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Summary 

Consider a spatia l multibody system with rigid and elastic bodies . The bodies 

are linked by rigid interconnections (e . g . revolute joints) causing con

straints, as well as by flexible interconnections (e.g. springs) caus ing 

applied forces . Small motions of the system with respect to a given nominal 

configuration can be described by linearized dynamic equations and kinematic 

constraint equations . We present a computer oriented procedure which allows 

to develop a minimum nurober of these equations . There are three problems. 

First: algorithmic selection of position coordinates ; second: condensation 

of the dynamic equations; third: evaluation of the constraint forces. To 

dernarrstrate the procedure, a closed loop multibody system is used as an exam

ple. 
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1. INTRODUCTION 

The· linearized equations of motion can be written in the following form: 

( 1 ) M p + K p • + D p = g 

Here M, K , D, a r e system matrices developed in [1, 2, 3 ]; p is the vector of 

the n position coordinates of the unconstr aint sys tem and g the vector of p 
the internaland external f or ces. Any n holonomic constraints on the motions z 
of the system can be represented in linearized form as 

(2) Czt p(t ) = Z(t ) 

where CZ is a constant n x n - matrix. p z 

Equation (2) r estricts the solution space of (1) to the set {a(t)} + ker(Czt ) 

where a(t ) is a particul ar solution of (2) and where ker ( Czt ) is the null 

t space of Cz . Without lass of generality it can be assumed t hat a (t) is an 

element of the orthogonal complement of ker(Czt) which will be denoted by 

t + t ker(Cz ) . The dimension of ker(Cz ) corresponds to the number ny of degrees 

of freedom. In the case of a system with a full rank constraint matrix we have 

ny = np - nz . Otherwise a r educt ion of Cz to a matrix with full rank must be 

performed to evaluate n . This can be done in a numerically stable manner by 
y 

the singular value decompos ition [4]. We assume for the fo l lowing, that this 

has been previously done . 

To describe a solution of the system ( 1) , ( 2) with n ( independent) reduced y 
postion coordinates y it is necessary to choose a basis of the solution sp'ace 

ker(Cz t). The bas i s vectors will be denoted by the matrix Jy . Equivalently a 

basis J z of ker(Czt)+ is chosen with the feature 

(3) a (t ) = Jz z(t ) 
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Thesedefinitionsare equi valent to the following matrix products : 

( 4 ) " t cz Jy = 0 

( 5 ) c t J = I z z 

(6) J t J = 0 y z 

where I denotes t he identity mat rix. p can be spl i t t ed into a direct sum of 

two vectors with the following represent ation : 

(7) p = Jy y + Jz z . 

For simple constrained systems one may have so much ins i ght i n the structure 

that it ls po~sible to establish Jy by hand. 

For more complex systems an automated approachwill be necessary . A method to 

select the basis Jy has been proposed in [5 , 6] using the zero - eigenvalue 

t heorem, which is equivalent to the singular value decompostion [4 ] . The 

coordinates obtained by this method form an orthogonal basis of ker(Czt) , 

which is from the numerical point of view optimal. But the reduced position 

vector y represented in an orthogonal basis has in general no more physically 

interpretable components and a backtransformation of the vector y to the vec

tor p will be necessary, where the numerical advantage can be lost again . 

This disadvantage is avoided by the method pr esented here . This method also 

automatically selects a basis Jy of the solution space, but the basis vectors 

are chosen so that the components of y are identical to some components of p . 

This choice keeps the physical interpretability of y . I n addition one can 

prescribe some linear combination of the canonical basis vectors by giving a 

re l ation 

(8) 
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t t o be taken as basis vectors of ker (Cz ) . lf stands f or sorne cornponents of t he 

reduced pos it ion vector y . 

2. NUMERICAL METROD 

For sirnplicit y it is requir ed that c, has full r ank . To avoid contradictions 

i t i s necessary to assurne that the colurnns of Cz a r e linearly i ndependent 

frorn those of c, . Otherwise l inear dependency between colurnns of Cz and C~ 

would indicate , that coordinates n h ave been chosen, which cannot be used to 

describe t he rnotion of the rnu l tibody systern (c. f . exarnple). 

There are t wo steps to perform in order to obtain the basis vectors : Evalu

at i on of Jy by solving equation (4 ) with t he restriction (8 ) and evaluation 

of Jz by solving equation (5) and (6). The l ast step can be ornitted if z = 0 

and i f the cornputation of the constr aint forces is not required. 

If we choose J z so, t hat 

(9) t c'l Jz = 0 

holds, 

(10) 

follows out of equation (7). Equation (4) and (10) can be cornbined to 

( 11 ) = 
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Using orthogonal Hauseholdertransformations and co lumn pivoting [4 ] , Ct can 

be decomposed into a product of an orthogonal matr ix Q, an upper triangular 

matrix R, with its d iagonal elements ordered in a sequence of decreasing 

absolute values, and a permutation matrix P: 

(12) Ct=QRP 

As Ct has full rank, R can be partitioned as 

( 1 3) R = [ Rl' S] 

where R 1 is quadratic with no zerodiagonal elements . Thus the dimension of 

R1 equal s the rank of C. Jy is considered tobe of the form 

(14) Jy = p 
[

Jol J2IJ 

where J 1 is a (n + n ) x n - matrix, J2 is a (n + n ) x (n - n ) - matrix . z Tl Tl z Tl p Tl 
With these definitions equation (1 1 ) reads 

Denoting the first n
2 

rows of Q by Qz and the remaining n~ by ~ 

the follow ing solution of equat ion (15) 

( 16) = p 
[

R - 1 Q I 

1 1\ 

0 

<· 

we obtain 
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Herein the orthogonality of Q has been used . The column vectors of Jy are 

indeed the basis vectors of ker (Czt) and as a consequence of the identity 

matrix in the lower right corner of Jy the components of y generated by this 

method are really components of the unreduced position vector p. 

The step establishing Jz is easier. Equation (5) and (6) can be combined to 

the fol lowing system of linear equations 

(17) = 

which can be solved by standard methods . 

This algorithm has been integrated and tested in a FORTRAN - program which 

gener ates the linearized equations of motion for genP.ral mult i body systems 

[7 ,8] . For the orthogonal decomposition, subroutines from t he LINPACK pack

age [9 ] have been used. Methods using orthogonal matrix decomposit ion are 

numerical l y stable ; t hey are preferable to t hose using Gauss r elated algo 

rithms for determining the rank of a matrix . 

3. CONDENSATION OF THE DYNAMIC EQUATIONS AND ELIMINATION OF 

THE CONSTRAINT FORCES 

With the matrices Jy and Jz we can define the gener alized applied f orces fy 

and the generalized constraint forces fz as the projection of t he total force 

g in the spaces ker(Czt) and ker(Czt) +: 

(18) 

fy = Jytg 

f = J tg z z 



- 6 -

Correspondingl y g can be splitted into a dir ect sum of two forces 

g = gy + gz; with the applied force gy, defined by 

(19) 

and the constraint force gz , defined by 

(20) 

For simplicity we assume for the following the case z = 0 . The more general 

equations can be easily obtained from this case. Introducing (7) in (1) and 

premultiplying (1) with Jyt gives 

By this procedure the number of equations of motion has been reduced to the 

minimum and the constraint forces have been eliminated, which follows from 

equation (19). Note that in order to obtain these results, the principle of 

d'Alembert was not needed; the elimination of the constraint forces was a 

consequence of geometrical considerations only. 

4. EVALUATION OF THE CONSTRAINT FORCES 

It fol lows from (20) that 

(22) 

holds. Premultiplying (1) with Jzt instead of Jyt gives an expression for 

the generation of the generalized constraint forces: 
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From these generalized constraint forces the forces gz can be easily obtained 

by using the relation 

This relation can be verified by premultiplying it with Jzt and by using 

(4),(5) and (18): 

(25) 

(26) 

5 . EXAMPLE 

J tc r 
y z z = 0 

The kinematically closed chain treated in [1 0, page 182] has been used as an 

example to demonstrate the method. Small motions about the nomina l triangular 

configuration, shown in figure 1, have been studied. There are n = 30 posi-p 
tion coordinates and n = 30 constraint equations. The l atter are linearly z 
dependent and the system has one degree of freedom. The computational results 

of this example are shown in table 1 . As one can see, the formalism chooses 

"y 1 = rotation of body 5 about axis 2" as reduced coordinate of the system in 

triangular - shape configuration. This choice and in consequence the matrix 

Jy are in general dependent on the nominal configuration of the sys t em. The 

method applied to the cube - shape configuration of the chain does not lead 

to the same coordinate as found in the present case . The coordinate chosen by 

the algorithm in this case cannot be used to describe the moti on of t he chain 

in the cube shape configuration . 
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Figure 1. The kinematically closed chain in triangular conf igur ation . Body 

1 to 5 are free bodies, body 6 is fixed . 
n : 30 postion coordinates , n : 30 cons t raints. 
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Number of degrees of freedom: 

Definition of the reduced 

position variable 

Matrix 

Jy (30, 1 ) 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0 . 0 

0.0 

0.0 

0.0 

- 1. 0 

0.0 

- 0.1 

0.0 

0 .0 

0.0 

0.5 

0.866 

0.05 

0.0 

0 . 0 

0.0 

- 0.5 

0.0 

0.1 

0.0 

0.0 

0.0 

1 . 0 

0.0 

n y = 

y1 = rotation of body 

Position variables 

(defined in the body fixed 

type axis 

translation in 

" " 2 

" " 3 

rotation about 1 

" " 2 

" " 3 

translation in 1 

" " 2 

" " 3 

rotation about 

" " 2 

" " 3 

translation in 

" " 2 
II II 3 

rotation about 1 
II " 2 
II " 3 

translation in 1 

" " 2 
II " 3 

rotat ion about 

" " 2 
II II 3 

trans lation in 1 
II " 2 
II " 3 

rotation about 1 

" II 2 

" " 3 

5 about 

frame) 

body 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 

4 

5 

5 

5 

5 

5 

5 

Table 1: Numerical results for the kinematically closed chain . 

axis 2 


