Nickel-free Hybrid Metal-Ceramic Supported SOFC R. Costa

remi.costa@dlr.de

Alantum Europe GmbH: R. Poss, ARMINES: A. Chesnaud, F Willot CerPoTech: G. Syvertsen, CNR: M. Viviani, A. Sanson Grenoble INP: L. Dessemond Ceraco GmbH: R. Semerad Saan Energi: A. Ansar

Knowledge for Tomorrow

DLR German Aerospace Center

Generations of planar SOFCs

3rd Gen. SOFC: MSCs at DLR

Plasma Deposition Technology

Ferritic Substrates and Interconnects

Compact Design with Thin Metal Sheet Substrates

Brazing, Welding and Glass Seal as Joining and Sealing Technology

3rd Gen. SOFC: MSCs at DLR

MSC Cell

12.5 cm² cell at 800°C; H₂/N₂ and air

10 Cells Stack

100 cm² single cells at 800°C; H₂/N₂; air

- P. Szabo, J. Arnold, T. Franco, M. Gindrat, A. Refke, A. Zagst, A. Ansar, ECS Transactions, 2009 (25) 2 p.175-185
- D. Soysal, A. Ansar, Z. Ilhan, R. Costa, ECS transactions, 2011 (35) 1 p.2233-2241

Beyond the 3rd Gen. SOFC: Issues to be adressed for improving MSCs

- Cr-poisoning at the cathode side > Protective coating required
- Improve tolerance toward sulfur poisoning
- Life time of metal substrate if stationary applications are considered
- Hermitic electrolyte

Which materials and architecture
 for the next generation of SO(F)C?

Nickel-free Hybrid Metal-Ceramic Supported SOFC Metal substrate resistant toward oxidation

Formation of an Al₂O₃ layer as a durable protective coating

Al rich alloys, on the basis of MCrAI(Y) with M being Fe, Ni, Co or a mixture

EVOLVE

FUEL CELL

Nickel-free Hybrid Metal-Ceramic Supported EVOLVE SOFC

Infiltration with an

electronic conductor

(ideally a ceramic)

Target : 100 S/cm

Hybrid current collector mechanically and chemically stable in both oxidant and reducing atmosphere

FUEL CELL

Nickel-free Hybrid Metal-Ceramic Supported SOFC

EVOLVE

FUEL CELL

Use of perovskite materials at the anode and cathode, being modified by addition of suitable catalysts

 Realization of Evolve Cell

 Image: Second structure

 Image: CGO diffusion barrier layer

 Image: YSZ or ScSZ Electrolyte

 Image: LSCM-CGO anode (with infiltrated Ni)

High power density, Sulfur resistant, Fuel flexibility, Thermal cycling, Redox Cycling

Stationary applications ...

EVOLVE Nickel-free Hybrid Metal-Ceramic Supported SOFC

Composition of the anode: $Ce_{1-x}Gd_xO_{2-\alpha} / La_{0,1}Sr_{0,9}TiO_{3-\alpha}$ Electrolyte: 8-YSZ Cathode : $Ce_{1-x}Gd_xO_{2-\alpha} / La_{0,4}Sr_{0,6}Co_{0,2}Fe_{0,8}O_{3-\alpha}$

Development strategy

Evaluation of the anodic electrocatalyst

Rpol decreases: increase in thickness and/or decrease of the pore size

EVOLVE Evaluation of the electrocatalyst

Electrokinetic modeling

Reaction mechanism and kinetic data

-	Reaction	k^0	$E^{\operatorname{act}}(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$
-	LST/CGO phase		
R1 :	$H_2 + 2 O_{LST} \Longrightarrow OH_{LST} + OH_{LST}$	$1.5 \cdot 10^{14} \mathrm{cm}^2 \cdot \mathrm{mol}^{-1} \cdot \mathrm{s}^{-1}$	50.0
R2:	$H_2O + O_{LST} + \Box_{LST} \Longrightarrow 2 OH_{LST}$	$1.0 \cdot 10^{18} \mathrm{cm}^2 \cdot \mathrm{mol}^{-1} \cdot \mathrm{s}^{-1}$	122.0
R3:	$O_{LST} + O_{LST} \Longrightarrow O_2 + \Box_{LST}$	$1.0 \cdot 10^{22} \mathrm{cm}^2 \cdot \mathrm{mol}^{-1} \cdot \mathrm{s}^{-1}$	260.0
R4:	$YSZ/CGO \ phase$ $O^{\times}_{O \ YSZ} + V^{"}_{CGO} \iff O^{\times}_{O \ CGO} + \Box_{CGO}$ $Charge-transfer \ reactions$	$1.0 \cdot 10^{22} \text{ cm}^2 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	50.0
C1:	$O_{OCGO}^{\times} + \Box_{LST} \rightleftharpoons V_{CGO}^{\cdots} + O_{LST}^{1-} + e^{-}$	$4.9 \cdot 10^{11} \mathrm{cm}^2 \cdot \mathrm{mol}^{-1} \cdot \mathrm{s}^{-1}$	-1 129.0
C2 :	$O_{LST}^{1-} \rightleftharpoons O_{LST} + e^{-}$	$5.2 \cdot 10^3 \text{ cm}^2 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	39.0

\Rightarrow detailed multistep (electro-)chemical mechanism

- \Rightarrow thermodynamically consistent kinetic modeling
- \Rightarrow evaluation of main performance limitation processes

• Thermodynamic data

Species, i	h_i (kJ·mol ⁻¹) s_i (J·K ⁻¹ ·mol ⁻¹)			
LST-CGO phase				
⊡_st	0	0		
O _{LST}	-85.6	139		
OH _{LST}	-199.0	0		
O_{LST}^{1-}	-114.0	139		
$O_{0\text{CGO}}^{\times}$	-236.0	0		
$V^{``}_{0\text{CGO}}$	0	0		
YSZ phase				
O_{OYSZ}^{\times}	-236.0	0		
$V^{``}_{OYSZ}$	0	0		

EVOLVE Evaluation of the electrocatalyst

- LST-CGO20, 50 vol%-50 vol %
 screen printing
- Data
 - Anode: 15 µm
 - Electrolyte: 925 µm
 - Mesh: 700 µm
 - Inlet: 50 mL/min/cm²
 - Active surface area:
 4.6 10⁴ m²/m³
- ⇒ qualitative agreement between modeling and experiments
 - three main impedance features

 \Rightarrow - unambiguous assignment of impedance features

- influence of surface chemistry

Efficient LST based anodes requires high specific surface area

- separation of transport and chemistry
 - cell design optimization

V. Yurkiv, G. Constantin, A. Hornes, A. Gondolini, E. Mercadelli, A. Sanson, L. Dessemond, R. Costa, submitted to Journal of Power Sources

Evaluation of the current collector

EVOLVE Evaluation of the current collector

LST-NiCrAl current collector > Cathode sintering leads to full reoxidation of LST Evaluation of in-situ reduction of LST during stack sealing/commissioning

Total conductivity << 100 S/cm

19

Evaluation of the current collector

LST-NiCrAl current collector > Cathode sintering leads to full reoxidation of LST Evaluation of in-situ reduction of LST during stack sealing/commissioning

Total conductivity << 100 S/cm

EVOLVE

FUEL CELL

Full Cell Processing

EVOLVE FIRST demo Prototype through Plasma Spraying Route

Low risk approach using the know how from DLR for spraying YSZ layers. No need of sintering step.

Prototype

EVOLVE towards thin films electrolyte

EVOLVE towards thin film electrolytes

Cell P: - low OCV

- no polarization curves
- high R_s but low R_{pol}

25

Conclusion & perspectives

• *La*_{0,1}Sr_{0,9}TiO_{3-α}

Requires high specific surface area Requires specific treatment for full activation

- Reducibility and maximum level of perovskites electrocatalysts needs to be enhanced
- Implementation of metals seems necessary to achieve conductivity target in the current collector

> demonstration up to 100cm² cell of SOC

Acknowledgement

FCH JU for funding under the grant Agreement n°303429

F. Han (for coatings), V. Yurkiv (modelling), G. Schiller, Prof. K.A. Friedrich,

Thank you for your attention!

