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Agroecosystem models (Soil-Vegetation-Atmosphere 
Transfer (SVAT) models) 
 
 
• simulate crop growth under different environmental and management 

conditions 
• diagnose crop growing conditions 
• predict crop yield (or accumulated biomass) 
• help to understand crop behaviour 
• help to design monitoring tools over large area 
• assist in best (sustained) management practices for food security  
• help to develop management strategies to minimize the impact of climate 

change  
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SVAT models 
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• use in-situ data (local representativeness) 
• force to apply approximations and simplifications   
• introduce various limiting factors as e.g. soil, weather, water, nitrogen 
• operate in a dynamic way 

 
 

 



SVAT models - simplified scheme of an agrosystem 

> Lecture > Author  •  Document > Date DLR.de  •  Chart 4 

Dorigo, et al. 2007 



SVAT models 
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• use in-situ data (local representativeness) 
• force to apply approximations and simplifications   
• introduce various limiting factors as e.g. soil, weather, water, nitrogen 
• operate in a dynamic way 

 
 

 
lack of precision, spatial uncertainty 
 
 
• influence simulation of two important physiological processes: 
- crop canopy development 
- soil moisture content 
 

De Wit et al. 2007 



Uncertainty in SVAT models 
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How to cope with? 
 
either… model run with default values for many variables 
- > disregarding spatial heterogenity 
- > introducing uncertainties  
 
 
or… use of RS data 
- > provision of information on meteorological, vegetation, (e.g.phenological), 

and soil conditions over large areas 
- > introducing uncertainties… 
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Homolova et al. 2013 

Optical RS 



In the wavelength between 400 and 2500 nm the radiance of the vegetation 
canopy measured by the sensor is influenced by: 
 
• optical properties of the vegetation elements themselves (leaves, stems, etc) 
• arrangement of these elements in the canopy 
• optical properties of the undergrowth and soil 
 
• constellation of sensor parameters (viewing and illumination angle) 
• atmospheric conditions (e.g. turbidity, aerosols) 

Optical RS 

> Lecture > Author  •  Document > Date DLR.de  •  Chart 8 



Optical RS 
- RS-derived state and driving variables, used in SVAT 
modelling 
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Dorigo, et al. 2007 



Integration of RS data in SVAT models 
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Statistical/ empirical approach 
- > search for statistical relationship 
between the spectral signature and 
measured biophysical or biochemical 
properties of the canopy 

Physical approach 
- > based on the radiation propagation 
within canopy 

Hybrid approach 
- > use of physical models to establish 
statistical relationship between the 
spectral signal and the biophysical 
parameters  



Integration of RS data in SVAT models 
  - statistical approach -  
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Methods: 
- simple or multiple regression 
- partial least square regression (PLS) 
- artificial neural networks (ANN) 
 Dorigo, et al. 2007 



Integration of RS data in SVAT models 
  - statistical approach - VIs  
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Dorigo, et al. 2007 

- > uses Vegetation Indices (VIs) to reduce background effects and enhance 
spectral features: 

 
1. Broadband VIs (for multispectral sensors) 
 a) Ratio VIs (e.g. NDVI) 
 b) Orthogonal and hybrid VIs (e.g. SAVI) 
 
2. Discrete narrow bands VIs (for hyperspectral sensors) 
 a) Narrow band ratios  
 (e.g. CARI – Chlorophyll Absorption Ratio Index, TVI - Triangular VI) 
 b) Spectral shape and the red edge VIs 
 (focused on the REIP – position of the Red-Edge- Inflection Point) 
 c) Spectral continuum measures VIs  
 (e.g. CACI – Chlorophyll Absorption Continuum Index)   



Integration of RS data in SVAT models 
  - statistical approach - VIs  
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• by far the most widely used vegetation index is Normalized Difference 
Vegetation Index (NDVI) 

 
• NDVI is used for e.g. for monitoring the continental or global scale with 

AVHRR- or MODIS-Data applications 
 

• NDVI = (ρNIR - ρred) / (ρNIR + ρred) 
 

• NDVI generates a normalized values range between +1 and -1 



Integration of RS data in SVAT models 
  - statistical approach - VIs  
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Example of relationship between NDVI and LAI 

Lacaze et al. 1996 



Integration of RS data in SVAT models 
  - physical approach -  
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- > consists of inverting a canopy reflectance model for the estimation of leaf 

and canopy properties 
 
- > simulate the interactions between solar radiation and the elements 

constituting the canopy using physical laws 
 
- > combine a leaf optical model with a canopy reflectance and a soil 

reflectance model and calculate the top-of-canopy reflectance. 



Integration of RS data in SVAT models 
  - physical approach -  
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Dorigo, et al. 2007 

Examples of leaf and canopy reflectance models   



Integration of RS data in SVAT models 
  - physical approach -  
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Inversion of canopy reflectance models: 
 
- > consists in finding the set of input parameters for the best match between 

the bi-directional reflectance factor (BRF) simulated with a canopy 
reflectance model and reflectance measured by the sensor 

 
Methods: 
- > Iterative optimization (e.g. Quasi-Newton algorithm, genetic algorithms, 

 or Markov-Chain Monte Carlo approach)  
- > Lookup tables (LUT) 
- > ANNs 



Integration of RS data in SVAT models 
  - statistical vs physical approach -  
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Dorigo, et al. 2007 



 
Data assimilation allows solid coupling of physical models, linking 
agroecosystem models to state space estimation algorithms  
 
Within data assimilation framework: 
 
1. Driving variables – force the system 
2. State variables – provide a complete description of system behaviour 
3. Model parameters – characterise the relationship between state- and driving 

variables 
4. Output variables   
 

RS data assimilation strategies in SVAT models 
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(Schaepman et al. 2007, Dorigo et al. 2007)  



RS data available throughout growing season enable: 
 
• calibration of the model – model parameters or initial states are adjusted to 

obtain an optimal agreement between the simulated and the observed state 
variables; re-estimation of the missing parameters 

  
• forcing – replacement of a state variable in the model using the observed 

data; direct use of RS-derived parameter as a model input 
 

• updating – consists of the continuously updating of model state variables, 
whenever an observation is available; based on the assumption that a better 
simulated state variable at day t will also improve the accuracy of the simulated 
state variable at day t+1; flexible in combining models 

  
 

RS data assimilation strategies in SVAT models 
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(Schaepman et al. 2007, Dorigo et al. 2007)  



Different RS assimilation methods 

RS data assimilation strategies in SVAT models 
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(Dorigo et al. 2007, adapted from Delecolle et al. 1992)  

calibration forcing 

updating 



Procedure example I: 
 
1. coupling a radiative transfer model to crop model through a canopy structure 

variable e.g. LAI) 
2. simulation of RS variables (e.g. reflectance in NIR) for all dates with acquired 

RS data 
3. comparison of simulated vs measured variables 
4. re-estimation of some initial model parameters 
  
 accuracy of simulated state variables increase 
       optimization ~ 
       data assimilation 
  improved yield estimation 

RS data assimilation in SVAT models 
  - model calibration 
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(Launay and Guerif 2005)  



RS data assimilation in SVAT models 
  - model calibration -  
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(Launay and Guerif 2005)  

Example II: 



 
Example of methods to combine the modelled and the observed state variables: 
 
- > Newtonian nudging algorithm 
- > various types of Kalman filters 
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(Dorigo et al. 2007, adapted from Delecolle et al. 1992)  

quantify the relative weight that 
should be assigned to the modeled 
and observed state variables  

RS data assimilation in SVAT models 
  - model updating -  



RS data assimilation strategies in SVAT models 
  - Kalman filter 
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- also known as linear quadratic estimation (LQE) 
 
- co-invented and developed by Rudolf Emil Kálmán in the early 1960s 

 
- the first implementation in trajectory estimation for the Apollo program of 

the NASA Ames Research Center (incorporation of Kalman filter in the 
Apollo navigation computer) 
 

- sequential data assimilation method 
 

- model is integrated forward in time 
 

- whenever measurements are available, these are used to reinitialize the 
model before the integration continues 



RS data assimilation strategies in SVAT models 
  - Kalman filter 
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Given a linear dynamical model written on discrete form as: 

the error covariance equation as:  

Model forecast  ,,, analyse and  and measurements d:  

Covariances for model forecast Pf, analyse Pa and  measurements R:  

where H is measurement operator of observation 
(Evensen 2003)  
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weights are determined by the 
-   error covariance for the model prediction projected onto the measurements, 
- the measurement error covariance, and 
- the difference between the prediction and measurements (innovation) 

 
Derivation of Kalman Filter - > so-called Kalman gain matrix 
 
  

RS data assimilation strategies in SVAT models 
  - Kalman filter 
 
 
 

Some developments of Kalman filters: 
 
The Extended Kalman Filter (EKF) 
The Ensemble Kalman Filter (EnKF) 
…  

(Evensen 2003)  
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Thank you for listening! 
 
 
Magdalena Main-Knorn 
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