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Abstract. Physically motivated expressions for the transport cross sections describing classical scattering
in the Lennard-Jones potential are proposed. These expressions, which agree with the numerical results
better than to within ±1%, can be easy implemented in practical situations. Some relevant examples are
provided.

1 Introduction

The problem of elastic collision between a pair of interact-
ing particles has numerous applications, in particular to
the transport properties of gases, plasmas, simulation of
rarefied gas flows, etc. When classical description is suffi-
cient and the interaction potential U(r) is isotropic, the
problem is equivalent to the scattering of a single particle
of reduced mass μ in a central force field. The scatter-
ing angle χ depends on the impact parameter ρ and the
kinetic energy of colliding particles, 1

2μv2, as [1]

χ(ρ) = |π − 2ϕ(ρ)|, ϕ(ρ) = ρ

∫ ∞

r0

dr

r2
√

1 − Ueff(r, ρ)
, (1)

where Ueff is the reduced effective potential energy

Ueff(r, ρ) = ρ2/r2 + 2U(r)/μv2. (2)

Integration in (1) is performed from the distance of the
closest approach, r0(ρ) – the largest root of the equation

Ueff(r, ρ) = 1. (3)

Using equations (1)–(3), the dependence χ(ρ) can be cal-
culated (at least numerically) for an arbitrary pair interac-
tion potential U(r). The transport cross sections can then
be obtained as proper integrals over the impact parame-
ters. The two key quantities associated with the transport
coefficients (in the binary collision approximation) are the
diffusions (momentum transfer) cross section

σD = 2π

∫ ∞

0

[1 − cosχ(ρ)]ρdρ (4)

and the viscosity cross section

ση = 2π

∫ ∞

0

[1 − cos2 χ(ρ)]ρdρ. (5)
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These cross sections are velocity-dependent. Their names
come from the fact that the diffusion and viscosity coeffi-
cients can be obtained by properly integrating these cross
sections over the distribution of velocities.

The diffusion and viscosity cross sections have been
calculated for many potentials that are used to model in-
teractions in real systems. Perhaps, the most studied case
is the conventional 12−6 Lennard-Jones (LJ) potential [2]
of the form

U(r) = 4ε
[
(d/r)12 − (d/r)6

]
, (6)

where r is the separation between the particles, ε and d are
characteristic energy and length scales. A number of val-
ues of the cross sections along with the resulting transport
integrals were tabulated (see e.g. Refs. [3–5]), in particular
for the high-energy regime.

Accurate analytical expressions for the transport cross
sections can be of considerable value when searching for
simplified collision models to enhance the accuracy and ef-
ficiency of Monte Carlo simulations of rarefied gas flows. In
particular, this includes the so-called variable hard-sphere
and variable soft-sphere models as well as their generaliza-
tions and modifications [6–11]. They can be also of prac-
tical use in other situations, an example will be given in
this work.

The purpose of this paper is to introduce simple and
accurate analytical expressions for the diffusion and vis-
cosity cross sections for the LJ potential, which are con-
venient for practical implementation. In order to do this,
the cross sections are re-evaluated numerically in a very
wide range of energies. The limits of high and low energy
scattering are then analyzed to identify the corresponding
asymptotic behavior. It is then suggested how to modify
the asymptotes in order their combination fits the numer-
ical results with excellent accuracy (deviations do not ex-
ceed ±1%). Examples of using the proposed expressions
are given towards the end of the paper.
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Fig. 1. (a) Diffusion and viscosity cross sections (σD and ση,
respectively) as functions of the scattering parameter β. Sym-
bols correspond to numerical results, curves are the fits.
(b) Ratio of the viscosity-to-diffusion cross sections (ση/σD)
as a function of β.

Table 1. Diffusion (momentum transfer) cross section σD ob-
tained in the present work and in reference [4] for several values
of the scattering parameter β.

β Present work Reference [4]
79.365 42.41 42.34
7.042 18.87 18.89
2.099 12.58 12.58
0.626 8.147 8.166
0.391 6.331 6.337

2 Numerical results

A portion of the obtained numerical results is shown
in Figure 1a. Symbols correspond to the diffusion and
viscosity cross sections (here and throughout the paper,
the cross sections are in units of d2), plotted versus the
scattering parameter β, defined as:

β(v) ≡ ε/μv2. (7)

From the definition (7) it is clear that β measures the rela-
tive energy of colliding particles. The high-energy collision
occurs when β � 1, while the low-energy collision takes
place when β � 1. Note that the reduced transport cross
sections depend only on β [12].

Figure 1b shows the ratio ση/σD as a function of β.
This ratio is almost constant for β � 0.1 and β � 1,
but exhibits a pronounced non-monotonic behavior in the
transitional regime.

The present numerical results have been compared
with those available in the literature. For example, Ta-
ble 1 lists the values of the diffusion cross section ob-
tained in this work and those from reference [4]. The max-
imum deviations do not exceed 0.2%. The comparison has
also been performed with the values of diffusion and vis-
cosity cross sections tabulated in the classical paper by
Hirschfeleder et al. [3]. The agreement is normally bet-
ter than to within 0.1% in the high-energy regime, but

Fig. 2. Scattering angle χ versus the reduced impact parame-
ter ρ/ρ∗, where ρ∗ is the critical impact parameter correspond-
ing to orbiting trajectories. Curves are plotted for five differ-
ent values of the scattering parameter β. Except for the lowest
value β = 1, all other curves are practically indistinguishable
from each other.

becomes worse when β approaches unity. The maximum
relative deviation can be as high as �5% for the diffu-
sion cross section at β = 2.5. This observation correlates
well with the earlier conclusion from reference [13] that
the results of reference [3] are not very accurate in the
regime of moderate energies (see Figs. 10 and 11 from
Ref. [13]). Overall, the obtained numerical results are ex-
pected to have an accuracy of ∼O(0.1%), which is more
than sufficient for the main purpose of this study.

3 Low- and high-energy limits

The detailed investigation of the low-energy (high-β) limit
has been reported recently [12]. One of the most impor-
tant results from this study is that the scattering angle χ
becomes a quasi-universal function of the suitably reduced
impact parameter ρ. The proper normalization is the criti-
cal impact parameter ρ∗, corresponding to a barrier in the
effective potential energy, which results in orbiting tra-
jectories and divergence of the scattering angle. Although
the LJ potential is not the unique interaction potential ex-
hibiting such a property (e.g. Yukawa and exponential in-
teractions also demonstrate quasi-universality [12,14,15]),
the universality of this kind is most pronounced in the LJ
case. The illustration of this quasi-universality is given in
Figure 2.

The quasi-universality implies that the transport cross
sections scale as:

σLE
D,η � AD,ηπρ2

∗, (8)

where AD and Aη are very weak functions of β, which
can be easily evaluated numerically. For most practical
purposes they can be assumed constant AD � 0.83 and
Aη � 0.63. There is a simple analytical relation between
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the critical impact parameter ρ∗ and the scattering pa-
rameter β. In the limit of large β it yields the scaling
ρ∗ � 1.94β1/6 [12]. The resulting dependence σLE

D,η ∝ β1/3

in the low-energy regime is indicated in Figure 1a.
In the opposite high-energy limit (low-β limit) the

cross sections are mainly determined by the short-range
r−12 repulsion. The proper interaction length scale is
therefore R � (8ε/mv2)1/12 ∝ β1/12. The scaling of the
cross sections is thus

σHE
D,η � BD,ηβ1/6. (9)

The coefficients of proportionality (which are different for
diffusion and viscosity) are non-monotonous, but rather
weak function of β. The resulting scaling σHE

D,η ∝ β1/6 in
the high-energy regime is also indicated in Figure 1a.

Figure 1a shows that the low-energy asymptote of
equation (8) describes well the numerical results for β � 1,
while the high-energy asymptote of equation (9) is well ap-
plicable at β � 0.1. In the next section fits are proposed,
which take into account the discussed asymptotic behav-
ior and describe accurately the transition between these
two limits.

4 Accurate fits

In constructing the fits, one obvious possibility is to just
take a sum of low- and high-energy asymptotes in the form

σD,η = σLE
D,η + σHE

D,η. (10)

This would essentially resemble the energy dependence
of the transport cross sections in the generalized hard-
sphere model of reference [8] and generalized soft-sphere
model of reference [11], where analogous two-term formu-
las have been used. However, although equation (10) is
essentially exact in the respective limits, it is very crude
in the wide transitional regime, so one needs to look for
another option.

The strategy to be implemented here is similar to that
applied recently in the case of the attractive Yukawa po-
tential [16]. We consider two regimes, one with β � 0.5
and the other with β � 0.5. In the first regime we take the
high energy asymptotes σHE

D,η as the basis, and introduce
the correction functions fHE

D,η to improve the agreement
with numerical data in this regime. Similarly, in the sec-
ond regime, we look for a correction functions fLE

D,η which
allow to extend the applicability of the σLE

D,η asymptote
into the regime of moderate β. The two expression are
then matched around β � 0.5. The correction functions
are assumed to have the following simple form:

fLE
D,η = 1 +

4∑
i=i

ciβ
−i (11)

in the low-energy regime, and

fHE
D,η = 1 +

4∑
i=1

ciβ
i (12)

Table 2. Fitting parameters entering equations (11) and (12).

Function c1 c2 c3 c4

fHE
D −0.692 9.594 −8.284 −2.355

fLE
D −0.019 0.038 −0.049 0.015

fHE
η −2.229 35.967 −86.490 60.335

Fig. 3. Correction functions used to produce accurate fits for
the diffusion and scattering cross sections. Symbols correspond
to the numerical results, curves are the fits using equations (11)
and (12) with the coefficients summarized in Table 2. Taking
into account the required accuracy, we just take fLE

η = 1 for
the viscosity cross section in the low-energy regime.

in the high-energy regime. These forms ensure that no
unphysical behavior occurs in the respective limits. The
coefficients for these correction functions are summarized
in Table 2. Figure 3 shows how these functions agree with
the numerical results. Note that to within the required
accuracy the correction function for the viscosity cross
sections in the low-energy regime can be just set to unity,
fLE

η = 1.
The resulting fits for the diffusion and viscosity cross

sections for the LJ potential are

σD(β) =

{
4.507β1/6fHE

D , β < 0.506

9.866β1/3fLE
D , β > 0.506

(13)

and

ση(β) =

{
3.599β1/6fHE

η , β < 0.491

7.480β1/3fLE
η , β > 0.491

. (14)

These expressions constitute the main result of this pa-
per. They are shown by solid curves in Figure 1a, the
agreement with numerical results is excellent. It has been
verified that for β � 10−3 the deviations between these
simple fits and numerical results do not exceed ±1%, and
for most of the data points are considerably smaller than
that, especially in the low-energy regime1. The collision

1 By construction, the fit (12) is not expected to give “ex-
act” results in the high-energy limit, β → 0. In this limit, the
diffusion and viscosity cross sections are underestimated by
about 3%.
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integrals result from the integration of these cross sections
with the velocity distribution function, and thus should be
even more accurate.

5 Example I: Self-diffusion and viscosity
of Argon

The Lennard-Jones pair potential is known to be a sim-
ple and reasonable approximation (although not ideal) of
actual interactions in non-polar substances. In this sec-
tion the self-diffusion (Ds) and viscosity (η) coefficients
of argon gas are calculated from the transport cross sec-
tions derived above and compared with the data available
in the literature. In particular, the reference data summa-
rized in reference [17] are used for comparison with the ac-
tual transport coefficients. The numbers from Table IV of
reference [11] are used to compare our results for the self-
diffusion coefficient with experiment and predictions of
some other models. For consistency in this latter compar-
ison, the same LJ parameters for argon as in reference [11]
are adopted: ε = 124 K, d = 3.418 Å.

The self-diffusion coefficient can be expressed as:

Ds =
3
√

π

8
T 3/2

pm1/2d2ΩD
, (15)

where ΩD is the reduced diffusion integral

ΩD = 1
2

∫ ∞

0

x2e−xσD(x)dx. (16)

Here p is the pressure, x = μv2/2T = (2T∗β)−1 is the re-
duced energy, T∗ = T/ε is the reduced temperature, and it
is taken into account that μ = m/2 for identical particles.
The diffusion integral (as all other transport integrals) is
a function of T∗. It can be easily calculated by substi-
tuting β = (2T∗x)−1 into equation (13) and integrating.
Similarly, the viscosity coefficient can be written as:

η =
5
√

π

8
T 1/2m1/2

d2Ωη
, (17)

where Ωη is the reduced viscosity integral

Ωη = 1
2

∫ ∞

0

x3e−xση(x)dx, (18)

which can be evaluated using the fit (14). Equations (15)
and (17) correspond to the dominant (first-order) terms
in the Chapman-Enskog approximation. Higher order
corrections are neglected.

Figure 4 shows the comparison between the calcu-
lation using equations (13)–(18) and reference data for
the self-diffusion and viscosity of argon from Table 3 of
reference [17]. The overall agreement is quite good. In
the examined temperature range the maximum deviations
(�6%) are observed at the lowest temperature of T = 50 K
(in some contrast to the visual impression from Fig. 4).
This can be an indication that the quantum effects become

Fig. 4. (a) Self-diffusion coefficient in argon versus tempera-
ture at p = 1.013 bar. (b) Viscosity of argon versus tempera-
ture. Symbols correspond to the data from reference [17]. Solid
curves are calculated using equations (13)–(18).

Table 3. Self-diffusion coefficient (in cm2/s) of argon gas
at p = 1.013 bar: Comparison between three theoretical ap-
proaches (present work, GSS, and VSS) and experiment. The
values corresponding to GSS, VSS, and experiment are taken
from Table IV of reference [11].

T (K) Present GSS VSS Experiment
77.7 0.0133 0.0130 0.0178 0.0134 ± 0.0002
273.2 0.154 0.161 0.173 0.156 ± 0.002
353.2 0.244 0.258 0.276 0.249 ± 0.003

important in this regime and the picture of classical scat-
tering is insufficient [18]. At higher temperatures, there
is a relatively wide range (up to T � 400 K for diffusion
and T � 500 K for viscosity) where deviations are mostly
within �1−2%. At even higher temperatures, the present
approach underestimate the coefficients of self-diffusion
and viscosity by several percents. This is likely due to de-
viations in the actual interaction from the model ∝ r−12

repulsive LJ term.
In reference [11] the comparison between experimental

results for the self-diffusion coefficient and predictions of
several models used in Monte Carlo simulations of rarefied
gas flows was made (see Table IV in [11]). Among the mod-
els compared, the generalized soft sphere (GSS) [11] and
the variable soft sphere (VSS) [7] models demonstrated
better agreement with the experimental results. We repro-
duce the values for argon in Table 3, along with the present
calculation based on equations (13), (15) and (16). For all
three temperatures our calculation results are in better
agreement with the experimental data.

Situation becomes more complicated when deviations
from the ideal gas behavior become significant. At present
there is no unifying quantitative description of trans-
port phenomena in condensed matter. Methods that
have been used to describe transport phenomena in liq-
uids include for instance the Enskog theory for hard
sphere fluid and its modifications [19,20], empirical fits
based on the results from computer simulations [21],
as well as various corresponding-states relationships.

http://www.epj.org
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Among them the excess entropy scaling of the transport
coefficients [22,23] can be particularly mentioned since it
applies to a wide class of simple fluids, with quite differ-
ent interactions. We do not elaborate on this further since
the main focus here is on the weakly coupled (gaseous) LJ
systems.

6 Example II: Negative thermophoresis

As another simple example, let us apply the obtained
results to the problem of thermophoresis. Thermophore-
sis describes the phenomenon wherein small particles
(or molecules), suspended in a gas or liquid where a
temperature gradient exists (but macroscopic flows are
absent), drift along this temperature gradient [24,25].
The drift is normally from the side of high to the side
of low temperature, but in some parameter regimes it
can reverse the direction, which is then called negative
thermophoresis [25,26].

In the free molecular regime, the thermophoretic
force responsible for the drift can be expressed via the
momentum transfer cross section as [26,27]

FT =
16κ∇T

15
√

2πvT

∫ ∞

0

x2

(
5
2
− x

)
e−xσD(x)dx, (19)

where κ is the gas thermal conductivity, T is the tempera-
ture, and vT =

√
T/m is the gas thermal velocity (μ � m

when the particle is much heavier than the atoms or
molecules of the gas). The velocity dependence of the mo-
mentum transfer cross section is a key factor, which gov-
erns the direction of the force. For relatively big spherical
particles, the gas-particle collisions can be approximated
as a hard sphere scattering, with the constant momentum
transfer cross section (σD = const). Then equation (19) re-
duces to the well-known Waldmann’s expression [28] and
the force pushes the particles towards low temperatures.
On the other hand, when dealing with charged particles
in a plasma environment – the so-called complex (dusty)
plasmas [29–31] – the thermophoretic force can be asso-
ciated not only with the neutral component [32,33], but
also with the electron and ion components. In this case,
the momentum transfer is dominated by Coulomb scat-
tering and the thermal force associated with electrons and
ions will normally push the particle towards the region of
higher temperatures [27], implying negative thermophore-
sis. The physical reason behind this phenomena is that
the (Coulomb) scattering momentum transfer cross sec-
tion quickly decreases with velocity (σD ∝ v−4), so that
the momentum transfer from the colder side turns out to
be more effective.

One can easily derive simple general criterion for the
negative thermophoresis. Writing σD ∝ x−ν ∝ v−2ν , the
integral in equation (19) can be evaluated explicitly to
give
∫ ∞

0

x2

(
5
2
− x

)
e−xσD(x)dx ∝

(
ν − 1

2

)
Γ (3 − ν). (20)

It changes the sign at ν = 1/2, corresponding to the switch
between positive and negative thermophoresis.

As the particle size decreases from micron-range to
molecular scale, the model of hard sphere scattering
in gas-particle collisions becomes progressively less and
less accurate [26,34]. Lennard-Jones-type potentials may
better describe gas-particle interactions in this regime.
Although, the conventional (12-6) LJ potentials is likely
not the best model for these interactions, we adopt it here
for illustrative purposes. The numerical results plotted in
Figure 1a indicate that σD ∝ v−1/3 in the high energy
regime and σD ∝ v−2/3 in the low energy regime, and ac-
cording to the criterion above the conventional (positive)
thermophoresis takes place. In the transitional regime,
however, the decay of the cross section with velocity is
more steep and here the negative thermophoresis can be
expected [26]. We substitute expression (13) into the inte-
gral in (19), perform the integration, and identify the con-
ditions for negative thermophorersis. This results in the
range 0.417 � T∗ � 0.951, where negative thermophoresis
occurs. These upper and lower boundaries, which are ex-
pected to be accurate to within �1%, slightly improve the
previous estimate from reference [26], where the interval
0.45 � T∗ � 0.95 has been reported.

7 Conclusion

To summarize, simple analytical fits for the diffusion
and viscosity cross sections for elastic scattering in the
Lennard-Jones potential are proposed. The accuracy of
these fits is better than 1%, which is sufficient for most
practical applications. Two relevant illustrations are pro-
vided. The strategy used in this work can be easily applied
to other model potentials of the Lennard-Jones type.

This work was partly supported by the Russian Foundation for
Basic Research, Project No. 13-02-01099.
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