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Agroecosystem models (Soil-Vegetation-Atmosphere
Transfer (SVAT) models)

» simulate crop growth under different environmental and management
conditions

 diagnose crop growing conditions

* predict crop yield (or accumulated biomass)

 help to understand crop behaviour

 help to design monitoring tools over large area

 assist in best (sustained) management practices for food security

 help to develop management strategies to minimize the impact of climate
change
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SVAT models

use in-situ data (local representativeness)

force to apply approximations and simplifications

introduce various limiting factors as e.g. soil, weather, water, nitrogen
operate in a dynamic way

i DLR
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SVAT models - simplified scheme of an agrosystem

L

Development
routine

!

Development
status

..... " . Z | Time
~ | Environmental Variables | |- ",
- time step =

Inputs for one time step
¥
Model loop
Development Growth
parameters m parameters

Interception

Partitioning

J

I

Assimilation

Legend

Model processes

( Model parameters)

(Model state variables)

Dorigo, et al. 2007




DLR.de ¢ Chart5 > Lecture > Author ¢ Document > Date

SVAT models

use in-situ data (local representativeness)

force to apply approximations and simplifications

introduce various limiting factors as e.g. soil, weather, water, nitrogen
operate in a dynamic way

e

lack of precision, spatial uncertainty

@

* influence simulation of two important physiological processes:
- crop canopy development
- soil moisture content

i DLR
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Uncertainty in SVAT models

How to cope with?

either... model run with default values for many variables
- > disregarding spatial heterogenity
- > introducing uncertainties

or... use of RS data

- > provision of information on meteorological, vegetation, (e.g.phenological),
and soll conditions over large areas

- > introducing uncertainties...

i DLR
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Optical RS
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Optical RS

In the wavelength between 400 and 2500 nm the radiance of the vegetation
canopy measured by the sensor is influenced by:

optical properties of the vegetation elements themselves (leaves, stems, etc)
arrangement of these elements in the canopy
optical properties of the undergrowth and soil

constellation of sensor parameters (viewing and illumination angle)
atmospheric conditions (e.qg. turbidity, aerosols)

i DLR
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Optical RS

- RS-derived state and driving variables, used in SVAT

modelling

Biophysical parameter Main indicator Application State (S) or
driving (D)
Fraction of absorbed photosynthetically ~ Photosynthesis Clevers (1997); Gobron et al. (2000) S
absorbed radiation (FAPAR)
Leaf Area Index (LAI) Plant functioning Bouman (1995); Doraiswamy et al. (2004); S
Mo et al. (2005); Moulin et al. (2003)
Fractional cover (fCOVER) Plant development Bouman (1995) S
Chlorophyll and other pigments Nitrogen stress/photosynthesis ~ Haboudane et al. (2002); Zhao et al. (2004) S
Mineral content (K, P, Ca, Mg) Crop quality Mutanga et al. (2004) S
Plant water content Drought stress Moran et al. (1994) S
Above ground biomass/net Carbon storage; crop yield Tucker et al. (1983) S/D
primary production
Evapotranspiration Drought stress Bastiaanssen and Ali (2003); Hurtado et al. (1994) D
Vegetation height Plant development Richardson et al. (1982) S
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Integration of RS data in SVAT models

Statistical/ empirical approach

- > search for statistical relationship
between the spectral signature and
measured biophysical or biochemical
properties of the canopy

Physical approach

- > based on the radiation propagation
within canopy

Hybrid approach

- > use of physical models to establish
statistical relationship between the
spectral signal and the biophysical
parameters
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Integration of RS data in SVAT models
- statistical approach -
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Methods:
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- artificial neural networks (ANN)
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Dorigo, et al. 2007
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Integration of RS data in SVAT models
- statistical approach - Vis

- > uses Vegetation Indices (VIs) to reduce background effects and enhance
spectral features:

1. Broadband VIs (for multispectral sensors)
a) Ratio VIs (e.g. NDVI)
b) Orthogonal and hybrid Vs (e.g. SAVI)

2. Discrete narrow bands VIs (for hyperspectral sensors)

a) Narrow band ratios
(e.g. CARI — Chlorophyll Absorption Ratio Index, TVI - Triangular VI)

b) Spectral shape and the red edge Vls
(focused on the REIP — position of the Red-Edge- Inflection Point)

c) Spectral continuum measures VIs
(e.g. CACI — Chlorophyll Absorption Continuum Index)

Dorigo, et al. 2007

i DLR




DLR.de ¢ Chart 13 > Lecture > Author ¢ Document > Date

Integration of RS data in SVAT models
- statistical approach - Vis

by far the most widely used vegetation index is Normalized Difference
Vegetation Index (NDVI)

 NDVI is used for e.g. for monitoring the continental or global scale with
AVHRR- or MODIS-Data applications

* NDVI = (Pnir - Pred) / (PniR T Pred)

 NDVI generates a normalized values range between +1 and -1

Prot Pnir NDVI
Wasser 2 0.2 -0.82
Boden 8 13 0.37
Vegetation 4 45 0.84
heller Kalk 25 45 0.29

o :
20 ﬁgﬁg::a;;‘l’: auf | 208 | 45 0.37
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Integration of RS data in SVAT models
- statistical approach - Vis

Example of relationship between NDVI and LAl
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Lacaze et al. 1996
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Integration of RS data in SVAT models
- physical approach -

- > consists of inverting a canopy reflectance model for the estimation of leaf
and canopy properties

- > simulate the interactions between solar radiation and the elements
constituting the canopy using physical laws

- > combine a leaf optical model with a canopy reflectance and a soil
reflectance model and calculate the top-of-canopy reflectance.
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Integration of RS data in SVAT models
- physical approach -

Examples of leaf and canopy reflectance models

Medium Type Leaf model Canopy model
Homogeneous 1D radiative transfer (Fukshansky et al., 1991) SAIL (Verhoef, 1984), KUUSK (Kuusk, 1995a)
Plate model PROSPECT -
(Jacquemoud and Baret, 1990)
Heterogeneous 3D radiative transfer - DISORD (Myneni et al., 1992)
Geometlric - Chen and Leblanc (1997)
Hybrid - DART (Gastellu-Etchegorry et al., 1996),

GeoSAIL (Huemmrich, 2001), TRIM
(Goel and Grier, 1988) INFORM
(Schlerf and Atzberger, 2006)

Ray tracing RAYTRAN (Govaerts et al., 1996) RAYTRAN (Govaerts and Verstraete, 1998),

SPRINT (Goel and Thompson. 2000)
Radiosity ABM (Baranoski and Rokne, 1997) PARCINOPY (Chelle and Andrieu, 1998)
Stochastic SLOP (Maier et al., 1999) SMRT (Shabanov et al., 2000)

Dorigo, et al. 2007
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Integration of RS data in SVAT models
- physical approach -

Inversion of canopy reflectance models:

- > consists in finding the set of input parameters for the best match between
the bi-directional reflectance factor (BRF) simulated with a canopy
reflectance model and reflectance measured by the sensor

Methods:

- > |terative optimization (e.g. Quasi-Newton algorithm, genetic algorithms,
or Markov-Chain Monte Carlo approach)

- > Lookup tables (LUT)
- > ANNSs

7
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Integration of RS data in SVAT models
- statistical vs physical approach -

Statistical

Physical

Many field or laboratory measurements required for
establishment of statistical relationship

Spectral data usually transformed

Function usually based on a limited number of spectral bands

Statistical function accounts for one variable at the time

Not possible to incorporate information of other variables

Computationally not very demanding

Atmosphere, view, and sun geometry are not directly
accounted for

Statistical approaches normally based on nadir measurements

Little knowledge of user required

Field or laboratory measurements only used for validation

Original spectra used for inversion

Inversion usually based on complete spectral information

Various parameters estimated at the same time

Possibility to incorporate prior information on distribution
of different variables

Computationally very intensive

Influences of atmosphere, view and sun geometry are
directly incorporated

Possibility to use multiangular information

Knowledge of user required for the choice of appropriate
canopy reflectance model, inversion technique, and
distribution of variables

i DLR
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RS data assimilation strategies in SVAT models

Data assimilation allows solid coupling of physical models, linking
agroecosystem models to state space estimation algorithms

Within data assimilation framework:

1. Driving variables — force the system
State variables — provide a complete description of system behaviour

3. Model parameters — characterise the relationship between state- and driving
variables

4. Output variables

N

(Schaepman et al. 2007, Dorigo et al. 2007)
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RS data assimilation strategies in SVAT models

RS data available throughout growing season enable:

 calibration of the model — model parameters or initial states are adjusted to
obtain an optimal agreement between the simulated and the observed state
variables; re-estimation of the missing parameters

» forcing — replacement of a state variable in the model using the observed
data; direct use of RS-derived parameter as a model input

e updating — consists of the continuously updating of model state variables,
whenever an observation is available; based on the assumption that a better
simulated state variable at day t will also improve the accuracy of the simulated
state variable at day t+1; flexible in combining models

(Schaepman et al. 2007, Dorigo et al. 2007)
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RS data assimilation strategies in SVAT models

Different RS assimilation methods
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(b)

(e.g. LAl

Model state variables

time
- - = forcing
Agroecosystem model
® Remote sensing observation
B Remotely sensed state variable
B Modeled state variable

Minimization (optimum)

(Dorigo et al. 2007, adapted from Delecolle et al. 1992)
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RS data assimilation in SVAT models
- model calibration

Procedure example I:

1. coupling a radiative transfer model to crop model through a canopy structure
variable e.g. LAI)

2. simulation of RS variables (e.g. reflectance in NIR) for all dates with acquired
RS data

3. comparison of simulated vs measured variables
4. re-estimation of some initial model parameters

accuracy of simulated state variables increase

optimization ~
— data assimilation

improved yield estimation

(Launay and Guerif 2005)
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RS data assimilation in SVAT models
- model calibration -

Example Il: Exﬁﬂﬂ T
Remote sensing Reflectances at the
data top of the atmosphere
Atmospheric Aerosol optical depth,
conditions H,0 and O, content | |corrected TSAVI
simulated TSAVT |
%
A priori
h ization of th Leaf optical Soil optical
e s et T
variability
LAI
o  Soil texture
Soil surface

Crop establishment and
root settlement parameters

Temperature, SUCROS
Weather rain, wind...

Aisne soil map
Soil moisture moisture
properties A
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RS data assimilation in SVAT models
- model updating -

Example of methods to combine the modelled and the observed state variables:

- > Newtonian nudging algorithm
- > various types of Kalman filters

i DLR

Y

quantify the relative weight that
should be assigned to the modeled
and observed state variables

(Dorigo et al. 2007, adapted from Delecolle et al. 1992)
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data assimilation strategies in SVAT models
- Kalman filter

also known as linear quadratic estimation (LQE)

co-invented and developed by Rudolf Emil Kalman in the early 1960s
the first implementation in trajectory estimation for the Apollo program of
the NASA Ames Research Center (incorporation of Kalman filter in the
Apollo navigation computer)

sequential data assimilation method

model is integrated forward in time

whenever measurements are available, these are used to reinitialize the
model before the integration continues
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RS data assimilation strategies in SVAT models
- Kalman filter

Given a linear dynamical model written on discrete form as: l//lH—l — Fl//k

the error covariance equation as: Pk—l—l — FPkFT - Q

a
Model forecast wf, analyse l// and measurements d:
W=y + PTH (HP' H" + R)'(d — H)/)
Covariances for model forecast Pf, analyse P2 and measurements R:

P'=P — PH' (HP H" + R) 'HP'

where H is measurement operator of observation d — Hlﬂt —+ €

i DLR
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RS data assimilation strategies in SVAT models
- Kalman filter

weights are determined by the

- error covariance for the model prediction projected onto the measurements,
- the measurement error covariance, and

- the difference between the prediction and measurements (innovation)

Derivation of Kalman Filter - > so-called Kalman gain matrix

K=P H' (HPPH +R)"

Some developments of Kalman filters:

The Extended Kalman Filter (EKF)
The Ensemble Kalman Filter (EnKF)

7

(Evensen 2003)
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Thank you for listening!

Magdalena Main-Knorn
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