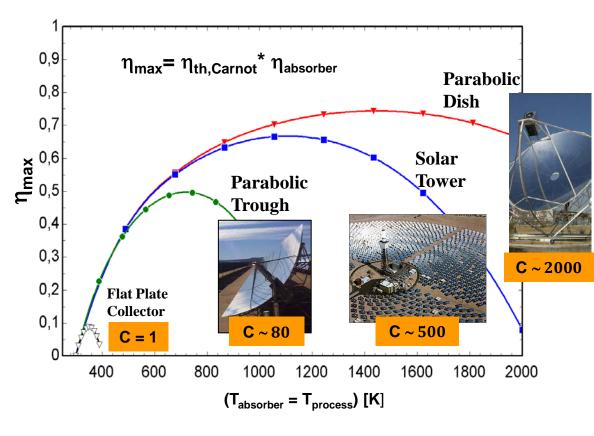
Receivers for Solar Tower Systems


Prof. Dr. Bernhard Hoffschmidt

June 25-27, 2014 Font Romeu, France

CSP Characteristics

Solar tower systems:

- \Rightarrow higher concentration
- ⇒ higher process temperature
- ⇒ higher solar-to-electric efficiency
- \Rightarrow reduced collector area
- \Rightarrow lower cost

Introduction: Solar Tower Technology

Solar Tower Technology:

- ascending renewable power technology
- high conversion efficiency
- added value:
 - high capacity factor (storage)
 - firm capacity
- significant cost reductions expected
 - technological development
 - improved manufacturing
 - increased maturity (financing)
- high local content achievable
- also suitable for HT process heat

Receiver Classification

Classification by Heat Transfer Medium:

- molten salt
- water/steam
- Air open/closed
- liquid metals
- solid particles
- other gases

Classification by maturity

State of the art technology:

- molten salt
- water/steam

First of its kind technology

• Open volumetric air receiver

Technology in pilot phase

Pressurized Air Receivers

Technology under development:

- liquid metals
- solid particles

Combination of Receiver and Storage

Receiver/Heat Transfer Medium is relevant for selection of storage system

Storage type:

- sensible
- latent
- (thermochemical)

Storage concepts:

- direct: receiver HTM is also used as storage medium
 - molten salt, particles, (water)
- indirect: a different storage medium is used
 - air/gases, liquid metals

State of the Art: Molten Salt Receivers

- "solar salt": 60% NaNO3 / 40% KNO3
- **low salt cost** allow use as heat transfer and storage medium
- salt temperatures **up to 565°C** for superheated steam generation
- good heat transfer characteristics
- critical: salt freezing below 220°C
- heat tracing required, draining of receiver and other system components during night
- salt degradation at temperatures higher than 600°C
- **corrosion** issues on metallic components (depends on salt quality)

Storage Medium	Tem Cole (°C)		Average density (kg/m³)	Average heat conduct- ivity (W/mK)	Average heat capacity (kJ/kgK)	Volume specific heat capacity (kWht/m³)	Media costs per kg (US\$/kg)	Media costs per kWh _t (US\$/kWh _t)
Liquid media								
Mineral oil	200	300	770	0.12	2.6	55	0.30	4.2
Synthetic oil	250	350	900	0.11	2.3	57	3.00	43.0
Silicone oil	300	400	900	0.10	2.1	52	5.00	80.0
Nitrite salts	250	450	1,825	0.57	1.5	152	1.00	12.0
Nitrate salts	265	565	1,870	0.52	1.6	250	0.50	37
Carbonate salts	450	850	2,100	2.0	1.8	430	2.40	11.0
Liquid sodium	270	530	850	71.0	1.3	80	2.00	21.0

Molten Salt Systems

www.DLRde • Chart 8

Molten Salt Systems

- GEMASOLAR:

- 20MW el.
- External tube receiver
- operation since 2011
- 290°C 565°C
- 120 MW_{th} @DP
- eta_{rec,DP} ~88%

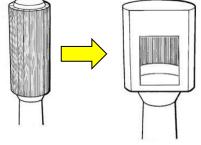
Molten Salt Systems

- Crescent Dunes (SolarReserve)
 - Molten salt
 - 110MW_{el}
 - External tube receiver
 - Receiver outlet temperature: 565°C

Strategies improving Molten Salt Systems

- Higher temperature molten salt:

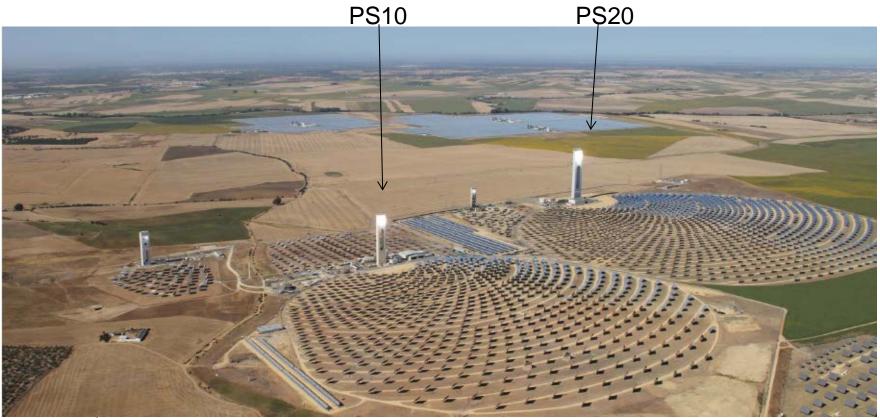
- Higher steam parameters
- Smaller heat exchanger
- Smaller storage
- Less critical operation (over temperature receiver)


Higher receiver efficiency by:

- Reduction of thermal losses
- Cavity arrangement
- Face down (can design)
- Using standard vacuum absorber for first temperature step
- Higher absorption of solar radiation ((selective) coatings)

Optimization of operation

- Real time aim point strategy for homogenous receiver temperature (→life time!)
- Solar pre-heating of receiver
- Faster start-up
- Avoiding draining of receiver during clouds



State of the Art: Saturated Steam

- PS10/PS20

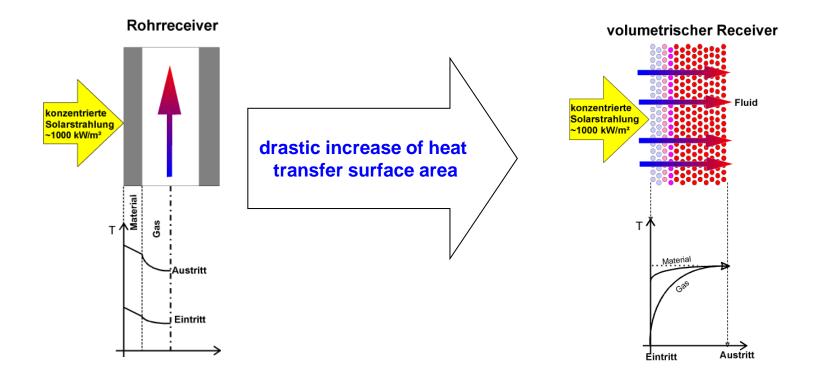
- direct irradiated absorber tubes (250°C@40Bar)
- 11/20 MW_{el}
- cavity receiver

www.DLRde · Chart 12

Superheated Steam Systems

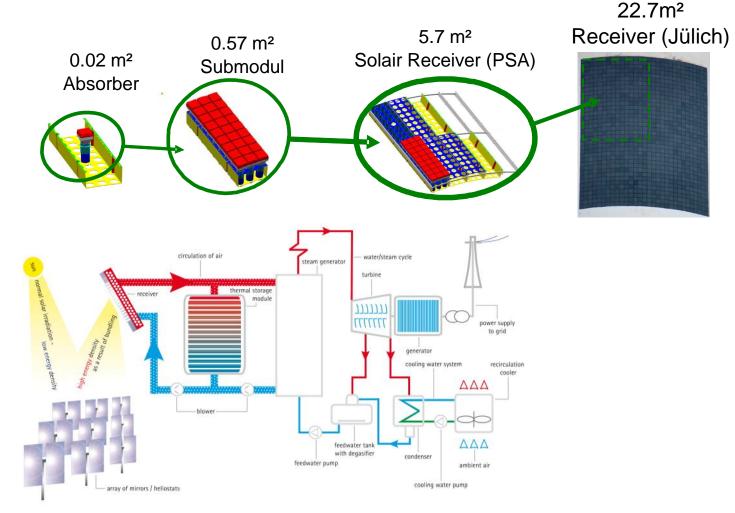
- Brightsource:

- Ivanpah 377MW
- direct Steam (550°C)
- external tube receiver


Strategies improving Superheated Steam

- **Higher steam temperatures** and pressures for higher efficiency at the power block
- Higher loads for absorber tubes (pressure and temperature)
- Three zones in receiver with different heat transfer coefficients:
 - pre-heating
 - evaporation
 - superheating

First-of-its-Kind: Open Volumetric Air Receivers


Volumetric Receiver Principle

First-of-its-Kind: Open Volumetric Air Receivers

First-of-its-Kind: Open Volumetric Air Receivers

Power Plant Jülich (DLR)

process parameters:

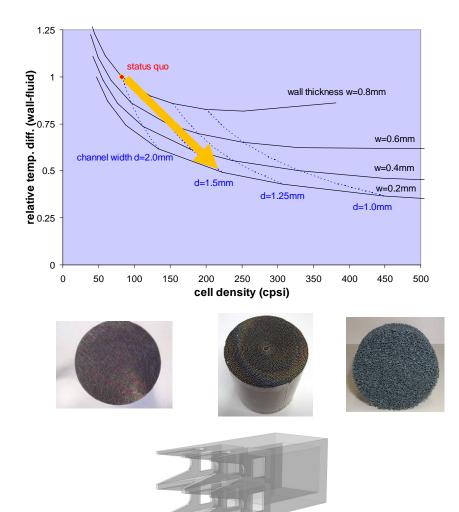
- pressure: ambient
- return air: 120°C
- receiver air outlet: 680°C

material load parameters:

- max. temp.: 1100°C (front)
- max. load: 1000kW/m²
- temp. gradient: ~100K/cm
- average mass flow: 0.55 kg/m²-s

dynamic operation:

 air outlet temp. of single cup: max. temp. change ≈3.3K/sec

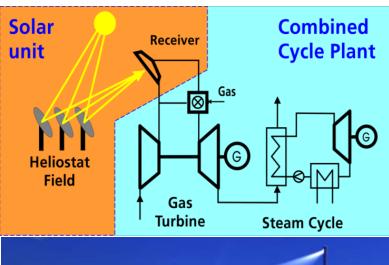

First-of-its-Kind: Open Volumetric Air Receivers Strategies for Improving

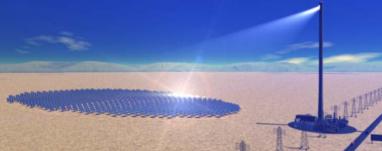
Improve of Absorber

- Higher Porosity
- Higher heat transfer surface per volume
- Stable mass flow
- Extension of durability

Improve of System:

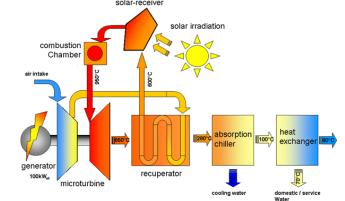
- Less auxiliary energy
 - Decrease of pressure drop
- Online aiming point strategy
- Cavity receiver
 - Increase of air return ratio
- Operator assistence system

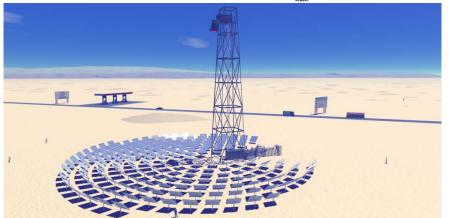



Technology in Pilot-Phase: Pressurized Air Receivers

- pre-heating of the compressed air of a Brighton cycle
- currently two power levels are under development:

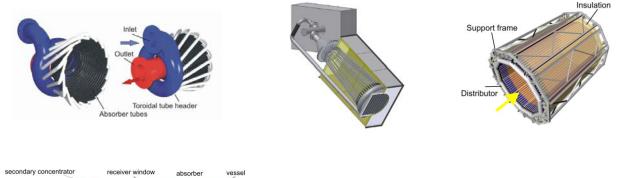
large systems:


- 5-150 MW el.
- combined with steam cycle

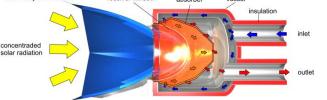


small systems:

- 0.1-5 MW el. (recuperated turbine)
- combined with cooling/heating (desalination)

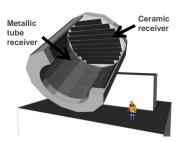


Technology in Pilot-Phase: Receiver Development


- air outlet temperature: 800-1000°C
- pressure: 4-16 Bar_{abs.}
- pressure drop: 100-400mBar
- materials:

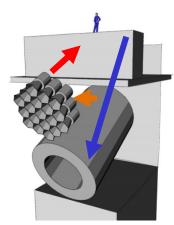
tube receivers

high temperature alloy, ceramics, fused silica



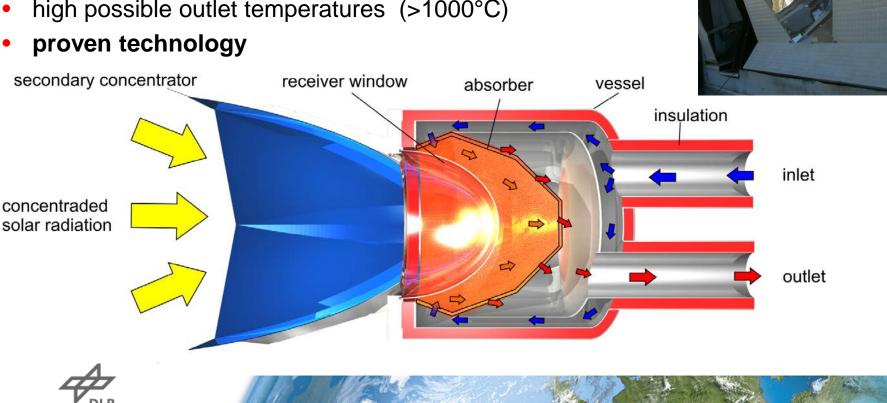
volumetric receivers

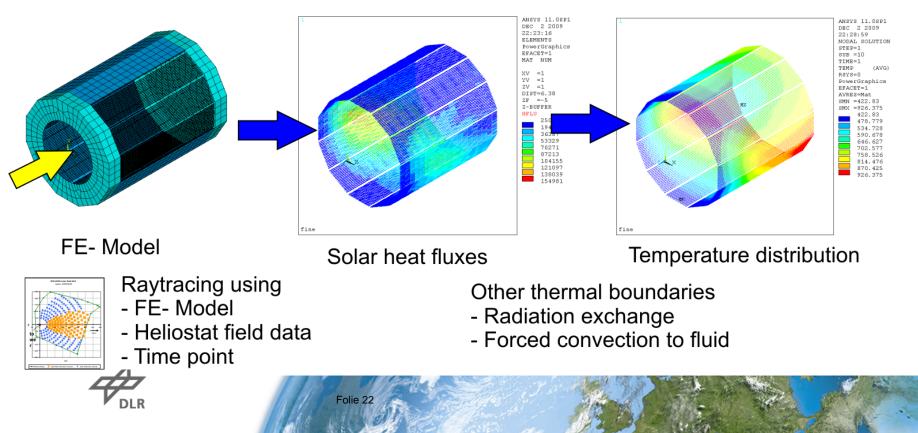
ceramic plate receiver



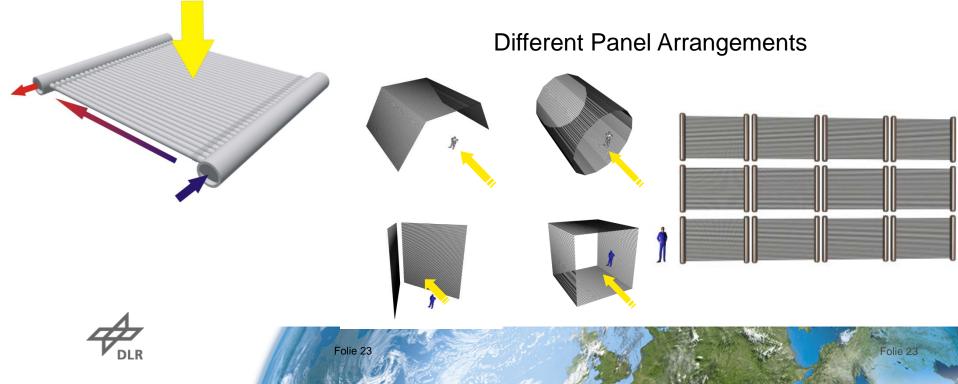
Technology in Pilot-Phase: First Pilot (SOLUGAS)

- EU- project under leadership of ABENGOA SOLAR NT
- Test of a 3MW_{th} metallic tubular receiver
 - Inlet temperature: 330°C
 - Outlet temperature: 800°C
 - Pressure: 10Bar_{abs}
- Since summer 2012: more then 700h of solar operation
- Design values reached and simulation models validated
- Next step: Integration of Volumetric Pressurized receiver (1MWth /1000°C)




Technology in Pilot-Phase: Receiver Development Closed Volumetric Receiver

- high efficiency (>80%) caused by...
 - "volumetric" absorption of radiation
 - relatively low absorber temperatures
 - low thermal reradiating
- low pressure drop (< 30mbar)
- high possible outlet temperatures (>1000°C)


Technology in Pilot-Phase: Receiver Development Tube Receiver and Design methods

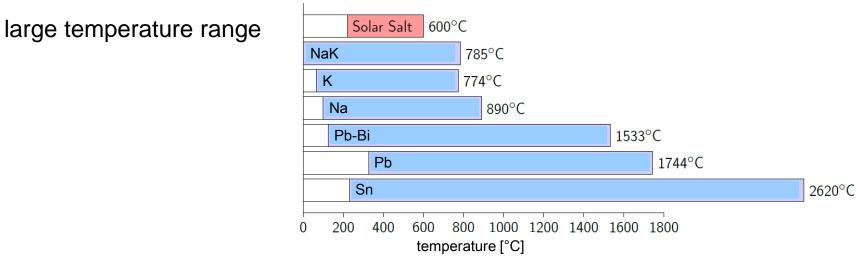
- using commercial FEM/CFD codes for the thermal and mechanical layout
- using the raytracing code SPRAY
- thermal field can be used for mechanical simulation (strain, stresses)
- parametric approach allows easy variations (geometry, load cases) and optimization

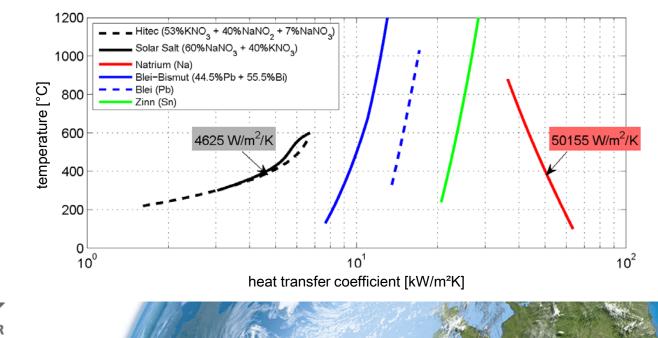
Technology in Pilot-Phase: Receiver Development Ceramic Plate Receiver

- mass flow is distributed to several parallel absorber tubes by a tubular header
- absorber tubes should have small diameters for best heat transfer.
- the thermal strain of each absorber tube has to be compensated.
- tubular collector collects the heated fluid.
- design of receiver has to fulfil thermodynamic, hydraulic and economic needs.

Technology in Pilot-Phase: Receiver Development Ceramic Plate Receiver

Material benefits of SiC ceramic

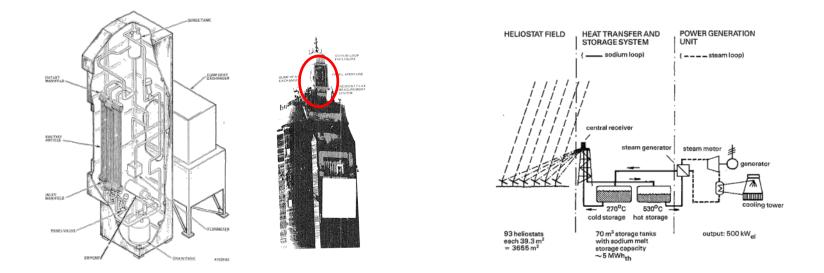

- High thermal conductivity
- Very low thermal expansion coefficient
- Temperature stability up to 1500°C (in air)
- Gas-tight
- High strength
- "Black without coating"
- Design of inner structure



Technology under development: Liquid Metal Receivers

high heat transfer coefficients


```
Folie 26
```


Technology under development: Liquid Metal Receivers Experiences in solar power systems

First receivers tested in the 80's with sodium as HTF achieved high efficiencies

Receiver test in the USA: Sandia CRTF

- 750 litres, 70 hours

Plant test in Spain: PSA - 70,000 litres, 5 years

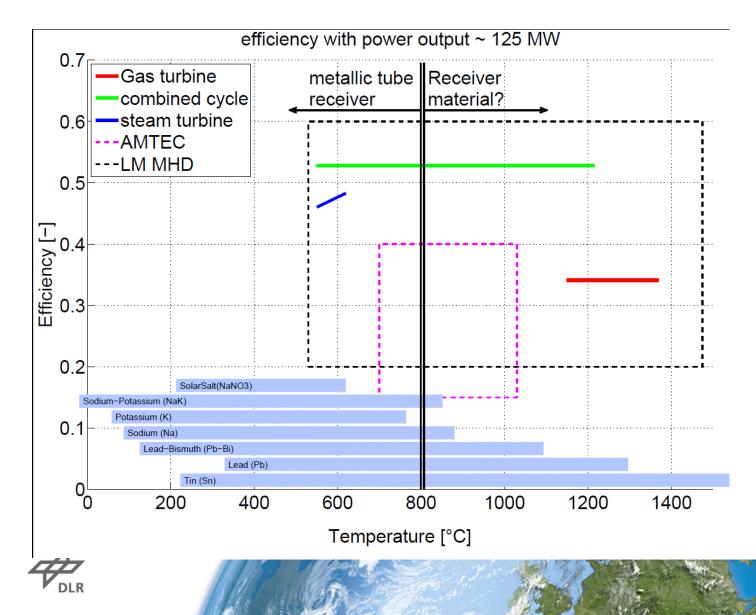
After a sodium fire in 1986 in Almeria, investigation of liquid metals in solar power systems was stopped!

Folie 27

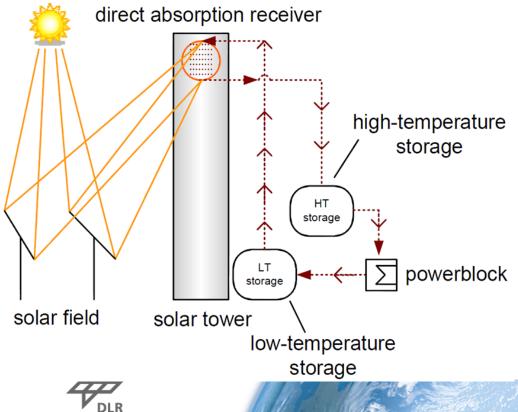
Technology under development: Liquid Metal Receivers Ongoing Research

Conventional technologies

- Steam turbine (η ≈ 45%)
- Gas turbine (η ≈ 40%)
- Gas- and steam turbine ($\eta \approx 55\%$)

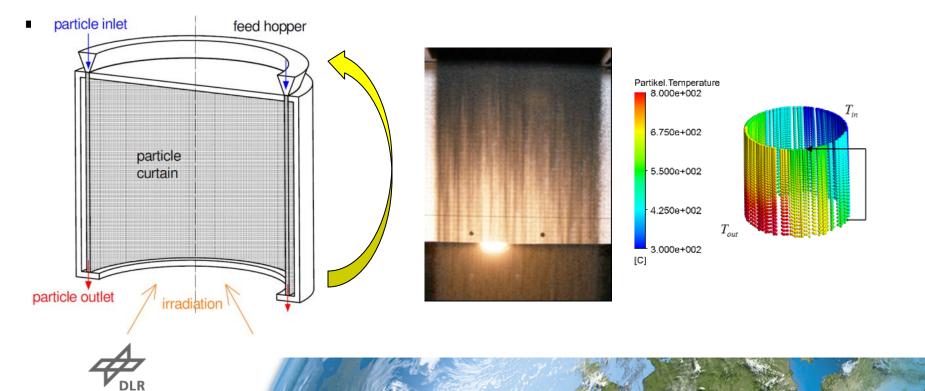

Innovative technologies

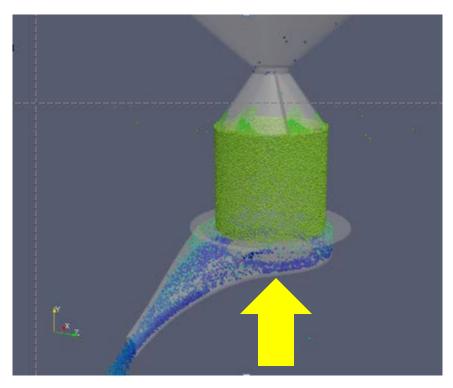
- Thermo-electrical Generator (TEG: Seeback-Effect) ($\eta \approx 5\%$)
- Thermionic Power Generator (Edison-Richard-Effect) ($\eta < 5\%$)
- Alkali-Metal Thermal Electric Converter (AMTEC), Electrochemical device for direct conversion of heat to electricity (η ≈ 15...40%)
- Liquid Metal Magneto-hydrodynamic Generator (LM MHD), energy conversion: heat \rightarrow kinetic energy \rightarrow electricity ($\eta \approx 20...60\%$)


Folie 28

Technology under development: Liquid Metal Receivers Conceptual study

Technology under development: Direct Absorbing Particle Receiver


- direct absorbing of solar radiation at small ceramic particles
- ceramic particles as heat transfer and storage medium
- high temperature capability (>900°C) for power generation and process heat
- no limits in flux densities (no wall between heat absorption and heat transfer medium)


Technology under development: Direct Absorbing Particle Receiver: 1. Approach – Falling Particle Curtain

- optically dense particle film near the inner surface of a cylinder/box
- gravitation forces give falling speed and duration of particle in solar radiation
- re- circulating of the particles necessary to obtain design outlet temperature
- concentrated solar radiation through the opening at the bottom
- high level models developed (coupling of CFD, raytracing and particle movement)

Technology under development: Direct Absorbing Particle Receiver: 2. Approach – Centrifugal Particle Receiver

- optically dense moving particle film on the inner surface of a rotating cylinder
- gravitation and centrifugal forces → particle retention time can be controlled by rotation speed
- Prototype (10kW) successfully tested up to 900°C

R&D Outlook on Technologies (plus Trough Tech.)

- State of the art technologies

- Trough with thermo oil
- Tower with steam
- Tower with salt
- Fresnel with steam

- First-of-its-Kind technologies

- DSG in trough
- Open vol. Receiver
- Industrial process heat

- Technology in pilot phase

- Salt in Trough/Fresnel
- GT + Tower

- Technology under development

- Particle (Tower)
- Liquid metal (Tower)
- Development of new HTF (Tower/Trough/Fresnel)
- Solar Fuels

Field of R&D

Methods on qualification, operation optimization, degradation, side evaluation

Optimization of components

Adaptation of conventional components for solar applications

Pilot plants and Development

Prototype testing (lab scale) / Scale-up / Modeling / materials and properties / system evaluation / basic research on effects, kinetics, conversion rates

Thank you for your attention!