
Ion sphere model for Yukawa systems (dusty plasmas)
S. A. Khrapak, A. G. Khrapak, A. V. Ivlev, and H. M. Thomas 
 
Citation: Physics of Plasmas (1994-present) 21, 123705 (2014); doi: 10.1063/1.4904309 
View online: http://dx.doi.org/10.1063/1.4904309 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/21/12?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Critical phenomena in dusty plasmas modelled by Yukawa onecomponent plasma 
AIP Conf. Proc. 862, 248 (2006); 10.1063/1.2387930 
 
Equation of state for the “electrostatic pressure” in dusty plasmas 
Phys. Plasmas 13, 012109 (2006); 10.1063/1.2164996 
 
A model for the condensation of a dusty plasma 
Phys. Plasmas 11, 3368 (2004); 10.1063/1.1740773 
 
“Voids” and phase separation in complex (dusty) plasmas 
Phys. Plasmas 8, 2601 (2001); 10.1063/1.1368876 
 
Electrostatic modes in dense dusty plasmas with high fugacity: Numerical results 
Phys. Plasmas 7, 3214 (2000); 10.1063/1.874187 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

195.37.61.178 On: Thu, 18 Dec 2014 13:26:10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31016667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/432760954/x01/AIP-PT/Pfeiffer_PoPArticleDL_121014/13265_PV_Product_Range_Banner.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=S.+A.+Khrapak&option1=author
http://scitation.aip.org/search?value1=A.+G.+Khrapak&option1=author
http://scitation.aip.org/search?value1=A.+V.+Ivlev&option1=author
http://scitation.aip.org/search?value1=H.+M.+Thomas&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4904309
http://scitation.aip.org/content/aip/journal/pop/21/12?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2387930?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/13/1/10.1063/1.2164996?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/11/7/10.1063/1.1740773?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/8/6/10.1063/1.1368876?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/7/8/10.1063/1.874187?ver=pdfcov


Ion sphere model for Yukawa systems (dusty plasmas)

S. A. Khrapak,1,2 A. G. Khrapak,2 A. V. Ivlev,3 and H. M. Thomas1

1Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum f€ur Luft- und Raumfahrt, Oberpfaffenhofen,
Germany
2Joint Institute for High Temperatures RAS, Moscow, Russia
3Max-Planck-Institut f€ur extraterrestrische Physik, Garching, Germany

(Received 30 September 2014; accepted 3 December 2014; published online 17 December 2014)

Application of the ion sphere model (ISM), well known in the context of the one-component-

plasma, to estimate thermodynamic properties of model Yukawa systems is discussed. It is shown

that the ISM approximation provides fairly good estimate of the internal energy of the strongly

coupled Yukawa systems, in both fluid and solid phases. Simple expressions for the excess

pressure and isothermal compressibility are derived, which can be particularly useful in connection

to wave phenomena in strongly coupled dusty plasmas. It is also shown that in the regime of strong

screening a simple consideration of neighboring particles interactions can be sufficient to

obtain quite accurate estimates of thermodynamic properties of Yukawa systems. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4904309]

I. INTRODUCTION

Thermodynamic properties of Yukawa systems (par-

ticles interacting via Yukawa or Debye-H€uckel pair poten-

tial) are of considerable interest, in particular, in the context

of physics of plasmas, dusty (complex) plasmas, and colloi-

dal dispersions. An idealized model dealing with point-like

charges immersed in a neutralizing medium, which is

responsible for the exponential screening of the interaction

potential, has been extensively investigated using various

simulation and analytical techniques. Very accurate results

for the thermodynamic functions of this model obtained

from Monte-Carlo (MC) and molecular dynamics (MD)

simulations1–5 and integral equation theories6,7 are available

in the literature.

The idealized model of Yukawa systems disregards

some important properties of real substances. Some of these

properties, which are particularly relevant to dusty plasmas

(and to some extent also to colloids) are as follows:8–16

Particles are not point-like, the typical ratio of the particle

size to the plasma screening length can vary in a relatively

wide range; there is a wide region around the particles where

the ion-particle interaction is very strong, which results in

non-linear screening; plasma electrons and ions are continu-

ously deposited on the particle surface, which results in

considerable deviations from the equilibrium (Boltzmann)

distribution of these plasma species; particle charge is not

fixed, but depends on various system parameters (e.g., on the

density of the particles themselves); and the average density

of ions and electrons is not fixed, but is related to the particle

density and charge via the quasineutrality condition. All this

complicates direct application of existing results to practical

situations. More realistic models to represent real dusty plas-

mas under various conditions are required.

One of the possible strategies towards such models is to

construct simple analytical approximations for the “basic”

case, corresponding to the idealization discussed above. This

can then serve as the basis of more realistic models, allowing

an easy evaluation of the relative importance of specific

dusty plasma properties in each concrete situation. Existing

accurate results for an idealized Yukawa model can be con-

sidered as reference data in constructing such simple analyti-

cal approximations.

This point of view has been shared in a previous publi-

cation,17 where the Debye-H€uckel plus hole (DHH) approxi-

mation has been applied to Yukawa systems. The DHH

approach has been originally proposed to reduce inaccuracy

of the conventional Debye-H€uckel (DH) theory when evalu-

ating thermodynamic properties of non-ideal one-compo-

nent-plasma (OCP).18 The main idea behind the DHH

approximation is that the exponential particle density must

be truncated close to a test particle so as not to become nega-

tive upon linearization. When applied to Yukawa systems,

DHH demonstrates considerable improvement over the tradi-

tional DH theory in the regime covering the transition

between weak and moderate coupling (in the limit of weak

coupling DHH reduces to DH). It even allows to roughly

reproduce the thermodynamics of strongly coupled Yukawa

systems up to the fluid-solid phase transition, but the agree-

ment with available results from numerical experiments is

not better than qualitative in this regime.17

The purpose of the present paper is to discuss another

simple model, which is particularly suitable for the regime

of strong coupling. This is the so-called ion sphere model

(ISM), which is known to describe rather precisely the inter-

nal energy of the OCP in the limit of strong coupling.19–21

We show that the ISM allows to obtain simple expressions

for the internal energy, pressure, and compressibility of

Yukawa systems. These expressions are compared with the

“exact” reference data from MD simulations.2–4 Good agree-

ment is found in the regime of strong coupling, especially in

the weakly screened regime. Overall, the ISM approximation

is shown to be more simple and more accurate than DHH at

strong coupling. As such, it provides a good basis for devel-

oping more realistic models to describe thermodynamic
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properties of dusty plasmas and related systems under vari-

ous natural and laboratory conditions.

Following our previous paper,17 we adopt the following

simplified model. The two-component system consists of

particles of charge Q and density np immersed into a neutral-

izing medium, characterized by the charge e and density n
(relation to the conventional three-component dusty plasma

is discussed in Appendix A). In equilibrium, the system is

quasineutral, so that Qnp0 � en0 ¼ 0, where the subscript 0

denotes unperturbed quantities. The system is characterized

by two dimensionless parameters

C ¼ Q2

aT
and j ¼ akD; (1)

where a ¼ ð3=4pnpÞ1=3
is the Wigner-Seitz radius, T is the

temperature (in energy units), and kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n0=T

p
is the

inverse screening length (Debye radius) associated with the

neutralizing medium. The coupling parameter C is roughly

the ratio of the Coulomb interaction energy, evaluated at the

mean interparticle separation, to the kinetic energy. The

screening parameter j is the ratio of the interparticle separa-

tion to the screening length.

The main quantities of interest are the internal energy U,

Helmholtz free energy F, and pressure P, associated with the

particle component. In reduced units, these are

u ¼ U=NT; f ¼ F=NT; p ¼ PV=NT; (2)

where N is the number of particles in the volume V (so that

np ¼ N=V).

II. ION SPHERE MODEL AND STATIC EXCESS
ENERGY

The ion sphere model for the non-ideal OCP has the

following simple physical interpretation.19–21 Consider N
charged particles immersed in the uniform neutralizing back-

ground. Due to the strong Coulomb repulsive interaction

between the particles, they tend to form a regular structure

with the interparticle distance of order a. One can think of a

collection of N particles together with a spherical piece of

the uniform background of radius a, which exactly compen-

sates the particle charge. It is then assumed that the energy

of the system is just the sum of the energies of such spheres.

The energy of the sphere can be easily calculated via purely

electrostatic arguments, resulting in the celebrated

expression

uOCP ¼ �
9

10
C: (3)

The numerical coefficient �0.9 is very close to the Madelung

constants of the body-centered-cubic (bcc) and face-centered-

cubic (fcc) crystals, which are �0:8959 and� 0:8958,

respectively.

Some modifications are required when applying these

arguments to the Yukawa system. We again divide the sys-

tem into N charge neutral cells (ion spheres) of radius a, with

each particle placed in the center of the cell. The electrical

potential inside the cell is given by the Poisson equation

D/ ¼ �4pQdðrÞ þ 4pen: (4)

The density of the neutralizing medium satisfies the linear-

ized Boltzmann relation

n ¼ n0ð1þ e/=TÞ: (5)

The general solution of the Poisson equation has the form

/ðrÞ ¼ ðA1=rÞe�kDr þ ðA2=rÞekDr � 3Q=j2a; (6)

where A1 andA1 are the coefficients to be determined. To do

this, we use the boundary condition /0ðaÞ ¼ 0, which fol-

lows from the cell charge neutrality. The second requirement

is A1 þA2 ¼ Q, implying that / tends to Q=r as r ! 0.

These conditions yield A1 andA2 and hence the electrical

potential inside the cell

/ rð Þ ¼ Q

r
e�kDr þ Q

r

2 jþ 1ð Þsinh kDrð Þ
jþ 1ð Þ þ j� 1ð Þe2j

� 3Q

j2a
; (7)

where the first term is the conventional Debye-H€uckel poten-

tial of an individual particle in plasma and the last two terms

arise due to requirements imposed by the ion sphere model.

The reduced electrostatic energy of the sphere can be calcu-

lated from the conventional expression

ust ¼
1

2

Q

T
/ rð Þ � Q

r

� �
r!0

; (8)

which yields

ust j;Cð Þ ¼ j jþ 1ð ÞC
jþ 1ð Þ þ j� 1ð Þe2j

� jC
2
� 3C

2j2
: (9)

The first (positive) term on the right-hand side of Eq. (9) cor-

responds to the particle-particle correlations in the ISM

approximation, the last two (negative) terms represent the

energy of the sheath around the particles and the energy of

the neutralizing medium, respectively.

It is easy to demonstrate that in the limit j! 0, Eq. (7)

reduces to

/OCP rð Þ ¼ Q

r
þ Q

2a3
r2 � 9Q

5a
:

Combined this with Eq. (8) immediately yields the OCP

result of Eq. (3).

Equation (9) represents the static component of the

excess energy of Yukawa systems within the framework of

the ISM approximation, i.e., at strong coupling. Clearly, the

energy is proportional to C. It is instructive to compare the

(j-dependent) coefficient of proportionality with the values

of the Madelung constant, defined as

M jð Þ ¼ lim
C!1

u j;Cð Þ
C

:

The exact values of the static energy and hence MðjÞ depend

on the lattice type formed by the particles. Yukawa systems

are known to form either bcc or fcc lattices in the equilib-

rium solid phase. In real dusty plasma experiments, the solid
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phase is often dominated by the hexagonal-close-packed

(hcp) structures,22–24 which possibly indicates the non-

equilibrium character of these systems or some deviations

from the Yukawa interaction potential between the particles.

Conventional Yukawa fluids freeze into the bcc solid in the

regime of week screening and into the fcc solid at strong

screening.4,25 The fcc-bcc-fluid triple point is located near

j ’ 4:5.4,26–28 The difference between the values of

Madelung constants for bcc and fcc solids is tiny in the re-

gime of our interest, so we simply take the smallest value

(which corresponds to bcc at j � 1 and to fcc otherwise) to

compare with the structure-independent value given by the

ISM approximation [Eq. (9)]. This comparison is shown in

Fig. 1(a). The agreement is excellent. Relative deviations

between the exact and ISM results amount to less than

’ 0:5% at j ¼ 0, to ’ 0:3% at j ¼ 1 and diminish to

’ 0:003% at j ¼ 5.

The excellent agreement between the exact results and

the ISM approximation at large j should be considered with

some care. In this regime, the dominant contribution to the

Madelung energy is associated with the sheath-particle inter-

actions ðM ’ �j=2Þ. Nevertheless, ISM approximation pre-

dicts rather accurately the internal energy coming from the

particle-particle correlations, too. In order to illustrate this,

we subtract the energy associated with the neutralizing me-

dium in Eq. (9). The remaining part

u0 j;Cð Þ ¼ f0 jð ÞC;

f0 jð Þ ¼ j jþ 1ð Þ
jþ 1ð Þ þ j� 1ð Þe2j

;
(10)

would correspond to the internal energy of the single compo-
nent Yukawa system, i.e., to an imaginary system of particles

interacting via the repulsive Yukawa potential without any

neutralizing medium. The Madelung constant M0(j) of this

system should be compared with the ISM estimate f0ðjÞ.
Comparison shown in Fig. 1(b) demonstrates that the

agreement is again excellent, but only in the weak screening

regime, j � 1. Deviations then increase, reaching ’ 1%

at j ¼ 2 and ’ 10% at j ¼ 4.

To conclude this section, we summarize the difference

between the DHH and ISM approximations. In the DHH, the

cell (hole) radius h is not fixed. It is determined from the

boundary condition /ðhÞ ¼ T=Q (which implies that the lin-

earized particle density vanishes at the hole boundary) along

with the requirement that the electrical potential and its

derivative are continuous at the hole boundary. The cell is

not charge neutral. In the ISM approximation, the cell radius

is fixed and equal to the Wigner-Seitz radius, the cell is

charge neutral. In Appendix B, we show that the ISM result

of Eq. (10) can also be obtained from the Percus-Yevick

(PY) radial distribution function for hard spheres. This

provides the relation between the ISM approximation and

the integral equation theories.

III. THERMAL CORRECTIONS AND TOTAL EXCESS
ENERGY

In Sec. II, we have calculated the static energy of

Yukawa systems within the framework of the ISM approxi-

mation. This assumes that the particle is located at the center

of the ion sphere. However, thermal motion may result in

some deviations of the particle position from the center and

hence in some corrections to the internal energy. To estimate

these, we follow the procedure that has been recently sug-

gested in the context of the (two- and three-dimensional)

OCP.29 We calculate the change of the potential energy of

the particle as a function of the distance from the cell center.

Subtracting from Eq. (7) the self-potential of the particle and

irrelevant constant terms we get the variation of electrical

potential with distance from the center d/ðrÞ. The position-

dependent energy associated with particle deviations is eval-

uated as dWðrÞ ¼ Qd/ðrÞ. This yields

dW rð Þ=T ¼ 2Cf0 jð Þ sinh kDrð Þ
kDr

� 1

� �
: (11)

To get thermal corrections, we then average dWðrÞ=T over

the classical Gibbs distribution

uth j;Cð Þ ¼

ða

0

dW rð Þr2e�dW rð Þ=Tdr

T

ða

0

r2e�dW rð Þ=Tdr

; (12)

where the integration is over the Wigner-Seitz cell volume. The

dependence on j and C comes from dWðrÞ. In the OCP limit

ðj ¼ 0Þ, simple analytical expression for uth can be derived,29

otherwise, numerical integration is required. The thermal con-

tribution uth calculated in this way tends to be 3/2 in the limit of

very strong coupling ðC!1Þ, as expected.20,30 As C
decreases, uth demonstrates monotonous decrease.

By construction, the outlined approach is clearly more

suitable for the solid phase and in fact it has much in com-

mon with that of Ref. 31, developed for the calculation of

FIG. 1. Madelung constant of Yukawa systems as a function of the screen-

ing parameter j. Two situations are shown: Particles with Yukawa interac-

tions immersed in a neutralizing medium (a) and particles with Yukawa

interactions without neutralizing medium, i.e., single component Yukawa

systems (b). Symbols correspond to exact results for MðjÞ and M0ðjÞ taken

from Refs. 2 and 4. Curves show ust=C and u0=C calculated using the ion

sphere model.
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the thermodynamic properties of the solid phase and fluid-

solid phase equilibria. Moreover, it is known that the actual

excess thermal energy behaves non-monotonously and even

exhibits a discontinuity (along with the excess entropy)

at the fluid-solid phase transition, Duth ’ 0:7 for weakly

screened Yukawa systems.3,32 Nevertheless, we show below

that this approach yields reasonable agreement with the exact

data from numerical simulations, both in the solid phase and

relatively deep into the fluid phase, although it does not

reproduce the exact behavior of uth in the vicinity of the

fluid-solid phase transition.

The total excess energy is composed of the static and

thermal contributions

uex ¼ ust þ uth:

In our present approach, the static component is calculated

from Eq. (9) and the thermal component from Eq. (12).

Comparison between these calculations and exact numerical

results is shown in Figs. 2 and 3 for the regime of weak and

strong screening, respectively. The quantitative agreement is

good at strong coupling, qualitative agreement is preserved

down to C � Oð1Þ.
Dotted lines in Figs. 2 and 3 show the results from our

previous paper,17 describing the application of DHH approach

to Yukawa systems. Comparison with ISM demonstrates the

complementarity of these two simple approaches. The DHH

approximation can describe accurately the regime from very

weak (where it reduces to the conventional DH theory) to

moderate coupling, C � Oð1Þ, while the ISM approximation

is superior to DHH at strong coupling. At strong screening, the

results from these approaches are hardly distinguishable. This

does not imply that they coincide, but rather the excess energy

is dominated by the sheath-related contribution.

IV. RELATION TO THE EINSTEIN FREQUENCY

The Einstein frequency xE is the characteristic oscilla-

tion frequency of a particle about its equilibrium position in

a given crystalline lattice, when all other particles are located

in their lattice sites. In the ISM approximation, we can

expand dWðrÞ, given by Eq. (11), into power series around

r¼ 0. The first term of this expansion is quadratic in r and is

proportional to the squared Einstein frequency, dWðrÞ
’ 1

2
mpx2

Er2, where mp is the particle mass. For the Yukawa

potential, the calculation of xE is particularly simple since it

is trivially related to the Madelung constant of the single

component Yukawa system.25 The result of the ISM approxi-

mation can be written as

x2
E ¼

2

9
x2

pj
2f0 jð Þ; (13)

where xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pQ2np0=mp

p
is the plasma frequency associ-

ated with the particle component. The ratio of xE=xp, as a

function of j, is shown in Fig. 4. Symbols correspond to

the exact results; the curve is computed from Eq. (13). The

latter is essentially exact in the OCP limit j! 0. Using

FIG. 2. Reduced excess energy (in units of C) as a function of the coupling

parameter C in the regime of weak screening, j � 1. Solid curves corre-

spond to the ISM approximation. Dotted curves show the result of the DHH

approach.17 Symbols are the exact results from MD simulations.2 Data for

j ¼ 0:2; 0:6, and 1.0 are shown. The OCP limit ðj ¼ 0Þ has been considered

previously.29

FIG. 3. Reduced excess energy (in units of Cj) as a function of the coupling

parameter C in the regime of strong screening, j> 1. Solid curves corre-

spond to the ISM approximation. Dotted curves show the result of the DHH

approach.17 Symbols are the results from MD simulations.4 Data for j ¼
2:0; 3:0; 4:0; and 5:0 are shown.

FIG. 4. Ratio of the Einstein to plasma-particle frequency, xE=xp, as a func-

tion of the screening parameter j. Symbols correspond to the exact results

for the fcc lattice.33 The curve is computed using the ISM approximation,

Eq. (13).
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1þ j þðj� 1Þe2j ’ 2
3
j2 þOðj4Þ for small j, we get

xE=xp ’ 3�1=2 as it should be for the OCP. As j increases,

deviations between ISM and exact results grow. At j ¼ 3:0,

relative deviation is ’ 2%, while at j ¼ 5:0 it amounts to

’ 7%. The ISM approximation underestimates the actual

value of the Einstein frequency.

In the ISM approximation, the Einstein frequency does

not depend on the crystalline structure since the difference in

Madelung constants between different lattices is not

resolved. Note a trivial relation between xE and the corre-

sponding M for particles immersed in the neutralizing

medium

x2
E ¼

2

9
x2

pj
2 M þ j

2
þ 3

2j2

� �
:

This can be used to evaluate xE when the value of M for a

particular lattice is known.

The Einstein frequency can be approximately related

to the well-known Lindemann criterion of melting.34

This criterion states that a crystalline solid melts when the

root-mean-square displacement of particles about their

equilibrium lattice positions exceeds a certain fraction of the

characteristic nearest neighbor (NN) distance. The critical

fraction, known as the Lindemann parameter L, is expected

to be a quasiuniversal quantity. In fact, however, its exact

value may depend on such factors as crystalline structure

and nature (shape) of the interparticle interactions.35,36 For

our present purposes, we define the Lindemann-like parame-

ter as the mean square deviation of the particle from the cen-

ter of the cell, normalized to the cell radius

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hdr2i=a2

p
: (14)

This is different from the conventional definition, because

the Wigner-Seitz radius is used rather than nearest-neighbor

spacing. In the Einstein approximation, we have

hdr2i ’ 3T

mpx2
E

: (15)

Within the ISM, this should be adequate near the OCP limit

because the potential energy of particle deviation from the

cell center is exactly harmonic,29 dWðrÞ / r2. For stronger

screening this can be less appropriate, and we employ aver-

aging over the Gibbs distribution

hdr2i ¼

ða

0

r4e�dW rð Þ=Tdr
ða

0

r2e�dW rð Þ=Tdr

: (16)

In the OCP limit, Eqs. (15) and (16) are identical, but they

can differ at non-zero j.

We have plotted the values of L at the fluid-solid phase

transition evaluated from Eqs. (15) and (16) in Figure 5. This

figure shows that L is not constant at melting of Yukawa sys-

tems, although it is rather weak function of j. The Einstein

approximation is practically indistinguishable from the full

averaging procedure at j � 2. For larger j, deviations

become observable, but remain relatively small. The qualita-

tive behavior in the dependence of L on the potentials steep-

ness (i.e., j) can be compared with that reported for the

inverse-power-law potentials.35 There, the evaluated (true)

Lindemann parameter has a maximum near the power �6

and somewhat decreases towards both soft and hard interac-

tion limits (see Fig. 8 of Ref. 35). This is consistent with

what we see in Fig. 5, except the decrease of L at large j is

not confirmed due to the lack of the accurate data for j > 5.

Note that a related parameter—the localization length at the

glass transition of Yukawa systems—has been recently

shown to reach a maximum around j ’ 10.37 Similar tend-

ency can be expected for L since the glass-transition and

melting lines for the Yukawa potential are essentially paral-

lel in the ðj;CÞ plane in a rather wide range of j.37,38

From the quantitative point of view, however, neither

Eq. (15) nor (16) is very useful to predict the actual value of

hdr2i. It is well known that to get the correct result in the

quasi-harmonic approximation, the Einstein estimate (15)

should be multiplied by a factor x2
Ehx�2i, where the averag-

ing is over all phonon wave vectors and polarizations. For

the Yukawa interactions, this (j-dependent) factor lies in the

range between ’ 4 and ’ 2 (for 1 � j � 10) as documented

in Ref. 25 and the actual values of L at melting are expected

to be around 0.26 (bcc solid) and 0.27 (fcc solid).39 Since

Eq. (16) does not demonstrate any improvement compared

to the simple Einstein approximation, but do involves

numerical integration, it is not very useful for practical

applications.

V. PRESSURE AND COMPRESSIBILITY

We return to the thermodynamic properties of Yukawa

systems and derive an equation for the excess pressure and

compressibility of the particle component in the ISM approx-

imation. As has been discussed,17 the excess (free) energy of

the sheath does not contribute to the excess pressure. The

excess pressure arising from the particle-particle correlations

can be conveniently evaluated from the virial pressure

equation involving the radial distribution function g(r) of the

particle component.40 Taking into account the neutralizing

medium, we can write for the excess pressure17

FIG. 5. Values of the Lindemann parameter L defined in Eq. (14) at the

fluid-solid phase transition of Yukawa systems vs. the screening parameter

j. Crosses correspond to the Einstein approximation [Eq. (15)], circles to

the averaging over the Gibbs distribution [Eq. (16)]. Calculations make use

of the values CmeltðjÞ tabulated in Ref. 4.
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pex ¼ �
2pnp

3T

ð1
0

r3V0 rð Þ g rð Þ � 1½ �dr; (17)

where VðrÞ ¼ ðQ2=rÞ expð�kDrÞ is the Yukawa pair interac-

tion potential. We have also an expression relating the excess

energy and g(r)

uex ¼
2pnp

T

ð1
0

r2V rð Þ g rð Þ � 1½ �dr � jC
2
: (18)

From these two equations, we obtain a very useful approxi-

mate relation between the excess pressure and energy of

Yukawa systems

pex ¼
1

3
uex � j

@uex

@j

� �
: (19)

This approximation is valid for both single component and

conventional Yukawa systems with neutralizing medium

[note that the term �jC=2 in uex automatically cancels out

when substituted in Eq. (19)]. In deriving (19), we neglected

the dependence of gðrÞ on j. This assumption is accurate in

the weakly screened regime (see, e.g., Fig. 6 of Ref. 2), but

possibly less justified at stronger screening. In the strongly

coupled regime, however, the excess energy is dominated by

the static contribution, which is given by Eq. (9) in the ISM

approximation. If only static contribution is retained, then

Eq. (19) is thermodynamically consistent and results in a

simple analytical expression for the excess pressure

pex j;Cð Þ ’ j4C

6 j cosh jð Þ � sinh jð Þ½ �2
� 3C

2j2
: (20)

The first (positive) term describes particle-particle correla-

tions. It corresponds to the excess pressure of an imaginary

single component Yukawa system. The second (negative)

term represents the contribution of the neutralizing medium.

This contribution is responsible for the negative sign of the

excess pressure of strongly coupled Yukawa systems.

Near the OCP limit ðj! 0Þ, we have the following

expansion of pex in powers of j:

pex j;Cð Þ ’ � 3

10
Cþ 6

175
j2C� 47

15750
j4C

’ �C 0:3� 0:034j2 þ 0:003j4ð Þ: (21)

Equation (21) indicates that the pressure increases with j in

agreement with Refs. 7 and 17 and disagreement with Ref. 2.

This difference is the result of different assumptions regard-

ing the relation between the density of the particle compo-

nent and neutralizing medium.

As a check of the accuracy of Eq. (21), we consider the

leading term in the excess energy dependence on C; uex

’ aðjÞC. A very accurate fit for aðjÞ, based on the MD nu-

merical results, has been suggested,3 aðjÞ ’ �0:899

�0:103j2 þ 0:003j4. Substituting this into Eq. (19), we get

after simple algebra pex ’ �Cð0:300� 0:034j2 þ 0:003j4Þ,
in excellent agreement with Eq. (21).

The quantity which is often of interest when dealing

with hydrodynamic description of wave phenomena in

strongly coupled dusty plasmas17,41–43 is the inverse reduced

isothermal compressibility, lp ¼ ð1=TÞð@P=@npÞT . It is

related to the excess pressure via

lp ¼ 1þ pex þ
C
3

@pex

@C
� j

3

@pex

@j
: (22)

Substituting Eq. (20) for pex, we get a simple and practical

expression for lp

lp j;Cð Þ ’ 1� 3C
j2
þ Cj6 sinh jð Þ

9 j cosh jð Þ � sinh jð Þ½ �3
: (23)

Near the OCP limit series, expansion of Eq. (23) yields

lp j;Cð Þ ’ 1� 2

5
Cþ 4

175
j2CþO j6Cð Þ:

In Ref. 17, we have described the simplistic hydrody-

namic model of the dust acoustic waves (DAW) in strongly

coupled dusty plasmas (modeled by Yukawa systems). This

model yields the dispersion relation of the form

x2

x2
p

¼ q2

q2 þ j2
þ q2

3C
lp; (24)

where x is the wave frequency, q¼ ka is the reduced wave-

number, and the adiabatic index is set unity at strong cou-

pling. The strong coupling effects come into (24) only via

lp. When compared with the dispersion relations obtained

from MD simulations44,45 for several strongly coupled state

points near freezing, the theory demonstrated reasonable

accuracy.17 The values of lp have been calculated using the

DHH approximation and it makes sense now to compare

these with the more accurate results from the ISM approxi-

mation and other relevant approaches.

The comparison between different approaches is shown

in Table I. Here, the first two columns contain the values of

j and C, characterizing the state of the system (all the state

points are rather close to the fluid-solid phase transition, see

Fig. 4 from Ref. 17). The third column shows the compressi-

bility of the OCP at a given C, as calculated using the fitting

formula for the OCP excess energy.3 It provides reasonable

estimate of the compressibility of Yukawa systems at j � 1

and should clearly not be used at j � 2. The fourth column

shows the values obtained using the DHH approximation.17

The next column gives the values obtained within the frame-

work of the ISM approximation [Eq. (23)]. One more

TABLE I. Inverse reduced isothermal compressibility, lp, of Yukawa sys-

tems for several strongly coupled state points, for which dispersion relations

have been obtained in a numerical experiment.44,45 Results of calculations

using various approximations (OCP, DHH, ISM, NN, and SMSA) are sum-

marized. For details see the text.

j C OCP DHH ISM NN SMSA

0.3 144 �55.5 �46.3 �56.3 … �54.9

1.0 207 �80.5 �59.4 �77.1 �294.3 �75.2

2.0 395 �156.8 �84.8 �123.2 �134.7 �119.4

3.0 1100 … �168.9 �257.1 �256.2 �249.5
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column shows the values obtained using the NN approxima-

tion (discussed in the Sec. VI) using the three-term version

of Eq. (26). This should not be applied for j � 2, but

becomes progressively more and more accurate as j
increases. The last column provides the value obtained with

the help of the soft mean spherical approximation (SMSA)

proposed very recently.46 This integral theory approach is

thermodynamically consistent and demonstrates remarkable

agreement with the thermodynamic quantities from MD sim-

ulations. We expect, therefore, that the values from SMSA

lie most closely to the actual ones (among listed in Table I).

This implies that the DHH approach overestimates the actual

compressibility by some ’ 15% in the OCP limit and by

’ 30% at j ¼ 3. The values of lp obtained using the ISM are

only by few percent smaller than those from SMSA for all

values of j considered. This is clearly a very good perform-

ance, taking into account the simplicity of the ISM approach.

Note that when calculating lp using the ISM and NN approx-

imation, we have neglected the thermal contribution to uex.

This demonstrates the relative magnitude of thermal contri-

bution, which does not play a very significant role in the con-

sidered regime.

The new dispersion curves, obtained by substituting

ISM values for lp into Eq. (24), are compared with the

results from numerical experiments in Figure 6. In contrast

to our expectations, more accurate values of the compressi-

bility result in worse agreement with the numerical data.

The deviations are particularly pronounced in the short-

wavelength limit and they increase with j. This finding is

not completely surprising: The hydrodynamic description

becomes progressively less justified when the wavelength

becomes comparable to the interparticle distance. Among

existing alternatives to describe wave-related phenomena in

Yukawa systems, we can mention the quasi-localized charge

approximation47–50 which has been demonstrated to agree

reasonably well with the numerically obtained dispersion

relations at strong coupling.44,48

VI. STRONG SCREENING REGIME

In Sec. II, we have seen that the ISM approximation is

remarkably accurate at weak screening (especially near the

OCP limit), but becomes progressively less accurate as j
increases. The fast exponential decay of the Yukawa poten-

tial in this regime gives hope that the nearest neighbor

approximation can become a simple and reliable alternative

to evaluate the internal energy and other thermodynamic

properties. Assuming perfect crystalline order and summing

over the shells of neighbors around a test central particle, the

reduced internal energy can be written as

u0 j;Cð Þ ¼ 1

2
C
X

i

Ni=zið Þexp �jzið Þ; (25)

where Ni is the number of neighbors within the ith shell and zi

is the radius of the ith shell (in units of a). Following Ref. 31,

we limit ourselves to three first shells. The corresponding val-

ues of Ni and zi for the fcc lattice (energetically favorable in

the regime of strong screening) are summarized in Table II.

In Figure 7, the comparison between the actual

Madelung constants, M0(j), of the single component

Yukawa systems forming the fcc solid and the values of

u0=C calculated from Eq. (25) is shown. Three curves are

plotted, corresponding to including one, two, and three near

neighbor shell into consideration. The three-terms approxi-

mation provides the accuracy better than 1% already at

j � 2:5. Similar accuracy is reached for two- and one-term

approximation at j � 3:8 and j � 5:0, respectively. Note that

FIG. 6. Dispersion of the longitudinal

waves in Yukawa fluids near freezing.

Symbols correspond to the results from

numerical experiment.44,45 Solid (red)

curves are calculated using Eq. (24)

with the ISM values for lp. Dashed

(blue) curves are calculated using Eq.

(24) with the DHH values for lp.17

Note that with the new more accurate

values of lp the agreement with the nu-

merical data becomes worse. For the

discussion see the text.

TABLE II. Values of Ni and zi for the fcc lattice ði � 3Þ.

i Ni zi

1 12 1.8094

2 6 2.5589

3 24 3.1340
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at j � 5:0, the relative difference between the three-term

nearest neighbors approximation and the exact results is

smaller than 10�5. Comparing the nearest-neighbor approxi-

mation with that of the ISM, we find that the three-term ver-

sion of (25) provides better accuracy for j � 2:1.

Thermodynamic properties can be estimated from

Eq. (25) in cases when the static contribution to the excess

energy dominates over the thermal one (strong coupling is a

necessary condition for that). For instance, substituting

Eq. (25) into Eq. (19) immediately yields

pex ’
C
6

X
i

Ni=zið Þ 1þ jzið Þexp �jzið Þ �
3C
2j2

; (26)

where the last term is the contribution from the neutralizing

medium, compare to Eq. (20). The first term corresponds to

the excess pressure of the single component Yukawa system.

Note that since the structural properties are fixed in this near-

neighbor approximation (the model radial distribution func-

tion has no dependence on j), Eq. (19) becomes exact in this

case. When only i¼ 1 term is retained, the result is equiva-

lent, except the factor of two, to that used previously to

estimate the pressure of crystalline dusty plasmas.51,52 Note

that the contribution from particle-particle correlations to the

excess pressure decreases exponentially as j increases. At

j ¼ 3, its absolute value is 20% of that due to neutralizing

medium, while at j ¼ 5:5 it drops to ’ 1%.

VII. CONCLUSION

We have discussed in detail the application of the ISM

approximation to the idealized Yukawa systems, which can

be of interest in the context of conventional plasmas, dusty

(complex) plasmas, and colloidal dispersions. ISM provides

a simple and an efficient method to estimate the internal

energy of these systems at strong coupling, both in the fluid

and solid phases. The accuracy is not sufficient to make any

predictions about the location of the fluid-solid phase transi-

tion, but is acceptable for many other purposes. For instance,

simple analytical expressions for the excess pressure and

inverse isothermal compressibility have been obtained in this

paper.

ISM is reliable in the regime of strong coupling and weak

screening. In this respect, it is complimentary to the DHH

approximations that we have discussed previously, which is

applicable in the transitional regime between weak and mod-

erate coupling. Moreover, as we have pointed out in the pres-

ent paper, the nearest neighbor approximation provides quite

good accuracy when the screening strength increases. Thus,

various simple analytical approaches to estimate thermody-

namic properties of Yukawa systems are available, in essen-

tially entire range of possible phase states. In some cases,

when idealizations behind the conventional Yukawa model

are appropriate, these approaches can be applied to real sys-

tems (e.g., dusty plasmas and colloidal dispersions).

Alternatively, they can serve as the basis of more realistic

models, allowing an easy evaluation of the relative importance

of specific system properties in various situations.
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APPENDIX A: RELATION TO CONVENTIONAL THREE
COMPONENT DUSTY PLASMA

Normally, dusty plasma consists of three charged com-

ponents: electrons, ions, and particles. Overall system quasi-

neutrality implies Qnp0 þ qni0 � ene0 ¼ 0, where q is the ion

charge (for singly charged ions q ¼ þe). The electron and

ion densities inside the cell satisfy ne ¼ ne0ð1þ e/=TeÞ and

ni ¼ ni0ð1� q/=TiÞ, where Te and Ti are the corresponding

temperatures, which are not necessarily equal. The Poisson

equation inside the cell is

D/ ¼ �4pQdðrÞ þ k2
D/þ 4pQnp0;

where k2
D ¼ 4pðq2ni0=Ti þ e2ne0=TeÞ characterizes the

inverse screening length. The general solution is given by

Eq. (6). The conditions of cell neutrality and Coulomb as-

ymptote at the origin then immediately results in potential

distribution (7). Note that the model generally results in non-

zero potential at the cell boundary (Wigner-Seitz radius).

APPENDIX B: EQUIVALENCE OF ISM AND PY
APPROXIMATIONS

The starting point is the energy equation for the single

component Yukawa system40

FIG. 7. Madelung constant of the single component Yukawa system forming

the fcc lattice. Symbols correspond to exact results for M0(j) tabulated pre-

viously.4,25 Curves are calculated using nearest-neighbor approximation

[Eq. (25)] considering one (green dotted), two (blue dashed), and three (red

solid) shells of the neighbors.
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u ¼ 2pnp

T

ð1
0

r2V rð Þg rð Þdr; (B1)

where g(r) is the radial distribution function and V(r) is the

Yukawa pair interaction energy. Using the PY radial distri-

bution function gPYðrÞ for hard spheres of diameter d and

packing fraction g ¼ p
6

npd3, we can rewrite Eq. (B1) as

uPY ¼ 6g2=3C
ð1

1

xgPYðxÞe�txdx ¼ 6g2=3CGðtÞ; (B2)

where x ¼ r=d; t ¼ kDd ¼ 2g1=3j, and gPYðxÞ also depends

on g. The function G(t) (for a given g) is known

analytically53,54

G tð Þ ¼ tL tð Þ
12g L tð Þ þ S tð Þet½ � ; (B3)

where LðtÞ ¼ 12g½ð1þ 1
2
gÞtþ ð1þ 2gÞ� and SðtÞ ¼ ð1� gÞ2

t3 þ 6gð1� gÞt2 þ 18g2t� 12gð1þ 2gÞ. The ion sphere

model corresponds to gðrÞ ¼ 0 for r � 2a, that is, we have

to chose d � 2a or g � 1 for consistency. This results in

Lð2jÞ ¼ 36ð1þ jÞ; Sð2jÞ ¼ 36ðj� 1Þ, which immediately

yields

uPY ¼
j jþ 1ð ÞC

jþ 1ð Þ þ j� 1ð Þe2j
¼ f0 jð ÞC; (B4)

in agreement with the result obtained from purely electro-

static consideration [Eq. (10)].

Note that similar (PY) estimation of the Madelung

constants can be done for inverse-power-law potentials.55

Similarly to the case of Yukawa interactions, the accuracy is

better for softer potentials.
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