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Abstract. The continuous progress in the acquisition of high-dimensional
information (e.g., satellite image time series, or medical screening) im-
plies an efficient characterization of changes that occur in a temporal
series of data. A pseudo-encoding technique can be designed to represent
the changes between two consecutive moments of time, based on the min-
imization of a convex error function which has an analytical solution.
The domain transformed feature vectors are grouped into clusters using
K-Means. The proposed approach results in a better separation between
classes and, thus, in an enhanced characterization of temporal changes.
The experiments are done on 5 Landsat multispectral images at 30 me-
ters spatial resolution, covering an area of approximately 59 × 51 km2

around Bucharest, Romania.

Keywords: Domain adaptation, data mining, information retrieval, mul-
titemporal images, satellite image time series

1 Introduction

Lately, with the increasing demand in Earth surveillance, the interest developed
in the automatic analysis of change has constantly accrued. This work is centered
around satellite image time series, for which most of the methods that analyze
temporal series of data are mainly looking at the change detection aspect, ne-
glecting the information that can be obtained from a more complex analysis.

Intuitively, features belonging to different classes are distributed differently
across datasets. For these reasons, classifiers behave in a different manner for each
of these distributions. Information-theoretical learning methods [3] and kernels
designed to have specific properties [2] were used to correct the distribution
differences. Similarly, change analysis has to deal with problems of revealing the
changes in all types of classes, not only the dominant ones.

Moreover, one class of unsupervised domain adaptation methods, related to
the proposed approach, is to change the feature representations such that the
shared characteristics between the source and target domains are kept. In this

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31015816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Pseudo-Code for Change Analysis in Satellite Image Time Series

case, we aim to keep the information regarding the class provenience in the
analysis applied to changes that occur between two temporal satellite images.
One way to do this is to derive new feature representations that are able to
model the particular characteristics of the classes.

This paper addresses the above mentioned issues from the perspective of
minimizing a convex cost function, which results in a pseudo-encoder that quan-
tifies the dissimilarities between the feature maps of two consecutive images,
whereas the multispectral information is included in the descriptor of each pixel,
or patch.

The rest of the paper is organized as follows. Section 2 presents some of the
currently used methods for change detection, whereas Section 3 introduces the
basic idea of the proposed pseudo-encoding based on a functional minimization.
Section 4 comes with a set of experimental results, whilst Section 5 concludes
the paper.

2 Related Work

The traditional change detection techniques in satellite image time series (SITS)
are divided into several groups [1]: algebra based approach (i.e., image differenc-
ing, image rationing), linear transformations (i.e., Principal Component Anal-
ysis, Tasseled Cap), classification based methods (i.e., unsupervised change de-
tection, artificial neural networks). These techniques can be also combined in
order to yield better results in terms of change detection.

An automatic change detection method is depicted in [7] by finding the
best threshold between “change” and “no change” through an Expectation-
Maximization algorithm applied to the difference between two images. To smooth
the detection and to get benefit from the interpixel dependencies, a Markov Ran-
dom Field is used. Another approach to change detection is [6], which projects
each difference pixels on the first principal components of the difference images.

Change map time series are tackled by [9] using a Latent Dirichlet Allocation
(LDA) model to describe the dynamic evolution of the Earth’s surface. The
change detection process comprises four similarity measures, namely: correlation
coefficient, Kullback-Leibler divergence, conditional information, and normalized
compression distance.

Algebraic techniques are widely used in the change detection chain, even in
specialized tools, due to their simplicity and low complexity. They are based on
the differences (i.e., subtractions, ratios, or log-ratios depending on the type of
satellite image) of the pixel values situated at the same location, or differences of
the linear transformation results. Post-classification methods aim at providing an
overview of the types of changes that occur in the temporal series, by classifying
the resulted feature vectors into classes of change.

Image Differencing. This algebra-based method consists of the pixel-wise
difference between the satellite images registered at different times, over the
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same space location. More precisely, we compute, for each subband of frequency:

DIFF(t) = I(t) − I(t−1), (1)

where I(t) is the matrix of pixel values at time t, i.e. the satellite image captured
at time t, and DIFF(t) represents the pixel-wise difference between two images
registered at two consecutive moments of time. No temporal changes in a location
is translated in a 0 entry in the corresponding position of the image differencing
matrix. Due to residual differences (i.e., not caused by the temporal changes),
the 0’s are, in fact, gray-levels, for which a threshold has to be found in order
to demarcate between the change and no change states.

Image Rationing. In a similar manner, image rationing is defined as:

R(t) =
I(t)

I(t−1)
, (2)

where R(t) represents the ratio between pixel values of both images, I(t−1) and
I(t), and the division is done point-wise. As before, the images are registered at
consecutive moments of time. In the ideal case, no temporal changes imply a
ratio of 1, whereas changes are represented by ratios higher or lower than 1.

3 Proposed Method for Change Analysis

3.1 Overview of the Proposed Method

Let us denote by I(t−1) and I(t) two temporal images, rescaled between [0, 1].
The corresponding descriptors are D(t−1) and D(t), that can be taken at a pixel-
level, or at a patch-level, as we will see in the next section. The change matrix,

C
(t)
λ , quantifies the dissimilarity between the two temporal images, using dif-

ferent algebraic measures such as: image differencing, image rationing, or the
proposed pseudo-encoder described in this section. Post-classification is done
using a simple and fast K-means, where K is the number of classes of change,
and the classifier’s inputs are exactly the resulted pseudo-codes. The idea behind
the post-classification is to show that each change belongs to a particular class,
which is strongly correlated to the classes perceived by a user.

Fig. 1 summarizes the change analysis chain that was described above. As
mentioned before, throughout this paper, we bring into discussion change anal-
ysis as opposed to change detection, the former being less deliberated in most
of the related papers.

3.2 Pseudo-Encoder with L2-Norm Regularization Term

Let us consider a temporal series (e.g., SITS) with T observations (e.g., satellite
images), {I(t) ∈ RS1×S2}t∈{1,...,T}, where S1 and S2 are the dimensions of the
images. Each image is divided in N patches of size p×p pixels. At limit, the patch
can be considered of 1 pixel (i.e., p = 1). Additionally, let D(t) ∈ Rd×N contain
d -dimensional local descriptors (i.e., patch features, pixel values) extracted from
the image I(t) captured at time t.
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I(t−1) I(t)

Descriptor D(t−1) Descriptor D(t)

Change matrix C
(t)
λ = Cλ(D(t−1),D(t))

K-Means clustering

Change Maps

Fig. 1. Block diagram of the proposed change analysis.

Problem Formulation. The main rationale behind the proposed method is to
represent the changes in a self-contained manner so that the types of changes
are apart one from another, whilst the algorithm can be generalized to all kinds
of feature maps. In order to attain this aim, the changes that occur between
two consecutive registrations, I(t−1) and I(t), are “encoded” by minimizing the
following convex cost function:

J(C
(t)
λ ) =

N∑
i=1

(
‖D(t)

i −C
(t)
λ,i �D

(t−1)
i ‖22 + λ · ‖di �C

(t)
λ,i‖

2
2

)
, (3)

where C
(t)
λ =

[
C

(t)
λ,1,C

(t)
λ,2, . . . ,C

(t)
λ,N

]
∈ Rd×N represents the set of learned codes

for each of the N patches inside the image, λ ∈ R+ is a sparsity coefficient, ‖·‖2
is the L2-norm, and � denotes the point-wise multiplication [A � B]i = AiBi.
The term di ∈ RD×1 acts like a weight for the sparsity coefficient λ on each
dimension of patch i ∈ {1, . . . , N}. Specifically,

di =
(

1 + exp
(
−dist(D

(t−1)
i ,D

(t)
i )
))−1

, (4)

where dist(a,b) = [|a1 − b1|, . . . , |aD − bD|]T measures the distance between
each element inside the feature map of patch i captured at time t − 1 and its
correspondent captured at time t.

The choice of the cost function is argued by multiple facts. Firstly, J(C
(t)
λ )

is able to induce a measure of similarity that can be further used to cluster the
temporal evolution between pairs of patches. Secondly, this optimization task is
convex and removes the risk of falling into local minimums as it is the case of non-
convex functions. Thirdly, a linear transform cannot adapt to differences between
classes. Hence, non-linear transforms are required to reduce this information loss.
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Furthermore, imposing the sparsity constraint in equation (3) leads to a bet-
ter separation between codes, and, thus, to a better separation between clusters,
as we will see in Section 4. The sparseness is not induced using a common
L0-norm, or L1-norm, but by using the L2-norm regularization term similar to
the one proposed in [11]. This imposes the presence of few significant values in
the code, and also an analytical global solution for the minimization problem,
avoiding the computational burden carried by other sparse coding methods.

The weights {di}i=1,...,N give different freedom on each dimension of the code

C
(t)
λ,i depending on the distance between the elements of the feature maps. In

addition, the function f(x, y) = 1
1+exp(−|x−y|) in expression (4) has the following

useful properties:

1. |x−y| is not sensitive to the direction of change (i.e., the distance is the same
between feature vector at time t− 1 and those at time t, and vice-versa);

2. If |x − y| is large enough (i.e., a major change took place in the respective
area), f(x, y)↗ 1;

3. If lim inf |x−y|→0 f(x, y) = 0.5 (i.e., no major changes).

Solution to the minimization problem. The minimization of the convex

function J(C
(t)
λ ) is equivalent to solving a linear system with d × N equations

and d×N unknowns, namely C
(t)
λ ∈ Rd×N :

−
(
D(t) −C

(t)
λ �D(t−1)

)
�D(t−1) + λ · d�

(
d�C

(t)
λ

)
= 0.

The solution of this system of equations can be derived simply as:

C
(t)
λ =

D(t−1) �D(t)

D(t−1) �D(t−1) + λ · d� d
, (5)

where d = [d1, . . . ,dN ] ∈ Rd×N and the division is taken element by element.

Advantages. Firstly, as already mentioned, having an analytical solution (5)
to the minimization of the error function (3) represents a major advantage.

Secondly, the sparsity (i.e., of course, in the sense of fewer important values)
in the codes is beneficial: It helps the clustering algorithm to distinguish better
between the classes, as we will see in Section 4, reducing the impact of the
noise on the data analysis, a frequent source of errors in satellite imagery (e.g.,
different atmospheric conditions, different seasons between the registrations).

Furthermore, besides the direct advantages of the encoding procedure (i.e.,
analytical solution, better separation), we mention also the generality of the
algorithm: the method can be applied to any type of feature maps, at a pixel-
level, or patch-level, as we will show shortly.
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Relation with other algebraic measures for change detection. As a first
remark, if no transform is applied to the images and λ = 0, then the pseudo-
encoder is equivalent to an image rationing operation:

C
(t)
0 = R(t) if D(j) = I(j),∀j ∈ {t− 1, t}, (6)

where the pixel level case is considered for C
(t)
0 . However, image rationing is not

well-defined if the values of the pixels are close to 0, which is often the case. For

this reason, the term λ ·‖di�C
(t)
λ,i‖22 reduces this risk, being an added advantage

of the proposed encoding model.
Moreover, the values that result by image differencing are transformed into

weights for the cost function J(C
(t)
λ ), which tries to equalize the importance

between the levels of change so that all changes are taken into account.

4 Experimental results

In this section, we report the results obtained by using the pseudo-encoder de-
scribed in Section 3 on a challenging type of temporal series, namely satellite
image time series (SITS). This paper uses 5 Landsat multispectral SITS cap-
tured between 2001 and 2003, at 30 meters spatial resolution, covering an area
of approximately 59 × 51 km2. The satellite images are captured using six sub-
bands of frequency, namely: near-infrared (NIR – the wavelengths are between
0.77 – 0.90 µm) and shortwave infrared (SWIR1 and SWIR2 – the wavelenghts
are between 1.55 – 1.75 µm and 2.09 – 2.35 µm).

4.1 Feature maps

The pseudo-encoding method presented in the previous section is a general algo-
rithm that can be used with any type of feature maps, depending on the desired
level of detail. Two cases can be depicted, namely: pixel-level, and patch-level
descriptors.

Pixel–Level Descriptors At a given time t, for a single spectral subband,
the pixel–level descriptor is built considering each pixel value, namely D(t) ∈
R1×S1S2 is the vectorized form of the image, taken column by column. The
multispectral information is included by a simple concatenation of the values of
all the spectral subbands (i.e., D(t) ∈ R6×S1S2 for 6 bands).

Patch–Level Descriptors There are many types of patch based descriptors
that describe locally the shapes and textures in an image, starting from wavelet
coefficients, edge descriptors, Fourier coefficients, and so on. In this case, we will
opt for local image descriptors that result from the projections onto a learned
basis, as shown below.
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Table 1. The reconstruction error of the SITS decreases with the level of detail.

Patch size MSE
11 46.44 · 10−3

9 44.07 · 10−3

7 42.65 · 10−3

5 42.20 · 10−3

Let us denote by Yi ∈ Rp
2×1 the column-wise form of a patch Xi ∈ Rp×p in an

image from the database. As described in [10], sparse dictionaries can be learned
starting from n randomly selected patches from the dataset, by minimizing the
following convex function:

J (B, {ti}i=1,...,n) =

n∑
i=1

(
‖Yi −B · ti‖22 + µ · ‖ti‖1

)
(7)

where B = [Bj ]j=1,...,d has the filters that compose the filterbank on each col-
umn, ti are d - dimensional vectors that represent the projection of vector Yi

onto the learned dictionary B, whereas ‖·‖2 and ‖·‖1 represent the L2 - norm
and L1 - norm, respectively. µ models the degree of sparsity considered for the
representation.

Table 1 shows that the mean squared reconstruction error (MSE) decreases
with the size of the patch:

MSE =
1

n

n∑
i=1

1

p2
‖Yi −B · ti‖22. (8)

In order to learn specific filterbanks for SITS, we considered n = 100 patches
of 7 × 7 pixels (i.e., 210 × 210 m2 covered area), D = p2 = 49, and µ = 0.5.
The learned filterbanks for each spectral band of the SITS are shown in Fig. 2.
The choice p = 7 is made in accordance with the analysis of change in SITS,
developed in this paper. More precisely, a more detailed level of analysis (i.e., a
smaller size of the patch) would lead to inconsistent detection of change, whereas
a coarser one would have included different classes in the same patch, which is
not desirable.

Furthermore, the corresponding feature vector t of an arbitrary patch X,
with the corresponding vector form Y, can be computed using the approximation
t = BT ·Y that incorporates all the projections on the columns of the filterbank
B. The feature vectors corresponding to the six subbands are concatenated,
leading to a new feature vector, i.e. [tT1 , . . . , t

T
6 ]T , where tl is the corresponding

descriptor that represents the lth subband of the patch in the satellite image.
Under these circumstances, the length of each patch’s descriptor is 6p2.
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(a) Blue filterbank (b) Green filterbank (c) Red filterbank

(d) NIR filterbank (e) SWIR1 filterbank (f) SWIR2 filterbank

Fig. 2. Learned filterbanks from SITS

4.2 Clustering the changes in SITS

Further, we perform a post-classification over the resulting pseudo-codes using
K-Means, noting that our aim is not a simple separation between “change” and
“no change” as in [6] or [8], but a more complex one: The changes are grouped
into “types of changes”, that mark the transitions between the two temporal
moments.

In addition, the analysis shows that the clusters are specific to individual
user-defined classes. In order to attain this desideratum, the images are manu-
ally labeled, by direct observation, as: Urban, Forest, Water, and Agriculture.
For example, a change occurring in an urban environment is more likely to be
included in an urban prototype of changes, rather than grouped with changes re-
lated to water, forest, or agriculture. Moreover, these classes are time-invariant,
meaning that a change doesn’t imply any kind of modification over these classes.
This assumption holds for relatively short periods of time (i.e., one year in our
case). If the analysis spans a longer period of time, the pseudo-encoder acts more
like a similarity measure, that, in conjunction with the K-Means algorithm, has
the added capability of enhancing the separability between types of changes that
a human observer cannot easily distinguish.

An example of 10-Means clustering is shown in Table 2, where each cluster is
assigned to the class which is most frequent in the cluster. This kind of mapping,
for this example in particular, can be observed in Fig. 3. The figure displays only
the transition between June 24th, 2001 (T1) and October 14th, 2001 (T2), whilst
Table 2 shows the results obtained over the 5 SITS.
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Table 2. Repartition of each of the 10-Means clusters over the manually labeled classes
in percentages [%]

Descriptor 10-Means
clusters

Urban Forest Water Agriculture

Pixel-level

C1 0 0 100 0
C2 1.31 86.56 0.27 11.86
C3 2.10 0.23 0 97.67
C4 0.07 0.15 0 99.78
C5 0.39 2.29 0 97.32
C6 0.89 0.26 0 98.85
C7 0.23 7.63 0 92.14
C8 98.41 0.77 0.82 0
C9 100 0 0 0
C10 99.94 0 0.06 0

Patch-level

C1 99.22 0.58 0 0.19
C2 0.77 86.17 12.43 0.63
C3 95.78 0.32 2.00 1.90
C4 1.75 2.43 2.99 92.83
C5 1.03 0 1.45 97.52
C6 0.34 0 98.10 1.56
C7 0.67 0.91 11.72 86.70
C8 0.30 0 0.30 99.40
C9 6.60 2.83 10.09 80.48
C10 0.80 7.40 5.39 86.41

In order to evaluate the results of our proposed method with respect to
the performance of clustering in terms of domain separation, we consider Purity
and Adjusted Rand Index as the criteria for analyzing the clustering quality with
respect to the number of clusters and sparsity constraint λ. In what follows, let
us denote by S = {Sj}j the manually labeled partition (i.e., user-defined classes)
and, by C = {Ck}k, the resulted K-means partition.

Formally, purity [5] is defined as:

Purity =
1

N

K∑
k=1

max
j=1,...,|S|

|Ck ∩ Sj |, (9)

where Ck represents the kth cluster, Sj is the jth user-defined class, and |S| is
the cardinality of S. It measures the agreement between the two partitions in
terms of class separation. A complete agreement translates into a 100% purity,
whilst independent partitions give a 0% purity.

The second criteria, Adjusted Rand Index (or, shortly ARI ), is one of the
most popular performance measures for comparing two partitions of a set by
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counting pairs of points that agree/disagree [4]. The index is computed as:

ARI(C,S) =

∑
k,j

(
nk,j

2

)
−

∑
k

(
nk
2

)∑
j

(
nj
2

)
(
N

2

)
∑

k

(
nk
2

)
+
∑

j

(
nj
2

)
2 −

∑
k

(
nk
2

)∑
j

(
nj
2

)
(
N

2

)
, (10)

where nk,j = |Ck ∩ Sj |, nk =
∑
j nk,j , nj =

∑
k nk,j , and N =

∑
k

∑
j nk,j is

the total number of feature points. As proved in [4], ARI is equal to 1 if the
partitions agree, whilst being 0 for no agreement.

The performance measures are plotted in Fig. 4 as functions of the number of
clusters, for different sparsity constraints λ. We observe that the highest perfor-
mance in terms of purity is obtained for λ ∈ (0, 1], whereas for λ > 1, the purity
of the K-Means clustering starts to decrease. Furthermore, as expected, we ob-
serve the tendency of ARI to decrease with the number of clusters, whereas the
purity behaves exactly in the opposite way. Thus, a compromise between these
measures has to be found. We note that the purity and ARI become approx-
imately constant starting from 10 clusters. So, for our application, ten can be
regarded as the optimal number of clusters. In addition, Fig. 4 shows that the
performance of image rationing is limited, both at pixel-level and patch-level. In
the latter case, ARI is even constantly equal to 0 at patch-level, showing that
the two partitions (i.e., the K-means labels and the manual labels) are random
and that this method is not suitable for change analysis as it is not able to reflect
any information regarding the class from which the changed element comes.

Furthermore, the main objective of the proposed method is also attained.
Inspecting Fig. 4 again, the proposed pseudo-encoder manages to distinguish
better among the types of changes, which leads to a better separation of the
change domains, and, thus, to a better analysis of the changes in the time series
compared to the widely used differencing and rationing methods.

5 Conclusions

This paper presents a new image representation mainly designed to address
analysis issues regarding time series. The proposed pseudo-encoding method
aims to describe the changes that take place into a temporal series through
a domain shift, which tries to give almost the same importance to all types
of changes. Moreover, the method can be used at a patch level, or pixel level,
depending on the desired level of precision. Experiments show good performance
in terms of purity and ARI if compared to other commonly used methods (i.e.,
image differencing and image rationing). Furthermore, it is proven that change
structures are endowed in each semantic class perceived by a user, meaning that
a certain type of change is relevant for one class, while for another, not.
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(a) One image from SITS

 

 

void water forest agriculture urban

(b) Ground truth

 

 

void C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

(c) Clustering map pixel-level

 

 

void C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

(d) Clustering map patch-level

Fig. 3. The same space location is registered using six bands of frequency at two differ-
ent times, namely June 24th, 2001 (T1) and October 14th, 2001 (T2). The ground truth
is manually defined. Only the colored patches are taken into consideration, whereas the
rest of the image is colored in black, representing a mixture of the 4 manually labeled
classes, or other classes that are not relevant for our analysis. The K-Means clustering
reveals a strong correlation between the types of changes and the manually defined
classes.
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Fig. 4. Performance measures for the clustering depending on the number of clusters
and the similarity measure, i.e. image differencing, image rationing, or proposed method
with several values for λ.
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1. J. Théau, “Change detection,” in Springer Handbook of Geographic Information,
pp. 75–94. Springer Berlin Heidelberg, 2012.

2. B. Gong, F. Sha, and K. Grauman, “Overcoming Dataset Bias: An Unsupervised
Domain Adaptation Approach,” in Big Data Meets Computer Vision: First In-
ternational Workshop on Large Scale Visual Recognition and Retrieval, December
2012.

3. Y. Shi, and F. Sha, “Information-Theoretical Learning of Discriminative Clusters for
Unsupervised Domain Adaptation,” in Proceedings of the International Conference
on Machine Learning (ICML), 2012.

4. L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification, vol. 2,
no. 1, pp. 193–218, 1985.

5. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, Introduction
to Information Retrieval, Cambridge University Press, New York, NY, USA, 2008.

6. T. Celik, “Unsupervised Change Detection in Satellite Images Using Principal Com-
ponent Analysis and k -Means Clustering,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 6, no. 4, pp. 772–776, 2009.

7. L. Bruzzone, D.F. Prieto, “Automatic analysis of the difference image for unsuper-
vised change detection,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 38, no. 3, pp. 1171–1181, 2000.

8. Y. Zheng, X. Zhang, B. Hou, G. Liu, “Using Combined Difference Image and K-
Means Clustering for SAR Image Change Detection,” IEEE Geoscience and Remote
Sensing Letters, vol. 11, no. 3, pp. 691–695, 2014.

9. C. Vaduva, T. Costachioiu, C. Patrascu, I. Gavat, V. Lazarescu, and M. Datcu, “A
latent analysis of earth surface dynamic evolution using change map time series,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 4, pp. 2105–
2118, 2013.

10. B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set:
a strategy employed by v1,” Vision Research, vol. 37, pp. 3311–3325, 1997.

11. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained
linear coding for image classification,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2010, pp. 3360–3367.


