiently high to discharge 0.5 kgH2 h-1 for one hour. 

Then, the next module is heated up and desorbs the same amount of H2 and so on. 

Therefore, also in this case a constant H2 discharging rate of 0.5 kgH2 h-1 can be realized while 

only 1 module is kept at operation temperature at the same time. This kind of configuration is 

advantageous when a more flexible operation behavior is desired, especially considering the 

start-up of the system.  

 

From these two cases it is clear that it is desirable to use the smallest possible module size for an 

enhanced thermal management allowing for a flexible operation of the tank. In the following section, it 

will be discussed how the minimum module size for a H2 storage reactor can be determined 

analytically by the effective desorption reaction rate of the material. The considered boundary 

conditions for these analytical considerations are given by a HT-PEM fuel cell with an assumed 

temperature of the heat transfer fluid THTF = 165 - 170 °C and a minimum H2 supply pressure of 0.5 – 1 

bar and for the material properties of the two reference materials.  
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2.2.1 Analytical Considerations 

For a first guess on the minimum modules size, it is sufficient to consider only the effective reaction 

rates of the materials. The corresponding procedure can be seen in a plot showing the reaction rate 

versus the transformed fraction for the considered temperatures and pressures (170 °C and 0.5 – 1 

bar). For the reference materials considered in this study, this kind of plot is shown in Figure 5 A and 

B. First of all, from this plot it is clear that the reaction rates of the MeH material (B) are 2 to 3 orders of 

magnitude higher than the reation rates of the considered CxH material (A), see different scales. The 

straight lines indicate the required rates for a complete desorption in tdes = 2, 3 or 5 h. As the effective 

rate of the MeH is higher than these rates even up to a fully discharged state, it is obvious that the 

MeH material can continuously desorb H2 at a high rate. In contrast, the effective reaction rates for the 

CxH material are much lower. In this case the material requires at least 5 h for a complete discharging 

process, as only in this case the reaction rate is higher than the theoretical rate for a full conversion in 

5 h (a rate of 1/(5·3600 s) = 5.56 10-5 s-1). Therefore, for this material, a desorption time of 2 or 3 hours 

will only lead to a H2 release from the 1st desorption step.  

Thus, it can be concluded that for the MeH material, there does not exist a minimum module size from 

the point of view of reaction rates, as even the total capacity can be released in few seconds. 

However, for the CxH material, the size of the modules should be chosen in a way that each module 

can desorb H2 for at least 5 h in order to be able to utilize the total capacity of the material. So, 

comparing Case I and II in Section 2.2.1, each module has to consist of several elements.  

 

Besides the effective reaction rates of the materials at isothermal and isobaric conditions, in a second 

step it is useful to include more information on the actual reactor design (tube diameters) in the 

considerations for the minimum module size. As the reactor design will influence the temperature 

profile appearing in the reactor, this will also influence the overall reactor performance and the 

assumption of isothermal conditions. E.g., for larger tube diameters the temperature at the center will 

decrease due to the endothermic reaction, thus, the temperature of the heat transfer fluid will not 

represent the temperature of the material, consequently the assumption of constant T and P is not 

valid any more. For the case of an annular ring filled with CxH material, the temperature decrease 

between the heat transfer fluid and the temperature T2 at the GPSL, can be calculated analytically 

according to the following equation [17], assuming a constant heat flux due to the endothermal 

desorption reaction of a constant H2 flow rate from the CxH material,  

𝑇𝑇HTF − 𝑇𝑇2 = − (∆R𝐻𝐻𝜌𝜌)CxH(1−𝜀𝜀)
4𝜆𝜆eff𝑡𝑡dis

�𝑟𝑟i
2 − 𝑑𝑑MeH

2 � + (∆R𝐻𝐻𝜌𝜌)CxH(1−𝜀𝜀)
2𝜆𝜆eff𝑡𝑡dis

𝑑𝑑MeH
2 ln � 𝑟𝑟i

𝑑𝑑MeH
�,    (9) 

where THTF and T2 are the temperatures of the heat transfer fluid and the GPSL, ∆RH, ρs, wtCxH, ε and 

λeff are the reaction enthalpy, the density, the storage capacity, the porosity and the effective thermal 

conductivity, and rHTF and dMeH are the radii of the annulus corresponding to Figure 1. Furthermore, tdis 

is the given discharging time. The calculated temperature decreases for the optimum design 

determined in the absorption scenario [12] (compare Table 1, A, B, C), are 7.1 K, 4.7 K and 3.5 K for 

the complete desorption in 2 h, 3 h and 5 h, respectively.  
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Thus, for the 3 h and 5 h desorption the temperature decrease is not very prominent (< 5 K) and it can 

be assumed that the first estimation of the minimum module size using only the effective reaction rate 

information at constant temperature is correct.  

2.2.2 Simulation results 

The previously introduced analytical considerations showed the challenges during desorption 

processes for materials with very low effective desorption reaction rates, e.g. CxH materials. 

Furthermore, they showed how a first estimate on the minimum possible module size for a 

combination reactor can be obtained, based on the assumption that the CxH material is dominating 

the overall performance. In this section, this initial analytical estimate is analyzed in detail by a 

discussion of the time dependent desorption simulations of both materials in the combination reactor 

as well as by a discussion of the final mass of H2 that could be desorbed in the different cases. 

Figure 6A shows the transformed fraction of MeH and CxH versus time profiles for the simulated 

cases, where the total stored H2 capacity is desorbed in 2 h, 3 h and 5 h (compare Table 1, A, B, C). 

Regarding the geometry, the optimum geometry obtained from the 1D simulations for absorption is 

considered with dCxH = 10 mm and ξ = 1.25, and the length of one module is defined as 1 m.  

The time dependent behavior is in all three cases quite similar and can be described as follows: in the 

beginning the straight lines which indicate the mass H2 desorbed by the CxH material increase while 

the dashed lines referring to the MeH material stay at a very low level. Thus, the majority of H2 is 

desorbed by the CxH material. Then, towards the end of each scenario, the effective reaction rate of 

the CxH is slowing down and the MeH material starts to desorb H2 filling the gap to the required H2 

flow rate for the fuel cell. The same effect can be seen from Figure 6B where the temperature at the 

GPSL, T2 (dashes), as well as the temperature at the center, T1 (solid), are plotted versus time for the 

same three cases. First, the temperature in the center follows the equilibrium of the CxH indicating that 

mainly CxH material is desorbing hydrogen. Then, more H2 has to be desorbed by the MeH material 

resulting in a temperature decrease to the equilibrium temperature of the MeH material, and the 

temperature T1 in the center starts to vary significantly from the temperature at the GPSL, T2. 

This behavior of the three different desorption cases is in accordance with Figure 5, that has been 

discussed above: in all three cases, towards the termination of the simulation the MeH is compeletely 

discharged with a wtfrac of 0.009 at 165 °C (dashed lines), as the effective reaction rate of this material 

is very high even at the applied pressures and temperature. However, for the discharge of the CxH 

material different values are obtained: in case of a discharging within 2 h and 3 h, just 2 wt.% and 2.4 

wt.% can be desorbed corresponding mainly to the 1st desorption step. Only for the case of a 

desorption for 5 h the full H2 capacity of 3.2 wt.% can be reached. Linking these findings to the general 

exemplary cases in Section 2.2.1, it is obvious that for a discharging of the reaction in 2 or 3 h, the 

currently used module size is too small to completely discharge the reactor for the effective reaction 

rate of the reference materials. Therefore, if a complete discharging is desired, either the module size 

should be increased or the discharging rate reduced (to e.g. 5 h).  

Concluding this section it can be stated that the analytical considerations and the simulated results 

agree very well: The minimum discharging rate from 3 h for the complete 1st desorption step and 5 h 

for a full 2nd step desorption that have been predicted by the analytical considerations have been 
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confirmed in detail by the 1D simulations. For a discharging process within 2 h, significantly less H2 

could be desorbed. Here a clear deviation from the analytical estimation is obtainded since it predicted 

a very similar behavior to the discharging within 3 h. However, in this case, the more prominent 

temperature decrease - that has already been predicted analytically - deteriorates the performance, as 

it can be clearly seen from Figure 6B. 

 

Thus, the analytical considerations presented in Section 2.1.1 can be useful to understand the 

correlations between the module size of a reactor and its desorption performance at a given 

discharging rate for materials with given desorption rates. This fact can especially be interesting for 

tank applications requiring a substantial thermal management, as it is the case for coupling a solid 

state hydrogen storage tank to a HT-PEM fuel cell. 

2.3 Simulations with varying loads 

In the previous section, it has been introduced why small module sizes can be an important issue for 

technically relevant storage tanks. This was done based on the assumption of constant discharging 

rates. In this section, more realistic boundary conditions, for e.g. a scenario where the tank is coupled 

to a HT-PEM fuel cell, will beconsidered. Therefore, besides scenarios with constant discharging rates 

simulating a constant power output of the fuel cell, the behavior of a tank during varying loads is of 

high practical importance, e.g., in a driving scenario this can correspond to going uphill or going 

downhill [18].  

In order to understand the performance of a combination reactor during dynamic loads and especially 

the effect of the additional MeH, 3 different scenarios are simulated using the basic geometry with dMeH 

= 10 mm and ξ = 1.25 (see Table 1, A):  

• The first scenario (I) is the basic case for the optimum geometry with a discharging time of 3 h, 

as it has been used also in the previous sections. 

• The second scenario (II) refers to the same discharging time, however, in this case the rate is 

not constant but it is varied: for 30 s, 6 times the base load is discharged and for the following 

450 s, the load is reduced by a factor of 10 to 0.67 times the base load.  

• The third scenario (III) refers again to the same discharging time, but now the rate is varied 

between 30 s and 450 s from 0.53 to 8, so by a factor of 15.  

Figure 7 shows the discharging rates for the three different cases together with the rates versus 

transformed fraction plot of the CxH material at given temperature and pressure (THTF= 170 °C and P > 

1.7 bar, compare Figure 5A). From this plot it becomes obvious that using the constant discharging 

rate of Scenario I (blue straight line), the 1st desorption step of the CxH material can in principle be 

fully discharged as the required flow rate is below the possible desorption flow rate up to 60% 

transformed fraction. In Scenario II, the peak rates should be acceptable up to a transformed fraction 

of approx. 30%, thus in this case approx. half of the 1st desorption step should be available for this 

varying load case. Finally, for Scenario III, the peak loads exceed the possible desorption rates of the 

CxH material even at very low transformed fractions. Thus, in a pure CxH reactor with the present 

geometry and module size, the material would not be able to keep up the required discharging flow 

rate from the fuel cell even from the beginning – even for ideal (isothermal and isobaric) conditions. 
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For scenarios with varying discharging rates, the analytical considerations reflecting mainly the CxH 

material desorption rates are insufficient to capture the final behavior. Therefore, detailed simulations 

are required that take the simultanious reactions of both materials into account. Figure 8 shows the 

results of the time dependent simulations of the three scenarios using the optimum geometry of the 

combination reactor (see Table 1, A). In Figure 8A, the system pressure is plotted versus time for the 

three scenarios. Obviously, in Scenarios II and III, the pressure is varying periodically due to the 

periodic discharging rate. The intensity of this fluctuation depends on the intensity of the different 

discharging rates, thus for Scenario III (green, dots) the variations are more significant than for 

Scenario II (red, dashes). Furthermore, it is obvious that in all three scenarios the time until the 

experiment is interrupted is very similar. This is surprising as the rate during peak loads in Scenario III 

clearly exceeds the possible effective desorption rate of the CxH material, see discussion above. This 

behavior is due to the additional MeH material in the combination reactor and it clearly shows the 

advantages on the dynamic behavior of such a combination reactor: even when in a scenario the peak 

loads exceed the maximum desorption rates of the CxH material, the MeH material can additionally 

desorb and thus stabilize the system pressure. Furthermore, as the system pressure is stabilized, it is 

possible that in all three cases the same amount of H2 is desorbed from both materials as it is shown 

in Figure 8B, where the mass of desorbed H2 is plotted: in all three cases not only the MeH but also 

the CxH material desorbs H2 up to the same value. 

In the following, the two parallel reactions are discussed in more detail. It will be shown that the MeH 

material is not only desorbing extra hydrogen during peak loads, but it is also able to “reabsorb” 

hydrogen during low loads. Thus, the “buffering” function of the MeH material is not only available 

once, but it can be recharged. Figure 9 shows a detail of the system pressure (red) as well as the 

equilibrium pressures for desorption of the CxH (black dots) and the MeH (grey dots) and for 

absorption for the MeH (grey dashes) for Scenario III. From this graph it is obvious that the system 

pressure never falls below the desorption pressure of the MeH material as this is desorbing sufficiently 

fast to keep a constant system pressure. Furthermore, during low load conditions the system pressure 

never exceeds the absorption equilibrium pressure of the MeH material indicating that the material 

“reabsorbs” hydrogen. Since the system pressure is constantly below the desorption equilibrium 

pressure of the CxH material, the CxH desorbs continuously thereby also supplying hydrogen for the 

“reabsorption” in the MeH. The “reabsorption” is possible until approx. 3600 s, then the system 

pressure does not reach the required absorption pressure of the MeH anymore. The same fact is 

shown in Figure 10, where a detail of the desorbed mass H2 is plotted versus time only for the MeH 

material. Here, it can be clearly seen that the desorbed mass of H2 in the MeH material is decreasing 

during low loads and – during the first part - increasing during peak loads.  

In summary it can be concluded that especially Scenarios II and III clearly show the advantages of the 

combination reactor concept during a dynamic desorption scenario: even when the required peak 

discharging rate exceeds the possible effective desorption rate of the CxH material, it is possible to 

show a satisfying performance on a reactor level. Thus, as long as the required discharging hydrogen 

rate can be on average supplied by the CxH material in a given geometry and module size, even much 

higher peak discharging rates can be tolerated in a combination reactor as the MeH material can 

desorb and reabsorb sufficiently fast. 
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Coming back to the discussion on the minimum module size in Section 2.1, it is obvious that the 

addition of some MeH to the CxH material can decrease the required module size for a pure CxH tank 

and thus increase the flexibility of the tank. Especially for the start-up phase or during mode changes 

in the operation, that require a substantial thermal management, a reactor with a suitable combination 

of materials can improve the overall performance. 

 

3 Conclusions 

In the present publication, the desorption performance of different configurations of a combination 

reactor based on a reference metal hydride and a reference complex hydride have been studied using 

analytical methods and simulations of a 1D model using the software COMSOL. 

First, a sensitivity study of the desorption performance has been performed by varying the ratio 

between the MeH and the CxH as well as the radius of the inner MeH tube starting from the previously 

determined optimal absorption geometry. Both studies indicated, that the optimal absorption geometry 

is also suitable for the given desorption conditions.  

Second, based on generic operation conditions, the influence of the module size of a reactor on the 

required thermal management during operation was analysed. Then, the minimal module size of a 

reactor has been discussed when a certain discharging time is required and the effective desorption 

reaction rates characterizing the CxH material are known. As the rates of the present reference 

material at 165 °C and 1 bar are quite low, very large modules are required in order to be able to 

deliver sufficient hydrogen. Thus, for these materials, the thermal management of the overall tank will 

be challenging.  

Finally, the desorption process has also been studied for varying loads, e.g. for a load variation by a 

factor of 10 and 15. In this case it was shown that the combination reactor is advantageous as the 

MeH material was able to buffer and reabsorb hydrogen during peak and low loads, respectively, 

leading to smaller possible module sizes than analytically expected. Therefore, based on the 

combination principle the desorption performance on a reactor level can be better than indicated by 

the effective desorption rates of the respective CxH material. 
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Figures 

Figure 1: Schema of the modelled 1D geometry of an axisymmetric tubular reactor. 

 

Figure 2: Mass of H2 desorbed by the MeH material (dashes) and the CxH material (solid line) for a 

desorption scenario at 170 °C using a complete desorption in 3 h, (compare Table 1, scenario: A, D, 

E, F). ξ varies from 0.5 (green) to 1.25 (opt, black), 2 (blue) and 4 (turquoise). 

 

Figure 3: Desorption scenario at 170 °C with ξ = 1.25 and dMeH varies from 5 mm (orange) to 10 mm 

(black) and 15 mm (red), (compare Table 1, scenario: A, G, H). Mass of hydrogen desorbed by the 

MeH (dashes) and the CxH (solid) in kg per m length of reactor. 

 

Figure 4: Effect of different module sizes on the flexibility of an overall hydride tank system during 

desorption. 

 

Figure 5: Effective reaction rates versus transformed fraction for 165 °C and 0.5 bar (solid) or 1 bar 

(dashed line). A: Reference CxH material: 2 LiNH2–1.1MgH2 –0.1 LiBH4–3wt.% ZrCoH3 B: Reference 

MeH material: LaNi4.3Al0.4Mn0.3.  

 

Figure 6: Desorption scenario at 170 °C using the optimal absorption geometry and rdes for a complete 

desorption in 2 h (red), 3 h (black) and 5 h (blue), (compare Table 1, scenario: A, B, C). A: Mass of H2 

desorbed by the CxH (solid) and MeH (dashes). B: Temperature T1 (solid) and T2 (dashes). 

 

Figure 7: Discharging rates for the three different scenarios together with the desorption rate versus 

the transformed fraction of the reference CxH material. Complete desorption in 3 h (solid, blue), 

varying load varying by a factor of 10 between low and high load (dash, red) and varying load varying 

by factor of 15 (dot, green). Arrows indicate max. possible transformed fraction for each maximum 

rate. 

 

Figure 8: Desorption scenario for the three different scenarios: Complete desorption in 3 h (solid, 

blue), varying load by a factor of 10 between low and high load (dash, red) and varying load by a 

factor of 15 (dot, green). A: system pressure. B: mass H2 desorbed by MeH material (turquoise, 

orange, light green) and mass H2 desorbed by CxH material (blue, red and green). 

 

Figure 9: Detail of Scenario II. System pressure (red, solid), desorption equilibrium pressure of the 

CxH (black, dot), desorption equilibrium pressure of the MeH (grey, dot) and absorption equilibrium 

pressure of the MeH (grey, dash). 

 

Figure 10: Detail of mass H2 desorbed by Meh material for the desorption scenarios shown in Figure 

8. Turquoise: Scenario I, orange: Scenario II, light green: Scenario III. 
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Tables 

Table 1: Overview of the simulated geometries / scenarios.  
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Table 1: Overview of the simulated geometries / scenarios.  
  Scenario dMeH dS.S ξ εCxH tdis mMeH mCxH 
  mm mm - - h g per m length g per m length 

va
ria

tio
n 

in
 t d

is 

A 10 2.0 1.25 0.80 3 10.5 12.6 
B 10 2.0 1.25 0.80 2 10.5 10.1 

C 10 2.0 1.25 0.80 5 10.5 16.4 

va
ria

tio
n 

in
 ξ

 

D 10 1.4 0.50 0.56 3 10.5 13.6 
E 10 2.7 2.00 0.89 3 10.5 11.3 
F 10 4.5 4.00 0.96 3 10.5 7.5 

va
ria

tio
n 

in
 d

M
eH

 G 5 1.6 2.50 0.92 3 2.6 8.2 

H 15 2.5 0.83 0.70 3 23.5 16.5 

 



Figure 1: Scheme of the modelled 1D geometry of an axisymmetric tubular reactor. 
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