

EGU2015-9070 European Geosciences Union, General Assembly 2015, Vienna / Austria, 12 – 17 April 2015

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Reconstruction of the ionospheric electron density by geostatistical inversion

David Minkwitz¹, Karl Gerald van den Boogaart^{2, 3}, Mainul Hoque¹ and Tatjana Gerzen¹

¹German Aerospace Center (DLR), Institute of Communications and Navigation, 17235 Neustrelitz, Germany, ²Helmholtz Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg of Resource Technology and ³Technical University Bergakademie Freiberg, 09599 Freiberg, Germany

Tomography of the ionospheric electron density

- 3D electron density distribution of the ionosphere is of crucial importance for different applications like GNSS Positioning and Remote Sensing
- Different direct (e.g. ionosondes, inand indirect measurements (ground- and space-based slant Total Electron Content [STEC]) of the ionospheric electron density are available

Above: Tomography of the ionosphere

 The estimation of the ionospheric electron density by STEC measurements is a strongly underdetermined and ill-posed inverse problem with limited angle geometry

Regional application

- European region is chosen as validation environment for DOY 022/2011
- Measurement geometry reveals strongly underdetermined inverse problem
- 3D Simple Kriging of the electron density with about 300 STEC measurements of 50 IGS stations
- Comparison of derived electron density profiles to ionosonde profiles

Left: Typical measurement geometry Europe: IGS ground stations (black triangles), ionospheric piercing points of the STEC measurements (blue circles) and ionosondes Rome/Italy and Dourbes/Belgium (red triangles)

Estimated covariance

- The parametric covariance composed of and vertical horizontal component
- Correlation lengths depend on local time and latitude

Right: horizontal correlation for lengths 022/2011 at an altitude of 300 km for two different times and coordinates (black dots)

3D Simple Kriging of the electron density

Left: Work flow of 3D Simple Kriging is based on the incorporation of a background model, in this case the NeQuick model, and groundbased STEC measurements

- 1) Derive the STEC measurements \overline{STEC} from the dual-frequency GNSS measurements and initialize the NeQuick model as background providing the expected STEC $\vec{\mu}$ along a given measurement geometry
- 2) Establish a parametric spatial covariance model of the electron density representing the ionosphere's behavior, e.g. anisotropic correlation lengths and non-stationarity, and derive its relation to the spatial covariance of the STEC measurements Σ_{θ}
- 3) Estimate the parameters of the spatial covariance model within a maximum likelihood estimation (MLE) by means of the available STEC measurements, i.e. maximize:

$$\arg\max_{\theta} \frac{1}{\sqrt{(2\Pi)^{n} \cdot |\Sigma_{\theta}|}} \exp\left(-\frac{1}{2} \left(\overline{STEC} - \vec{\mu}\right)^{T} \Sigma_{\theta}^{-1} \left(\overline{STEC} - \vec{\mu}\right)\right)$$

Estimate the electron density for an arbitrary WGS84 coordinate \vec{x} by the 3D Simple Kriging of linear functionals, i.e. STEC measurements:

$$Ne(\vec{x}) = \mu(Ne(\vec{x})) + \begin{pmatrix} cov_{\theta}(Ne(\vec{x}), STEC_1) \\ \vdots \\ cov_{\theta}(Ne(\vec{x}), STEC_n) \end{pmatrix}^{T} \Sigma_{\theta}^{-1} (\overrightarrow{STEC} - \vec{\mu})$$

Preliminary results

- The 3D Simple Kriging fits the background model electron density profiles towards the STEC measurements
- The comparison with independent ionosonde profiles illustrates the achieved improvements regarding the F2 layer characteristics on DOY 022/2011
- Artifacts can be reduced by the estimation of the measurement error model parameter

Above: Electron density reconstruction over **Europe** at DOY 022/2011 12:00 UTC for the altitudes between 200 – 350 km

Left: Reconstructed electron density height profiles at Dourbes/Belgium during DOY 022/2011 without (upper) and with (lower) measurement error model: Electron density profiles of the NeQuick background model (blue), the 3D Simple Kriging electron density profiles (green) and the ionosonde electron density profiles (red) at 02:00 13:30 and 16:00 UTC

Conclusions & Outlook

- A novel tool for the ionospheric electron density reconstruction is developed based on the estimation of the electron density's covariance
- Electron density covariance is crucial for data assimilation methods
- Preliminary results indicate a promising gain compared to the background model
- Approach is able to ingest direct and indirect measurements of the ionosphere
- Future work will focus on incorporation of additional measurements and the inclusion of a temporal aspect, for instance by means of an Ensemble Kalman Filter

Contact:

David Minkwitz (email: david.minkwitz@dlr.de) German Aerospace Center (DLR), Institute of Communications and Navigation, Kalkhorstweg 53, 17235 Neustrelitz, Germany http://www.dlr.de/kn/en/

This work is funded by the Helmholtz Alliance: Remote Sensing and Earth System Dynamics. http://hgf-eda.de/