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Summary

Consider a spatial multibody system with rigid and elastic bodies. The bodies
are linked by rigid interconnections (e.g. revolute joints) causing con-
straints, as well as by flexible interconnections (e.g. springs) causing
applied forces. Small motions of the system with respect to a given nominal
configuration can be described by linearized dynamic equations and kinematic
constraint equations. We present a computer oriented procedure which allows
to develop a minimum number of these equations. There are three problems.
First: algorithmic selection of position coordinates; second: condensation
of the dynamic equations; third: evaluation of the constraint forces. To
demonstrate the procedure, a clesed loop multibody system is used as an exam-

ple.



1. INTRODUCTION
The linearized equations of motion can be written in the following form:
(1) Mp +Kp +Dp = g

Here M, K, D, are system matrices developed in [1, 2, 3]; p is the vector of
the n_ position coordinates of the unconstraint system and g the vector of
the internal and external forces. Any n, holonomic constraints on the motions

of the system can be represented in linearized form as
t -
(2)  C,° p(t) = z(t) ;

where Cz is a constant npx n, - matrix.

Equation (2) restricts the solution space of (1) to the set {a(t)} + ker(Czt)
where a(t) is a particular solution of (2) and where ker(CZt) is the null-
space of Czt. Without loss of generality it can be assumed that a(t) is an
element of the orthogonal complement of ker(Czt) which will be denoted by

Tk
ker(CZ b ™

of freedom. In the case of a system with a full rank constraint matrix we have

The dimension of ker(Czt) corresponds to the number ng of degrees

n_ = np - B Otherwise a reduction of Cz to a matrix with full rank must be
performed to evaluate n_. This can be done in a numerically stable manner by
the singular value decomposition [4]. We assume for the following, that this

has been previously done.

To describe a solution of the system (1), (2) with ny (independent) reduced
postion coordinates ¥y it is necessary to choose a basis of the solution space
ker(Czt). The basis vectors will be denoted by the matrix J
+
)

v Equivalently a

basis JZ of ker(CZt is chosen with the feature

(3) a(t) = Jz zZ(t)



These definitions are equivalent to the following matrix products:

where I denotes the identity matrix. p can be splitted into a direct sum of

two vectors with the following representation:

(7) p=d, y¥d, =

¥

For simple constrained systems one may have so much insight in the structure

that it is possible to establish J_ by hand.

Y
For more complex systems an automated approach will be necessary. A method to
select the basis J_ has been proposed in [5,6] using the zerc - eigenvalue
theorem, which is equivalent to the singular value decompostion [4]. The
coordinates obtained by this method form an orthogonal basis of ker(Czt),
which is from the numerical point of view optimal. But the reduced position
vector ¥ represented in an orthogonal basis has in general no more physically
interpretable components and a backtransformation of the vector ¥ to the vec-

tor p will be necessary, where the numerical advantage can be lost again.

This disadvantage is avoided by the method presented here. This method also

automatically selects a basis J_ of the solution space, but the basis vectors

Y
are chosen so that the components of y are identical to some components of p.
This choice keeps the physical interpretability of y. In addition one can
prescribe some linear combination of the canonical basis vectors by giving a

relation

(8) gtp=n



to be taken as basis vectors of ker(CZt). N stands for some components of the

reduced position vector V.

2. NUMERICAL METHOD

For simplicity it is required that C_ has full rank. To avoid contradictions

it is necessary to assume that the columns of CZ are linearly independent

from those of C_ . Otherwise linear dependency between columns of CZ and C

would indicate, that coordinates m have been chosen, which cannot be used to

describe the motion of the multibody system (c.f. example).

There are two steps to perform in order to obtain the basis vectors: Evalu-

ation of Jy by solving equation (4) with the restriction (8) and evaluation

of JZ by solving equation (5) and (6). The last step can be omitted if Z

and if the computation of the constraint forces is not required.

If we choose Jz so, that

holds,
10 c. s =11,0
(10) 'qy[’]

follows out of equation (7). Equation (4) and (10) can be combined to

(11) o%r. = s S0 . B

=0



Using orthogonal Householder transformations and column pivoting [&4], ct can
be decomposed into a product of an orthogonal matrix Q, an upper triangular
matrix R, with its diagonal elements ordered in a sequence of decreasing

absolute values, and a permutation matrix P:
(12) C“=QRP

As C® has full rank, R can be partitioned as
(13) R = [Rl’ S]

where Rl is quadratic with no zero diagonal elements. Thus the dimension of

Rl equals the rank of C. Jy is considered to be of the form

I Jg

Il
=}

(14) J
0 I

; & _ : ; _ _ :
where 'Il is a (nz nn) xn matrix, 32 is a (nz + nn) X (np nn) matrix.

With these definitions equation (11) reads

(15) [QR;J; .QR;J,+Q5]=

Denoting the first n_ rows of Q by QZ and the remaining n, by Q_'l we obtain

the following solution of equation (15)

(16) d. =P :



Herein the orthogomnality of Q has been used. The column vectors of Jy are

indeed the basis vectors of ker(Czt) and as a consequence of the identity
matrix in the lower right corner of Jy the components of ¥y generated by this

method are really components of the unreduced position vector p.

The step establishing JZ is easier. Equation (5) and (6) can be combined to

the following system of linear equations

(17) J =

which can be solved by standard methods.

This algorithm has been integrated and tested in a FORTRAN - program which
generates the linearized equations of motion for general multibody systems
[7,8]. For the orthogonal decomposition, subroutines from the LINPACK pack-
age [9] have been used. Methods using orthogonal matrix decomposition are
numerically stable; they are preferable to those using Gauss related algo-

rithms for determining the rank of a matrix.

3. CONDENSATION OF THE DYNAMIC EQUATIONS AND ELIMINATION OF
THE CONSTRAINT FORCES

With the matrices Jy and Jz we can define the generalized applied forces f

and the generalized constraint forces fz as the projection of the total force

g in the spaces ker(CZt) and ker(Czt)+:

(18)



Correspondingly & can be splitted into a direct sum of two forces
g = gy + g, with the applied force gy, defined by

t

t. _
(19) I.5g =358, .

and the constraint force g, defined by
e t
(20) 3% =3¢,

For simplicity we assume for the following the case Z = 0. The more general
equations can be easily obtained from this case. Introducing (7) in (1) and

premultiplying (1) with Jyt gives

1

tpyg y=3"tg

t ] t
1 MJ +dJ - K J + J

y y 4 y y

By this procedure the number of equations of motion has been reduced to the
minimum and the constraint forces have been eliminated, which follows from
equation (19). Note that in order to obtain these results, the principle of
d'Alembert was not needed; the elimination of the constraint forces was a

consequence of geometrical considerations only.

4. EVALUATION OF THE CONSTRAINT FORCES

It follows from (20) that

(22) It =0

-y

holds. Premultiplying (1) with Jzt instead of Jyt gives an expression for

the generation of the generalized constraint forces:



o™ t “a .
(23) fZ—JZ(MJyy+KJyy+DJyy)

From these generalized constraint forces the forces g, can be easily obtained

by using the relation

(26) g, =C, 1, .

This relation can be verified by premultiplying it with Jzt and by using
(4),(5) and (18):

t _ t _ _ t
25) J3,g, =3 c f, =f =1"g
t _ t =
(26) Ifg, =T c, 1, =0
5. EXAMPLE

The kinematically closed chain treated in [10, page 182] has been used as an
example to demonstrate the method. Small motions about the nominal triangular
configuration, shown in figure 1, have been studied. There are np = 30 posi-
tion coordinates and n, = 30 constraint equations. The latter are linearly
dependent and the system has one degree of freedom. The computational results
of this example are shown in table 1. As one can see, the formalism chooses
"y1 = rotation of body 5 about axis 2" as reduced coordinate of the system in
triangular - shape configuration. This choice and in consequence the matrix
J_ are in general dependent on the nominal configuration of the system. The
method applied to the cube - shape configuration of the chain does not lead
to the same coordinate as found in the present case. The coordinate chosen by
the algorithm in this case cannot be used to describe the motion of the chain

in the cube shape configuration.
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Figure 1. The kinematically ¢
1 to 5 are free bodies, body 6 is fixed.
a = 30 postion coordinates, 0, = 30 constraints.
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Number of degrees of freedom: n_=1

Definition of the reduced .
position variable H ¥q = rotation of body 5 about axis 2
Matrix Position variables
Jy €30,.1) (defined in the body fixed frame)
type axis body
0.0 translation in 1 1
0.0 " " 2 1
0.0 - i 3 1
0.0 rotation about 1 1
0.0 " - 2 1
0.0 & " 3 1
0.0 translation in 1 2
0.0 " = 2 2
0.0 " 5 3 2
0.0 rotation about 1 2
- 1.0 N N 2 2
0.0 . " 3 2
- 0.1 translation in 1 3
0.0 v » 2 3
0.0 = & 3 3
0.0 rotation about 1 5
0.5 . - 2 3
0.866 " - 3 3
- 0.05 translation in 1 4
0.0 . 2 2 4
0.0 " * 3 4
0.0 rotation about 1 4
= 0.5 & " 2 4
0.0 " " 3 4
- 0.1 translation in 1 5
0.0 = = 2 5
0.0 - Y 3 5
0.0 rotation about 1 5
1.0 . - 2 5
0.0 a " 3 5
i}

Table

e

Numerical results for the kinematically closed chain.



