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The feedforward path of an autopilot is designed for the longitudinal dynamics of a tacti-
cal missile. A linear parameter-varying model is used to synthesize a self-scheduled control
law based on a parameter-dependent Lyapunov function. The controller is evaluated on
a nonlinear model of industrial complexity both under nominal conditions and paramet-
ric uncertainty. Tracking performance is significantly enhanced while leaving robustness
properties of an existing feedback controller unaltered.

I. Introduction

The benefits of a two-degree-of-freedom control system, i. e., a controller consisting of a distinct feedfor-
ward and feedback path are well known.1 With feedback controllers being able to cause instability, sufficiently
large robustness margins are mandatory, which leads to the well-known trade-off between performance and
robustness inherent to all single-degree-of-freedom designs. A two-degree-of-freedom configuration relieves
this conflict and separates tracking requirements from other objectives such as disturbance attenuation and
robustness.

From a designer’s point of view, a two-step design with two independent controllers has several appealing
aspects compared to a combined design: A feedback controller can be designed with respect to robustness
and disturbance attenuation and a feedforward controller can be designed to achieve fast tracking. An
important implication is, that with such a design strategy, it is possible to add a feedforward controller to
an already existing closed-loop system without the need to redesign the whole control system.

The prevalent approach to design the feedforward path is to perform a nonlinear dynamic inversion of
the plant. This technique is however limited to minimum-phase systems and thus excludes a large class
of challenging control applications. Furthermore, it is difficult to effectively limit the feedforward control
authority in the design. Recently, a design procedure has been proposed that recasts the feedforward control
problem for linear systems as a state feedback problem.2,3 Consequently, it is applicable also to non-minimum
phase systems and allows to incorporate loop shaping strategies into the design.

The purpose of this paper is to present a successful autopilot design for a nonlinear missile model of
industrial complexity, using this methodology and the linear parameter-varying (LPV) systems framework.
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The LPV formulation has received a lot of attention in the last two decades for its ability to produce self-
scheduled controllers. LPV gain scheduling is thus an area of interest for academia and industry alike, as it
allows well-developed linear design tools to be applied to a number of nonlinear systems.

LPV control has already proved useful for missile autopilot applications and several results are published
which consider feedback controllers.4–8 The only published LPV feedforward control application examples
up to this date are also considered with a missile autopilot but use a highly simplified two-state model.2,3

The present work’s major contribution is thus proving applicability to an industrial high-fidelity model where
highly nonlinear aerodynamic data necessitates the use of a gridding approximation as introduced in Ref. 9
in contrast to the polytopic and linear fractional representations used in Refs. 2, 3.

The paper is structured as follows. In Section II, a brief introduction to the class of LPV systems and the
LPV state feedback problem is presented. Section III relates the mixed sensitivity concept to feedforward
control. Section IV introduces the LPV model of the missile. Details of the design procedure are given in
Section V and finally Section VI discusses the simulation results.

II. Preliminaries

A. Induced L2-Norm Control of LPV Systems

A time-varying scheduling parameter vector is defined as a function ρ : R→ P with a compact set P ⊂ Rnρ ,
where nρ denotes the number of scheduling signals. The variation rates of the parameters ρ̇ : R→ Ṗ are

defined to lie in the polyhedron Ṗ = {q ∈ Rnρ | |qi| ≤ νi , i = 1, . . . , nρ}. A state space representation of
an LPV dynamical system in terms of the continuous matrix functions A : P → Rnx×nx , B : P → Rnx×nu ,
C : P → Rny×nx , D : P → Rny×nu and the state x : R → Rnx , input u : R → Rnu and output y : R → Rny

is then given by
ẋ(t) = A(ρ(t)) x(t) +B(ρ(t)) u(t)

y(t) = C(ρ(t)) x(t) +D(ρ(t)) u(t) .
(1)

Since the parameter trajectories are not known a priori, the parameter space P × Ṗ represented by the
auxiliary variables p ∈ P and q ∈ Ṗ is considered. From here on, explicit dependence on time and parameters
is dropped for the sake of readability.

It is common practice in LPV control to specify performance in terms of the induced L2-norm of a
generalized plant.10 A generalized LPV plant P is said to have an induced L2-norm ‖P‖ if there exists a
constant γ > 0 such that for all z = P w, w ∈ L2 the following relation holds:

‖z‖2 ≤ γ‖w‖2 , ‖z‖2 =

√∫ ∞

0

zT (τ) z(τ) dτ . (2)

If all states are available for feedback, an induced L2-norm and stability of the closed-loop system can
be achieved with

Theorem 1 (Ref. 9) Consider a compact set P × Ṗ, a performance specification γ > 0 and a generalized
LPV plant of the form 


ẋ

z1
z2


 =




A B1 B2

C11 0 0

C12 0 I






x

w

u



.

(3)

Let R : P → Rnx×nx be a continuously differentiable symmetric matrix function such that ∀(p, q) ∈ P × Ṗ

R � 0 , (4a)


R (A−B2 C12)

T
+ (A−B2 C12) R−B2B

T
2 −

∑nρ
i=1

∂R
∂pi

qi RCT11 γ−1B1

C11R −I 0

γ−1BT1 0 −I


 ≺ 0 , (4b)

Then, the state feedback control law
u = −

(
BT2 R

−1 + C12

)
x (5)

renders the closed-loop system asymptotically stable with an induced L2-norm less than γ.
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Since the linear matrix inequality (LMI) constraints (4) are infinite dimensional due to the functional
dependence on the scheduling parameter p, the practical approach proposed in Ref. 9 is to grid the parameter
space and to enforce the constraints only on a finite dimensional set {pk}ngrid

1 ∈ P. Further, the arbitrary
dependence of the Lyapunov matrix R on the parameters needs to be restricted to arrive at a tractable
formulation. Choosing basis functions gi for

R(p) =

nR∑

i=1

Ri gi(p) (6)

leads to the semidefinite program

min
γ,{Ri}nR1

γ such that LMI (4) holds ∀(p, q) ∈ {pk} × vert
(
Ṗ
)
, (7)

where vert(Ṗ) denotes the vertices of the polyhedron Ṗ. Problem (7) is readily solved with convex optimiza-
tion software and a parameter-dependent controller is explicitly given by Eq. (5).

B. Mixed Sensitivity Design

In order to formulate design specifications in terms of the induced L2-norm, a generalized plant formulation
and mixed sensitivity minimization 11 are used. Mixed sensitivity design has proved a useful design paradigm,
allowing to enforce certain specifications such as integral action and roll-off on the controller.

The generalized plant depicted in figure 1(a) is used and a controller is synthesized to minimize the
induced L2-norm from w to z. The weighting scheme exploits the roll-off of the plant to ensure that there is
no feedthrough from w to z1 in the generalized plant, i. e., the sensitivity is weighted with the plant model
G and W1. As a byproduct, the inherent limitations of the plant due to non-minimum phase behavior are
included in the design: if w is interpreted as a reference signal, the closed-loop system is required only to
follow a reference filtered by the system dynamics. The integral filter W1 is used to set the closed-loop
bandwidth as well as to guarantee steady-state accuracy. The high-pass filter W2 limits control action. They
are depicted in figure 1 and parameterized as

W1(s) =
s
M1

+ ω1

s
, W2(s) =

s+ ω2

M2

ε s+ ω2
. (8)

Remark: For LPV systems, the notion of a transfer function does not exist, still a “frozen parameter”
interpretation is useful, especially in conjunction with the gridding approach that treats the LPV system as
a collection of LTI systems.

G W1
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u

w
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z2

(a) Generalized plant interconnection
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Figure 1. Generalized plant and frequency response of the weighting filters for mixed sensitivity design.

III. Feedforward Control Design

The interconnection of a feedforward controller with a closed-loop system is shown in figure 2. The
dashed box represents the feedforward controller that takes the reference signal r and provides a control
signal ur = F r and a reference output yr = GF r.12 Note that in contrast to Ref. 12, different variables are
used to distinguish between the plant model G and the actual plant P . The feedback controller is denoted
K and for further analysis, an output disturbance d and measurement noise n are injected into the loop at
the plant output and the controller input, respectively. The total control signal u is formed as the sum of
the feedforward control signal ur and the feedback control signal ũ.
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Figure 2. Feedforward controller interconnection with closed-loop system.

A. Separation of Feedforward and Feedback Path

The closed-loop transfer function corresponding to figure 2 is

y = GF r︸ ︷︷ ︸
reference tracking

+

model mismatch︷ ︸︸ ︷
S (P −G) F r+ S d︸︷︷︸

disturbances

−
measurement noise︷︸︸︷
T n , (9)

where S = (I + P K)
−1

and T = I − S are the sensitivity and complementary sensitivity functions of the
closed-loop system that do not depend on the feedforward controller. The only interaction of feedforward
and feedback controller is due to model mismatch, which is filtered through the sensitivity function S. An
important consequence is that if S(0) = 0, i. e., the feedback controller includes integral action, there is no
steady-state error regardless of model mismatch.

Considering only nominal performance, i. e., G = P and the absence of disturbances and noise, Eq. (9)
simply becomes y = GF r or equivalently in terms of the error

r − y = (I −GF ) r . (10)

The transfer function I − GF in Eq. (10) is precisely the feedforward sensitivity introduced in Ref. 11 to
describe the effect of feedforward control on a closed-loop system. Since the feedforward sensitivity governs
the nominal error dynamics, it is desirable to shape it similar to the classical sensitivity function. In a mixed
sensitivity formulation, this leads to the problem

min
F

∥∥∥∥∥

[
W1 (I −GF )

W2 F

]∥∥∥∥∥ ,
(11)

where the filters W1 and W2 are those given in Eq. (8).

B. Synthesis as a State Feedback Problem

There are several ways to motivate the synthesis of the feedforward controller as a state feedback problem.
A formal proof based on Youla parameterization is given in Ref. 2. An alternative approach is presented
here, based on the substitution12

F = Kr (I +GKr)
−1

. (12)

With this, the feedforward sensitivity can be written as

(I −GF ) = (I +GKr)
−1

, (13)

which is the sensitivity function for a closed-loop system composed of the plant model G and the feedback
controller Kr. Consequently, expression (11) becomes a standard S/KS minimization problem for the fic-
titious closed-loop system. However, there are two important differences: First, the problem can be solved
irrespectively of any robustness requirements since only the model G is to be controlled, which is known
and neither subject to disturbances nor noise. Second, all states of G (and also of the filters W1 and W2)
are available, even if not all states are measurable on the real plant. Therefore, Kr can always be designed
as an (augmented) state feedback controller and synthesized by means of program (7). Note that since Kr

internally stabilizes G, both F and GF are stable, even if G is not.
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Figure 3. Feedforward controller realization.

With the generalized plant (3) and Wu’s feedback law (5) written as u = Lx, a state space realization
of F is given by [

ẋF

ur

]
=

[
A+B2 L B1

L 0

] [
xF

r

]

with L = −BT2 R−1 − C12 .

(14)

A generalized plant corresponding to expression (11) with F realized as the state space model (14) is then




ẋ

ẋF

z1

z2


 =




A B2 L B1

0 A+B2 L B1

C11 0 0

C12 DW2 L 0







x

xF

r



,

(15)

where DW2 is the feedthrough matrix of the filter W2. From this representation, it is now possible to proof
the sufficiency of the solution as a state feedback problem by applying the state transformation

[
ξ

xF

]
=

[
I −I
0 I

][
x

xF

]

.
(16)

This decouples the system into




ξ̇

ẋF

z1
z2


 =




A 0 0

0 A+B2 L B1

C11 C11 0

C12 C12 +DW2 L 0







ξ

xF

r


 (17)

and shows that the states ξ are not controllable from the reference input r. They can thus be disregarded for
input-output behavior. Since the feedforward controller is completely parameterized by the state feedback
gain L and the model matrices, the minimization problem (11) can be solved as

min
L

∥∥∥∥∥∥∥




A+B2 L B1

C11 0

C12 +DW2 L 0




∥∥∥∥∥∥∥ .
(18)

For implementation of the feedforward controller, the structure shown in figure 3 is used. Complexity of
the feedforward controller is moderate. It has the same order as the generalized plant, i. e., the number of
states of the plant and the weighting filters. Apart from the online evaluation of the LPV plant model G,
only one inversion of a positive definite matrix, that is efficiently performed using LDLT factorization, is
necessary.
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IV. LPV Model of the Missile

A generic missile model is illustrated in figure 4. The longitudinal motion short period dynamics LPV
model used here for synthesis is derived in Ref. 13 using a function substitution technique on the nonlinear
equations of motion. It is given as




ẇ

q̇

az
q


=




K1 CZ0 V cos(α) cos(β) K1 V
CZδ
CMδ

K2

Iyy
CM0

K3

Iyy
CMq

K2 V
Iyy

K1 CZ0 0 K1 V
CZδ
CMδ

0 1 0







w

q

CMδ


 . (19)

The two states are the pitch rate q and the velocity w in z-direction. The output to be controlled is the
plunge acceleration, denoted az.

The parameter vector p = [Ma α β]T is used as a scheduling signal, where Ma denotes the Mach num-
ber, α the angle of attack and β the sideslip angle. The terms K1, K2 and K3 depend on Ma and geometric
data, Iyy is a scalar moment of inertia and V (p) is the true airspeed. Further, Ci0(p) are dimensionless coef-
ficients, CMq(p) is the pitch-rate pitching-moment effectiveness and Ci δ(p, δ) are coefficients depending also
on the deflection of the control surface. All these coefficients are highly nonlinear functions of the scheduling
parameters and available only as lookup tables. Further, a third order linear time invariant actuator model
is included. The overall system is thus strictly proper and of fifth order.

The missile is in a cruciform configuration and controlled by deflecting the four fins at the tail. Doing so
does not only change the aerodynamic moments but also produces aerodynamic forces acting in the opposite
of the desired direction. Therefore, the system exhibits non-minimum phase characteristics.

x

y

z

q

α

Ma

β

Figure 4. Model of a generic tactical missile.

V. Design

A. Technicalities

The admissible parameter space is gridded as {pk} = Magrid×αgrid×βgrid withMagrid = {1.2, 1.5, 1.8, 2.1, 2.4},
αgrid = {0.1◦, 1◦, 4◦, 7◦, . . . , 19◦, 22◦} and βgrid = {0.1◦, 10◦}. The grid covers a wide range of the flight en-
velope and consists of ngrid = 90 points. The controller is designed only for positive values of α and β.
For implementation, symmetry with respect to α and β is exploited. As β has a relatively small influence
on the system dynamics, two grid points are considered sufficient to represent the minimum and maximum
occurring values. The parameter rate bounds are selected as Ṁa ∈ [−0.5, 0.5] 1

s , α̇ ∈ [−100◦, 100◦] 1
s , and

β̇ ∈ [−100◦, 100◦] 1
s based on simulation results.

Inevitably, some trial and error is required to select the basis functions for the Lyapunov matrix R.
The use of a relative performance index, where γ is locally normalized at each grid point with respect to
the achievable H∞ norm, however, considerably simplifies the procedure since it provides a lower bound on
the achievable performance.13 Starting with a few basis functions and consecutively adding terms until the
relative improvement in the performance index is small thus appears to be a good strategy. For the present
case, it leads to

R(p) = R0 +RMaMa+Rα α+Rβ β +RMa,αMaα+RMa2 Ma
2 +Rα2 α2 . (20)
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B. Tuning the Feedforward Controller

Tuning within the mixed sensitivity framework translates to selecting appropriate weighting filters. The
choice of these filters such that time-domain criteria are met, is a highly nontrivial task despite the inter-
pretability of each parameter. For this reason, the multi-objective optimization environment MOPS14 is
employed to set the weighting filters. Tuning therefore consists of the following four steps:

1. parameterization of the weighting filters

2. formulation of optimization criteria in terms of time domain performance specifications

3. execution of the optimization routine

4. evaluation in nonlinear simulation

Step 1 determines the number of optimization variables and hence the computational complexity of the
task. Since the missile has strongly varying dynamics over different operating points, the coefficients M and
ω in Eq. (8) are chosen to depend affinely on the scheduling parameters, leading to 16 tuner variables.

Step 2 is the essential part of the tuning procedure. Since Eq. (9) shows that nominal performance of
the overall system can be inferred from the response r → yr, the LPV feedforward controller’s reference
output is evaluated at all grid points, i. e., for a collection of LTI systems. As robustness is not required
and the control action is already limited by the mixed sensitivity design, it is deemed sufficient to use only
the speed-of-response specifications and penalty terms for undershoot and overshoot as objectives. The cost
function to be minimized is formed as a sum-of-squares

J =

ngrid∑

k=1

nobj∑

i=1

(
Oi,k
Di,k

)2

, (21)

where Oi,k denotes the value of the ith objective at grid point k and Di,k denotes the corresponding demand.
Consisting of time domain criteria, the objective function is highly nonlinear, nonconvex and not available

in analytical form. Therefore, in Step 3, direct search methods are preferred over gradient-based ones
and a pattern search algorithm is employed. Good initial values for the tuners are easily obtained from
engineering insight. Consequently, the use of local optimization strategies is justified. The controller synthesis
problem (7) is solved using a Matlab toolbox developed at the DLR Institute of System Dynamics and Control
by the second and fourth author. Since the Lyapunov matrix R needs to be inverted in Eq. (5) to reconstruct
the controller, a suboptimal synthesis algorithm that indirectly minimizes the condition number of R is used.
It minimizes an upper bound on the largest and maximizes a lower bound on the smallest eigenvalue of R.15

This avoids numerical problems often associated with LMI design.
In Step 4, the controller synthesized with the optimal parameters is tested in nonlinear simulation. In the

present work, the linear system responses at the grid points appear to cover the nonlinear system behavior
very well. The largest discrepancy in nonlinear simulation is observed for the overshoot criterion. In order
to satisfy a 5% demand in nonlinear simulation, Step 2–4 had to be repeated with the demand for the linear
responses adjusted to 1% in the cost function.

VI. Assessment

A. Simulation Results

Simulation is performed on a full nonlinear 6-degree-of-freedom model, incorporating both fifth order sen-
sor dynamics and third order actuator dynamics. Tracking performance is compared between an ad hoc
gain-scheduled PI feedback-only controller and a configuration with additional feedforward controller. The
considered scenario is representative of the homing phase, i. e., there is no thrust and the Mach number
steadily decreases (see figure 5).

For feedback, the vertical acceleration az and pitch rate q are used with scheduling via Ma, α and β. The
feedforward controller receives only the Mach number Ma as an exogenous scheduling signal and further uses
the internal model states for self-scheduling via estimates of α and β. Figure 5 confirms that the parameter
trajectories during simulation cover a large area of the flight envelope. The predictions used to schedule the
feedforward controller can be seen to precisely resemble the true flight conditions of the nominal case. In
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Figure 5. True ( ) and predicted ( ) scheduling parameter trajectories.
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Figure 6. Reference ( ), response with ( ) and without ( ) additional feedforward controller.
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Figure 7. Control inputs from feedforward controller ( ) and feedback controller ( ) when used together.
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addition, simulation results are also shown for parametric uncertainty in the aerodynamic coefficients CZ0

and CM0, the scheduling parameters Ma, α, β, and the position of the center of gravity.
Figure 6 shows the reference trajectory for the plunge acceleration az and the system responses with and

without additional feedforward control. The feedforward controller consistently improves the speed of all
responses: Settling time is reduced by up to 40%. Noticeably, the largest improvement is achieved for changes
from high to low accelerations. Overshoot is reduced in two cases and remains of comparable magnitude to
the feedback controller for the others. Undershoot inevitably increases with the faster response, but remains
inside the allowed range. The increase in performance under parametric uncertainty is very similar to the
nominal case.

Figure 7 further shows that for the nominal case, the system is indeed driven almost entirely through the
feedforward control signal and thus confirms the separation of feedforward and feedback path. The latter
only accounts for the mismatch between the LPV model and the fully nonlinear model, which is largest at
high frequencies and thus excited most at the very instant of the steps. With uncertainty in the parameters,
the feedback controller is much more involved, reflecting the need to compensate for the model mismatch.

B. Discussion

With the additional LPV feedforward controller, performance over the whole parameter space is considerably
improved. While for some operating conditions, the improvement is very significant, for others, it is just
marginal. At these points, the existing feedback controller is expected to already operate near the physical
limits of the system. Its bandwidth limitation is thus due to the non-minimum phase characteristics rather
than robustness requirements. As the feedforward controller is also subject to these inherent limitations,
performance cannot be further increased. It is notable that the overall benefit in performance is also preserved
for the system with parametric uncertainty. From the separation of control paths, it can further be expected
that an additional increase in robustness may be achieved by retuning the feedback controller without
impairing tracking performance.
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