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Simple analytical approximations for the internal energy of the strongly coupled one-component-

plasma in two and three dimensions are discussed. As a result, new practical expressions for the

internal energy in the fluid phase are proposed. Their accuracy is checked by evaluating the

location of the fluid-solid phase transition from the free energy consideration. Possible applications

to other related systems are briefly discussed. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4897386]

The one-component-plasma (OCP) is an idealized

model system of point charges immersed in a uniform back-

ground of opposite charge to ensure overall charge neutral-

ity.1,2 This model is of considerable interest from the

fundamental point of view and has applications to a wide

class of physical systems, including, e.g., laboratory and

space plasmas, planetary interiors, white dwarfs, liquid met-

als, colloidal suspensions, and complex (dusty) plasmas. Not

surprisingly, various physical aspects of this model such as

thermodynamics, structural and transport properties, phase

transitions have been extensively investigated, both analyti-

cally and numerically.

In this Brief Communication, we focus on simple tools

to estimate the internal energy of two- and three-dimensional

OCP at strong coupling. Our starting point is the ion sphere

(in three dimensions) and ion disk (in two dimensions) mod-

els which are known to reproduce quite well (better than to

within ’0.5% in 3D and ’0.2% in 2D) the static components

of the internal energy of the OCP in the limit of strong cou-

pling. We then discuss a simple analytical modification aim-

ing at estimating the thermal component of the energy. This

results in some improvement over the purely static considera-

tion, but the exact behavior of the thermal energy is not

reproduced very accurately. However, based on the detailed

analysis of the existing numerical data, new simple and accu-

rate expressions for the thermal energy can be proposed.

Their overall accuracy is then checked by locating the fluid-

solid phase transition from the free energy consideration.

The one-component-plasma is characterized by the par-

ticle charge Q, particle density n, and the temperature T (in

the following temperature is measured in energy units, i.e.,

kB¼ 1). The uniform background has the charge density

�enb, the charge neutrality requires enb¼Qn. The electrical

potential around a single particle obeys the corresponding

Poisson equation. In three dimensions, this is the conven-

tional Coulomb potential, /p ¼ Q=r. Interparticle coupling

is then characterized by the coupling parameter C¼Q2/aT,

where a¼ (4pn/3)�1=3 is the 3D Wigner-Seitz radius. In two

dimensions, the interaction is logarithmic, /p ¼ �Q lnðr=LÞ
(we do not consider here the two dimensional systems of par-

ticles interacting via the three dimensional Coulomb poten-

tial, which have also been extensively studied in the

literature3,4). Here L is an arbitrary scaling length,5 which

can be set equal to the 2D Wigner-Seitz radius, a¼ (pn)�1=2.

The coupling parameter in 2D, C¼Q2/T, does not depend on

the particle density.

In the regime of strong coupling, the particles repel each

other and form a regular structure with the interparticle spac-

ing of order a. Each particle can be considered as restricted

to the cell (sphere in 3D and disk in 2D) of radius a, filled

with the neutralizing background. The cells are charge neu-

tral and do not overlap, and hence the potential energy of the

system is just the sum of potential energy of each cell. The

latter is trivially calculated as the sum of the energies of the

electrostatic background and the charge in the background

potential. The electrical potential generated by the neutraliz-

ing background (of the total charge �Q) inside the cell is

/b rð Þ ¼ Q

2a

r2

a2
� 3

� �
; (1)

in the case of 3D sphere and

/b rð Þ ¼ Q

2

r2

a2
� 1

� �
; (2)

in the case of 2D disk. The energies of the uniformly charged

sphere and disk are 3Q2

5a and Q2

8
, respectively. The energy of

the charge inside such a cell is simply Q/bðrÞ. If the charge

is fixed at the center of the cell, we get for the reduced

energy per particle (i.e., per cell)

ust �
Ust

T
¼

� 9

10
C 3Dð Þ

� 3

8
C 2Dð Þ;

8>><
>>:

(3)

where the subscript indicates that we are dealing with

the static part of the excess internal energy. Equation (3)a)Electronic mail: Sergey.Khrapak@dlr.de
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represents the well known results of the ion sphere (3D) and

ion disk (2D) models.2,5–7 It can be proven mathematically

that these values provide the lower bounds of the internal

energy in the thermodynamic limit (for 3D case, see Ref. 8;

for 2D case, see Ref. 9). They can be compared with

the Madelung values of the OCP body-centered-cubic

(bcc) lattice, uM¼�0.895929C, and triangular lattice,

uM¼�0.37438C. The agreement is impressive.

If the particle is allowed to move inside the cell, its

energy becomes position-dependent

WðrÞ ¼ Ust þ Q½/bðrÞ � /bð0Þ�: (4)

The second term in the equation above is responsible for the

thermal component of the excess energy in our approxima-

tion. The latter can be expressed as the average of W over

the classical Gibbs distribution,

uex ¼

ð
W=Tð Þe�W=Tdrð

e�W=Tdr

; (5)

where dr¼ 4pr2dr in 3D, dr¼ 2prdr in 2D, and the integra-

tion over r is performed from 0 to a. It is clear that the

energy can be written as uex¼ ustþ uth, where the static part

ust is given by Eq. (3) and the thermal part uth comes from

the straightforward integration. In three dimensions, we have

uex Cð Þ ¼ � 9

10
Cþ 3

2
� C3=2

ffiffiffiffiffiffi
2p
p

eC=2Erf
ffiffiffiffiffiffiffiffiffi
C=2

p� �
� 2

ffiffiffiffi
C
p ; (6)

where ErfðxÞ ¼ 2ffiffi
p
p
Ð x

0
e�t2 dt is the error function. Similarly,

in two-dimensions the integration yields

uex Cð Þ ¼ � 3

8
Cþ 1� C

2 eC=2 � 1ð Þ : (7)

Note that as C increases the thermal component of the excess

energy [two last terms in Eqs. (6) and (7)] tends to 3/2 in 3D

and to 1 in 2D. This corresponds to the result of the harmonic

lattice model, which was suggested to provide reasonable

estimate of the excess energy not only in the solid phase, but

also in the fluid phase not too far from the crystallization

point.10 The main question is therefore to which extent the fi-

nite integration limit in Eq. (5) can improve the application

of the model to strongly coupled OCP fluids.

Figure 1 shows the comparison of the obtained expres-

sion (6), shown by the solid curve, with the numerical data

for the internal energy of the three-dimensional OCP.

Triangles correspond to molecular dynamics simulations

data,11 which are for the fluid state for C � 160 (open) and

for the solid state for C � 180 (solid). Circles are the results

from the Monte Carlo simulations,12 all the data points are

for the fluid phase. The dotted curve corresponds to

the “harmonic lattice þ ion sphere” result of the form

uex¼�0.9Cþ 1.5. Note that in the original paper,10 the static

energy was taken as ust¼�0.8899C to better fit the numeri-

cal results in the regime 70 � C � 160. This energy is higher

than both the bcc Madelung and ion sphere values, which is

likely explained by some decay of the translational order in

the fluid phase.10 Since we are merely interested in improving

the estimation of the thermal contribution, the ion sphere

value (�0.9C) has been chosen for proper comparison.

We see from Fig. 1 that the modification contained in Eq.

(6) does work in the right direction, decreasing the thermal

energy compared to its asymptotic value 3/2. Although, only

marginal for C � 10, the correction brings the solid curve sig-

nificantly closer to the numerical results in the regime 1 � C
� 10. However, the overall agreement between Eq. (6) and

the numerical results is far from being excellent. Having real-

ized that, we find it reasonable to discuss the actual behavior

of the thermal component of the excess energy in more detail.

For the present purposes, we define it as uth¼ uexþ 0.9C and

plot the accurate results from extensive numerical

FIG. 1. Reduced excess energy per particle, uex/C, versus the coupling pa-

rameter C for the 3D OCP. Triangles correspond to MD numerical data,11

circles are MC data.12 The (red) solid curve is plotted using Eq. (6). The

(blue) dashed line corresponds to the expression uex¼�0.9Cþ 1.5. For

details see the text.

FIG. 2. Thermal component of the excess energy of strongly coupled 3D

OCP fluid versus the coupling parameter C. Crosses correspond to the numer-

ical MC data.12 Curves are the fits using Eq. (8) with different exponents s.
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simulations12 in Fig. 2. To keep simplicity, we chose a simple

formula

uthðCÞ ¼ c1C
s þ c2 (8)

to fit these data for C > 1. Several arguments have been pre-

sented in the literature regarding the proper choice of the

exponent s. For instance, hard-sphere variational calculation

with the Carnahan-Starling equation of state13 suggests

s¼ 2/5. If the Percus-Yevick virial equation of state is used

instead,14 the result changes to s¼ 1/4. Several other studies

indicated that the exponent s¼ 1/3 or close to that provides

better accuracy.11,12,15 Our analysis shows that s¼ 1/3 is

indeed in better agreement with the results from numerical

simulation (see Fig. 2). The values of the parameters c1,2 are

c1¼ 0.5944 and c2¼�0.2786. This fit allows us to evaluate

the Helmholtz free energy of the OCP fluid from

ffluid Cð Þ ¼ f 1ð Þ þ
ðC

1

uex C0ð Þ
C0

dC0; (9)

where f(1)¼�0.4368 (see, e.g., Ref. 11). The integration is

straightforward and yields

ffluidðCÞ ¼ �0:9Cþ 1:7832C1=3 � 0:2786 ln C� 1:3200:

(10)

As a check of the accuracy of Eq. (10), we estimate the

location of the fluid-solid phase transition in 3D OCP. The

excess free energy of the bcc solid can be written as7

fsolid Cð Þ ¼ MbccCþ
3

2
ln C� 1:1704�

X
j

Aj

jCj ; (11)

where Mbcc¼�0.895929 is the Madelung constant for the

bcc lattice and the sum over j represent anharmonic correc-

tions, with the first three coefficients7 A1¼ 10.84, A2¼ 352.8,

and A3¼ 1.794� 105. The intersection of Eqs. (10) and (11)

yields the fluid-solid phase transition (melting) point. We get

Cmelt ’ 173.8 in very good agreement with the value

Cmelt¼ 174 reported in Ref. 7 and somewhat higher than the

value Cmelt¼ 171.8 obtained in Ref. 16. Note that without

anharmonic corrections (A1, A2, A3¼ 0) the melting transition

would be shifted to Cmelt ’ 191. Thus, anharmonic effects

are important even for the smooth Coulombic potential.

We have performed similar simple analysis for the 2D

OCP. Figure 3 shows the results for the excess energy.

Circles correspond to the numerical MC results for particles

confined to the surface of a sphere.5 Triangles show the MD

results from Ref. 19 for the fluid phase (open) and solid phase

(solid). Solid curve is plotted using Eq. (7). The dashed curve

corresponds to the harmonic lattice þ ion sphere model result

of the form uex¼�0.375Cþ 1.0. They are almost identical

for C � 10. Similarly to the 3D case, for C � 10, Eq. (7) is

closer to the numerical results, but the agreement is not very

good. The dotted curve shows the results from the TI

(after Totsuji and Ischimaru17) scheme, which, according to

Ref. 18, can be well fitted by a simple expression of the form

uex ¼ d1Cþ d2C ln C
Cþd3

, with d1¼�0.374, d2¼�0.245, and

d3¼ 3.02. It lies closer to the numerical data at C � 10.

The thermal component of the excess energy of the 2D

OCP, uth¼ uexþ 0.375C, is shown in Fig. 4. We have found

that the functional form (8) is not very useful in fitting the

numerical data in the 2D case. Another simple three-

parameter formula has been used instead,

uth ¼ h1 lnð1þ h2CÞ þ h3: (12)

The values of the parameters are found by minimizing the

mean square deviation from the numerical data (we give

equal weight to the data from Refs. 5 and 19). This results in

h1¼ 0.2590, h2¼ 1.2003, and h3¼ 0.1265. The excess free

energy of the fluid phase is then calculated similarly to Eq. (9),

FIG. 3. Reduced excess energy per particle, uex/C, versus the coupling pa-

rameter C for the 2D OCP. Circles denote MC results,5 triangles are the MD

simulation results.19 The (red) solid curve is plotted using Eq. (7). The

(blue) dashed line corresponds to uex¼�0.375Cþ 1. The (green) doted

curve shows the results of the TI approximation. For details see the text.

FIG. 4. Thermal component of the excess energy of the strongly coupled 2D

OCP fluid versus the coupling parameter C. Circles correspond to the numer-

ical MC data.5 Triangles show the MD results for the fluid phase.19 The red

solid curve is the fit using Eq. (12).
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but with the integration starting from C¼ 2, because this is the

special case in 2D OCP which allows for the exact analytical

calculation20 and yields f ð2Þ ¼ 1� 1
2

lnð2pÞ ’ 0:0811. The

integration is again straightforward,

ffluid ¼ �0:375C� h1Li2ð�h2CÞ þ h3 ln Cþ 0:3164; (13)

where Li2ðzÞ ¼
Ð 0

z dtlnð1� tÞ=t is dilogarithm.

For the solid phase, the result of a simple harmonic

approximation is available20

fsolid ¼ �0:37438Cþ ln C� 0:262: (14)

The intersection of solid and fluid free energies occurs at

Cmelt ’ 140.0. This is in perfect agreement with the previ-

ously reported estimates Cmelt ’ 140 in Ref. 5 and Cmelt ’
135 6 10 in Ref. 19. Nevertheless, the value Cmelt ’ 140

obtained here and in Ref. 5 should be treated with some care,

because it is based on free energy consideration alone and

uses harmonic approximation for the solid phase. We have

seen above that anharmonic corrections can have consider-

able effect on the location of the melting transition in the 3D

OCP. More arguments regarding the determination of the

melting point in 2D OCP are given in Ref. 19.

To conclude, we have discussed simple corrections to

the static ion sphere and ion disk models of the classical

strongly coupled OCP in three and two dimensions. This

resulted in simple analytical expressions (6) and (7) for the

excess energy. The corrections bring theory closer to the

exact results from numerical experiments, but the agreement

remains far from excellent. Since the internal energies of the

fluid and solid phases must be known with very high accu-

racy in order to yield reliable prediction of the location of

the phase transition, we then used the available numerical

data to propose new simple fits for the internal energies. The

relevance of these fits has been proven by accurately locating

the melting point, both in 3D and 2D, from the free energy

consideration.

There are, however, situations when the accuracy of sev-

eral percent in estimating the internal energy would be suffi-

cient. One relevant example is the pressure equation used in

the hydrodynamic description of waves in strongly coupled

OCP and OCP-like systems. Since hydrodynamic approach

itself is only an approximation, simple results like those

obtained in this work can be of certain value.21 Moreover,

the suggested scheme can also be applied to other particle

systems with different interaction laws. In particular, the

case of Yukawa systems is under investigation and we plan

to report the results in a future publication.
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