Simple estimations of thermodynamic properties of Yukawa systems

S. A. Khrapak,¹ A. G. Khrapak,² A. V. Ivlev,³ G. E. Morfill³

¹Forschungsgruppe Komplexe Plasmen, DLR, Oberpfaffenhofen, Germany ²Joint Institute for High Temperatures, RAS, Moscow, Russia ³Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

Knowledge for Tomorrow

Motivation

- Equation of state for complex (dusty) plasmas
 - Thermodynamics
 - Hydrodynamic description of the particle component
 - Waves and instabilities
- Specifics of complex plasmas
 - Open systems
 - Particle charge depends on particle density (charge cannibalism)
 - Plasma composition can vary
- Strategy
 - Develop simple analytical approximations for the "basic" case
 - Study relative importance of various specific phenomena

Model

- Two-component system consisting of
 - Point-like particles of charge Q and density n_0
 - Neutralizing background (uniform OCP; linear response Yukawa)
- Main parameters
 - Wigner-Seitz radius $a = (3/4\pi n_0)^{1/3}$ and the screening length λ
 - Coupling parameter, $\Gamma = Q^2/aT$
 - Screening parameter, $\kappa = a/\lambda$
- Main quantities of interest (in reduced units)
 - Internal energy, u = U/NT
 - Helmholtz free energy, f = F/NT
 - Pressure, p = PV/NT

Debye-Hückel + Hole (DHH) Approximation

- Conventional Debye-Hückel approach results in unphysical negative density
- Main idea behind DHH is to introduce a cut off (hole radius) *h*, below which the particle density is zero
- The hole radius, *h*, has to be found self-consistently via electrostatic consideration

DHH has been explicitly introduced for the OCP by Nordholm (1984) Similar relations have been known earlier, e.g. Gryaznov&Iosilevskiy (1973)

DHH for Yukawa systems: Procedure

- Solve Poisson equation

$$\Delta \phi = -4\pi (Qn - en_{\rm m})$$

- Two solutions, inside and outside the hole

$$n = \begin{cases} 0, & r \leq h \\ n_0(1 - Q\phi/T), & r > h \end{cases}$$

- Match the two solutions at the hole boundary to determine h and one unknown parameter in the expression for ϕ inside the hole
- Determine excess energy via the conventional expression

$$u_{\rm ex} = \frac{1}{2} \frac{Q}{T} \left[\phi(r) - \frac{Q}{r} \right]_{r \to 0}$$

Results: Excess Energy

Numerical results from Hamaguchi et al. (1996, 1997)

Results: Helmholtz Free Energy at Weak Coupling

Excess free energy:	κ	MD	DH
$f_{\rm ex} = \int_0^{\Gamma} d\Gamma' u_{\rm ex}(\kappa, \Gamma') / \Gamma'$	0.0	-0.4368	-0.577
	0.2	-0.4495	-0.588
	0.4	-0.4809	-0.617
	0.6	-0.5284	-0.660
	0.8	-0.5866	-0.715
Debye-Hückel (DH) approximation:	1.0	-0.6541	-0.778
	1.2	-0.7304	-0.848
	1.4	-0.8103	-0.922
	2.0	-1.0710	-1.169
$u_{\rm ex}(\kappa,\Gamma) = -\frac{1}{2}\Gamma\kappa\sqrt{1+3\Gamma/\kappa^2}$	2.6	-1.3504	-1.435
	3.0	-1.5424	-1.619
	3.6	-1.8326	-1.900
$f_{\rm ex}(\kappa,\Gamma) = -\frac{\kappa^3}{9} \left[\left(1 + \frac{3\Gamma}{\kappa^2} \right)^{3/2} - 1 \right]$	4.0	-2.0274	-2.091
	4.6	-2.3223	-2.380
	5.0	-2.5200	-2.574

 $f_{\rm ex}(\kappa,1)$

DHH

 $\begin{array}{r} -0.460 \\ -0.471 \\ -0.502 \\ -0.548 \\ -0.606 \\ -0.673 \\ -0.747 \\ -0.826 \\ -1.084 \\ -1.360 \\ -1.549 \\ -1.838 \\ -2.033 \\ -2.326 \\ -2.523 \end{array}$

MD results from Hamaguchi et al. (1997)

Application: Dust Acoustic Waves (DAW) at strong coupling

- Simplest hydrodynamic approach (particles)

$$\frac{\partial N_d}{\partial t} + \nabla (N_d \mathbf{V}_d) = 0,$$

$$\frac{\partial \mathbf{V}_d}{\partial t} + (\mathbf{V}_d \cdot \nabla) \mathbf{V}_d = \frac{QE}{M_d} - \frac{\nabla (P_d - t)}{M_d N_d}$$

- Boltzmann response of the neutralizing medium + Poisson equation
- Resulting dispersion relation

$$\frac{\omega^2}{\omega_{\rm p}^2} = \frac{q^2}{q^2 + \kappa^2} + \frac{q^2}{3\Gamma} \gamma \mu_{\rm p}$$

where q = ka, $\gamma \approx 1$, and $\mu_p = 1 + p_{ex} + \frac{\Gamma}{3} \frac{\partial p_{ex}}{\partial \Gamma} - \frac{\kappa}{3} \frac{\partial p_{ex}}{\partial \kappa}$

Dust Acoustic Waves at Strong Coupling

Numerical results: Ohta & Hamaguchi (2000); Solid curves: Hydrodynamics with DHH, Dashed curves: sum rule analysis OCP

Recent Developments: Ion Sphere Model (ISM)

- Fixed hole radius = Wigner-Seitz radius
- Pure electrostatics to estimate the static excess energy, u_{ex}
- Simple approximation to estimate the thermal contribution to uex
- ISM is simple and more accurate than DHH at strong coupling

Numerical results from Hamaguchi et al. (1996, 1997)

Conclusion

- The ultimate goal of these studies is to produce reliable equation(s) of state for complex (dusty) plasmas
- The first element of the project is to develop simple analytic approximations for the "basic" case
- Two such approximations have been proposed
- DHH approximation is an extension of the DH approach and is suitable in the weak/moderate coupling regime
 - see S. Khrapak et al. Phys. Rev. E 89, 023102 (2014)
- ISM approximation is more appropriate in the moderate/strong coupling regime
 - paper in preparation

Thank you for your attention!

Knowledge for Tomorrow