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ABSTRACT

Recently, many sparse approximation methods have been ap-
plied to solve spectral unmixing problems. These methods in
contrast to traditional methods for spectral unmixing are de-
signed to work with large a-prori given spectral dictionaries
containing hundreds of labelled material spectra enabling to
skip the expensive endmember extraction and labelling step.
However, it has been shown that sparse approximation meth-
ods sometimes have problems with selection of correct spec-
tra from the dictionary when these are similar. In this paper
we study the detection and approximation accuracy of differ-
ent sparse approximation methods as well as the influence of
the proposed modifications.

Index Terms— Hyperspectral image, sparse unmixing,
spectral dictionary.

1. INTRODUCTION

Spectral unmixing is a method for quantitative analysis of hy-
perspectral images. This analysis includes detection of end-
members (unique spectra) and estimation of their abundance
in each pixel of the hyperspectral image. The usual approach
for spectral unmixing is first, to either extract endmembers
from the image or to use a preselected set of available known
endmembers and second, to estimate their abundance. The
abundance estimation step can be done by computing the in-
verse of the spectral mixing process e.g. using the linear mix-
ing model (LMM) which states that the spectrum of a mixed
pixel can be expressed as the weighted integrated sum of the
spectra of all endmembers within the pixel [1].

The detection of endmembers especially in highly mixed
scenarios is often very hard and requires supervision and ex-
pert knowledge to assign the endmember to a real material.
To obey this step, recently sparse spectral unmixing (SSU)
has been proposed [2, 3, 4], a method which uses large spec-
tral dictionaries containing hundreds of labelled endmembers
for abundance estimation. These methods, additionally to the
LMM assume the sparsity of the abundance vector, i.e., the
fact that hyperspectral pixels usually contain only few end-
members when compared to the size of the dictionary.

The most common way to introduce the sparsity prior
in SSU is by regularising the abundance estimation error

with either `0 or `1 norm of the abundance vector for every
pixel in the image known as pixel-wise SSU. Researchers ap-
proached this new problem by applying different algorithms
based on e.g. the alternating direction method of multipliers
(ADMM) [2], Least Absolute Shrinkage and Selection Op-
erator (LASSO) [3] or Orthogonal matching pursuit (OMP)
[5].

As it has been shown in previous works the results of SSU
are often negatively influenced by the high mutual similari-
ties between spectra of many materials and noise leading to
unstable solutions. To deal with these problems several ap-
proaches have been proposed in recent literature. The first
one discussed in this paper is the removal of unnecessary ele-
ments from the dictionary, i.e., dictionary pruning. Pruning is
usually done by selecting the most reliable endmembers from
a redundant dictionary before performing actual abundance
estimation [6, 4]. However, one should note that selecting
endmembers from a dictionary, e.g. those the most corre-
lated with the data, does not guarantee selecting the correct
ones. Therefore we propose a method which instead of se-
lecting only one one enedmember selects the complete class
to which it belongs. The second approach to improve results
of the SSU discussed in this paper is the derivative transfor-
mation of the dictionary to decrease the coherences.

Besides of the possible improvements, this paper also
presents a comprehensive analysis of the three different al-
gorithms for sparse approximation applied to different SSU
problem formulations. These findings can help researchers in
the decision which algorithm is suitable for their problems.

2. METHODOLOGY

Let us assume a LMM

y = Ax+ ε (1)

where y ∈ Rm is the measured spectrum from a hyperspec-
tral pixel, A ∈ R[m×n] is the mixing matrix containing end-
members and x ∈ Rn is the abundance vector. When A is
overcomplete i.e. it contains more endmembers than spectral
channels n > m or even n >> m one could expect x to be
sparse.

The expected sparsity of the abundance vector implies the
use of sparse approximation methods. Hence, the abundance
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estimation problem can be formulated as the non-negative
version of the OMP (nOMP)

min‖Ax− y‖22 s.t. ‖x‖0 6 δ0 and x > 0 (2)

where δ0 is the upper bound set on the number of endmem-
bers in the spectrum y. The OMP algorithm is efficient with
very sparse problems because it can recover a k−sparse so-
lution in only k iterations. To solve nOMP problems a slight
modification of the OMP Algorithm is required (for details
please refer to [7]).

Alternatively, the sparsity can be controlled using the non
negative LASSO (nLASSO) formulation

min‖Ax− y‖22 s.t. ‖x‖1 6 δ1 and x > 0 (3)

where δ1 is the upper bound set on the sum of all elements
in vector x. An algorithm able to solve the nLASSO prob-
lem using a modified version of the Least Angle Regression
(LARS/LASSO algorithm) has been reported in [8].

The nLASSO problem can be expressed in its equivalent
Lagrangian version, i.e., non negative Basis Pursuit Denois-
ing (nBPDN)

min
1

2
‖Ax− y‖22 + λ‖x‖1s.t. x > 0 (4)

where lambda is a penalty parameter for the `1 norm of x.
Note that this formulation does not provide as intuitive control
of the sum of all elements in vector x as the one in (3). The
nBPDN problem can be solved using e.g. an ADMM based
sparse unmixing via variable splitting augmented Lagrangian
(SUnSAL) described in [2].

The probability of reliable sparse unmixing using above
algorithms highly depends on the properties of the matrix A
and the noise present in the spectrum [2, 3]. Therefore, we
propose the following improvements.

To reduce the size of a dictionary and remove unused
endmembers a new algorithm for Two Step Group Unmix-
ing (TSGU) can be used. The algorithm in an initial step
clusters the dictionary A into a predefined number of clus-
ters k using the k-means algorithm. Then the algorithm oper-
ates in a pixel-wise manner. First, the initial unmixing using
nLASSO or nOMP is performed. Next, a new dictionary is
created containing clusters of endmembers in which at least
one endmember has positive abundance. Using the pruned
dictionary a second unmixing using nLASSO is done and the
final abundance vector is approximated. The pseudo code for
this algorithm is shown in Algorithm 1.

The use of spectral derivatives to reduce the correlations
in the dictionary has been first proposed in [3] and also ap-
plied in [5]. The differentiation of spectra does not result
in more information contained in the original bands but de-
creases the background reflectance and can therefore consid-
erably improve the detection of convoluted weaker absorption
features [3, 5, 9]. It is also easy to see that applying the spec-
tral derivative to both sides of the equation Sy = SAx, where

Algorithm 1: TSGU
Input: A, Y [m×p], δ1, δTSGU , ε, c

1 begin
2 Clustering: using K-means algorithm cluster dictionaryA with n

elements {a1, a2, ..., an} in to a k sets of clusters where
L = {l(a)|a = 1, 2, ..., n} is the set of clusters labels ofA;

3 initialize: set all x̂j,i for j ∈ 1, ...,m, p ∈ 1, ..., p to 0;
4 for i = 1,...,p do
5 compute the initial x(0)

j abundance using the nLASSO or nOMP;
6 find set of clusters C and labels of active endmembers

LC = {l(j)|j : x
(0)
j 6= 0};

7 construct a new pruned dictionaryAC containing endmembers
labeled LC ;

8 compute abundances x̂Ci using dictionary with selected clustersAC
using nLASSO;

9 set [X̂(j, i)|j ∈ C]←− x̂Ci ;

10 return X̂;

S is the spectral derivative operator, does not change the prop-
erties of the abundance vector. Therefore, the so transformed
image and dictionary can be unmixed using any method based
on the LMM.

3. RESULTS

For the experiments the spectral dictionary was created us-
ing 432 selected spectra from the USGS spectral library [10]
(splib06). Every spectrum has been resampled to match the
original spectral response function of the AVIRIS sensor us-
ing formulas described in [11]. To simulate spectral mixtures
the following simulation scenario was used. First, form a mix-
ing matrix M ∈ R[m×n′] by selecting n′ endmembers at ran-
dom from A. Then, an abundance vector x′[n

′] by randomly
assigning elements such as xi > 0.01 and ‖x‖1 = 1 was cre-
ated. Finally, a mixed spectrum by means of LMM y′[m] =
Mx′ + ε′, where ε′[m] is Gaussian noise with SNR [dB] =
10log10

‖y′[m]‖22
‖ε′[m]‖22

, has been generated. The simulated data con-
sisted of 10 000 spectra containing mixtures of 2 to 10 equally
distributed endmembers. In such a way 5 sets of data sets
were generated with SNRs of 20dB, 30dB, 40dB, 50dB and
60dB. The experiments were run in Matlab 7b on Intel(R)
Core(TM) i5-2520M CPU @ 2.50GHz processor with 8GB
of RAM using algorithms reported in [2, 12] as well as Mat-
lab build in functions.
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Fig. 1. Execution time of tested algorithms for dataset with
10000 pixels, 224 channels and SNR of 30dB.

2861



20 30 40 50 60
10−1

100

101

SNR [dB]

A
-M

SE
nLASSO SUnSAL nOMP nOMPd NNLS FCLS TSGU

20 30 40 50 60

100

SNR [dB]

M
A

E

20 30 40 50 60

10−5

10−3

10−1

SNR [dB]

R
-M

SE

Fig. 2. Plots of mean errors for datasets with different SNR values. The plots present (from left to right) A-MSE, MAE and
R-MSE.

We have tested the TSGU and derivative transform ap-
plied in nOMP (nOMPd) by comparison with other state of
the art algorithms i.e. Nonnegative Least Squares (NNLS),
Fully-Constrained Least Squares (FCLS) [1], nLASSO,
nOMP and SUnSAL [2]. The algorithms were compared
globally by calculating mean values of: (1) the Absolute
Mean Square Error (A-MSE) defined as A-MSE =

‖x−x̂‖22
‖x‖22

,
(2) the Mean Absolute Error (MAE) defined as MAE =
‖x−x̂‖1
‖x‖1 and (3) the Reflectance Mean Squared Error (R-

MSE) defined as R-MSE =
‖y−Ax̂‖22
‖y‖22

. The errors has been
calculated for all estimated abundance vectors in each data
set witch different SNR. The results are shown in Fig. 2.
Additionally, we have assessed the results for (4) the end-
member detection accuracy (ACC) using ACC =

∑
TP+

∑
TN∑

P+
∑

N
measure and for (5) the sensitivity of the detection (SNT) us-
ing SNT =

∑
TP∑
P measure, where TP, TN denote respectively

true positive and true negative detection of an endmember, P
and N denotes active and inactive endmember in the ground
truth.

Considering the A-MSE measure, the algorithms nLASSO,
TSGU, SUnSAL and FCLS perform similarly for SNR val-
ues equal 20dB and 30dB witch slightly lower mean A-MSE
when using SUnSAL. For SNRs from 40dB to 60dB our algo-
rithm TSGU exhibit the lowest A-MSE followed by nLASSO
and FCLS. The nOMP method performs worst showing the
highest A-MSE values for all test cases. However, the use
of nOMP together with the TSGU (TSGU-OMP) signifi-
cantly improves the results considering all measures. Using
the R-MSE measure shows that the algorithm NNLS pro-
vide the best estimation of ŷ followed by nOMP and FCLS
(the results are shown in Fig. 3). Note, that the algorithms
NNLS and nOMP have low R-MSE but high A-MSE and
MAE values indicating very good reconstruction of spec-
trum but poor estimation of abundance vector. The first
and second column in Fig. 3 shows the dependency of the
number of mixed endmembers to A-MSE and MAE. In both
cases for all algorithms the error rises with the increase of
the contributing endmembers. Here the benefit of using the
derivative transform can bee seen in the high SNR scenario
e.g. for SNR=60dB results of nOMPd are comparible to other

methods. The ACC of endmember detection depending on
the number of mixed spectra in the ground truth an the SNR
value is plotted in the third column in Fig. 3. All algorithms
exhibit high values of ACC ranging from 0.93 for spectra
mixed of 10 spectra to 0.98 for mixtures of only two end-
members. The ACC appears to remain similar for all SNR
values. Algorithms TSGU, nOMP and nOMPd for all SNR
are among three with the highest ACC. The SNT of the de-
tection for all tested algorithms is shown in the fourth column
in Fig. 3. The LASSO based algorithms together with NNLS
and FCLS exhibit the best detection of endmembers for all
algorithms.

Comparing the execution time of tested algorithms the
FCLS perform the worst out of all algorithms needing
20611.86 seconds. NNLS converged in 98.57 seconds. The
`0 regularized method nOMP and nOMPd performed the
fastest with 0.01 second for the whole dataset. The second
fastest algorithm was nLASSO with 0.53 seconds. Both
algorithms with preselection step TSGU and TSGU-OMP
performed slower than nOMP or nLASSO but were still sig-
nificantly faster than conventional approaches. SUnSAL was
the slowest algorithm out of the pixel based sparse regularized
methods. The execution times for all algorithms are reported
in Fig. 1.

4. CONCLUSIONS

In this paper we presented a comparison of SSU approaches
using different algorithms and their modifications. The fol-
lowing has been found: (1) SSU methods with `1 minimiza-
tion are at least as good as FCLS and better than NNLS
with the execution time reduced by several orders of magni-
tude. (2) With noisy data SNR<40dB nLASSO, SUnSAL,
and FCLS exhibit the best performance from which LASSO
is the fastest. (3) The endmember preselection used in our
TSGU algorithm can significantly increase the accuracy and
sensitivity of detection of endmembers. (4) For data with
SNR>50dB the nOMP with derivative transformed dictio-
nary is the fastest option with similar performance to other
algorithms. For future work we address similar tests with real
data.
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Fig. 3. Results of the assessment of unmixing experiments plotted for different SNR values in rows and using different measures
in columns. The results for nOMPd are plotted only when the results were comparable to other methods, otherwise nOMPd
performed much worse than the competitors.
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