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Abstract 

The increasing demand for high quality data in context of intelligent transportation systems 
more and more facilitates the use of data fusion methods in order to derive as much 
information as possible from existing sensors and sensor technologies. This paper discusses 
the application of simple Bayesian networks for this task with regard to fusing traffic state 
measurements, in particular. Theoretical aspects like model calibration and statistical quality 
of the results are discussed in a mathematically exact way. Moreover, a real-world example 
based on floating car data from two independent vehicle fleets is described in order to 
evaluate the Bayesian approach also from a practical perspective. Chances and restrictions 
of the presented model – also with regard to possible modifications – are critically discussed. 
 

1. Introduction 

Data fusion is an essential tool in the world of intelligent transportation systems (cf. [1]). 
Based on an increasing number of sensor technologies and data sources, it opens the field 
to new and better services concerning a wide range of traffic related applications (cf. [2]). 
That is, by cross-checking independent measurements of the same event and by combining 
complementary information from various sources, it helps to create a reliable and 
comprehensive impression of the real traffic situation of a considered road or transport 
network. With regard to that, data fusion is applied to all levels of data integration (cf. [3]), i.e. 
direct measurements from some given physical sensors can be fused as well as highly 
aggregated information about the traffic of a whole city, for instance. 
 
Concerning the available data fusion methodologies, the existing literature (see [1]) 
distinguishes between statistical methods (e.g., least square weighted mean, data mining), 
probabilistic approaches (e.g., Kalman filtering, evidence theory), and other techniques 
based on neural networks or other kinds of artificial intelligence. Detailed implementations in 
context of traffic data fusion and intelligent transportation systems are described in 
[4, 5, 6, 7], for instance. In particular, many fusion models (e.g., [6, 8]) also take into account 
the underlying traffic dynamics in order to improve the results. The Bayesian approach (cf. 
[9]) – as it is discussed in the following with regard to traffic data fusion – gets along without 
modelling such dynamics in its simplest form. It belongs to the class of probabilistic methods 
and is characterized by a systematic utilization of the well-known Bayes theorem from 
probability theory. 
 
The paper is structured as follows: Section 2 explains the layout and functional principles of 
the proposed generic Bayesian fusion approach which also includes the mathematical 
derivation of consistent estimates for the quality of the data fusion result. Then, the 
calibration task is considered from an analytical perspective in Section 3, in contrast to the 
common way of adaptive learning as used in [10]. Finally, Section 4 demonstrates and 
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practically evaluates the Bayesian approach based on real data from two independent probe 
vehicle fleets. Conclusions and ideas for future improvement are discussed in Section 5. 
 

2. Basic concept 

Assume there are n independent measurements (or estimates) Xi of the real traffic state Z 
for a given road section and a certain instant of time with Z and Xi for i = 1,…,n being 
considered as random variables. Of course, Xi and Z should be correlated for all i = 1,…,n 
because otherwise the Xi contained no information about the specific value of Z. 
Consequently, the Xi are usually correlated (via Z) as well given Z is unknown. Needless to 
say, if the value (or state) of Z is fixed, the Xi become independent again per definition. For 
illustration purposes, let Xi := Z + Ei with stochastically independent error terms Ei. Obviously, 
Xi and Xj are correlated then for i ≠ j while they are independent if Z = z is fixed because Ei 
and Ej are independent (cf. Figure 1). 
 

(a) 

 

(b) 

 
Figure 1: Random sample of (Xi,Xj) with i ≠ j where the realizations of Z 

(a) are fixed at 0.5 and 
(b) are varying randomly. 

 
The same concept is now realized by using Bayesian networks (BN) which are a special 
class of so-called probabilistic graphical models (cf. [9, 11]). The corresponding model has 
the layout as depicted in Figure 2. It shows the direct influence (as represented by directed 
edges between nodes) of the real traffic state Z on what is measured at the nodes Xi. On the 
contrary, the Xi for i = 1,…,n are not directly correlated but only via Z. 
 

 
Figure 2: Generic Bayesian model for data fusion. 
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The main advantage of Bayesian networks is that they provide an efficient and compact, but 
also intuitive representation of the joint probability distribution P(X1,…,Xn,Z). Thus, all above-
named correlations and independencies between arbitrary subsets of {X1,…,Xn,Z} are 
covered by this network. From the general theory of Bayesian networks (cf. [9, 11]) it follows 
that in fact P(Xi,Xj | Z) = P(Xi | Z)∙P(Xj | Z) for the model in Figure 2 if i ≠ j while in general 
P(Xi,Xj) ≠ P(Xi)∙P(Xj). 
 
The key observation in context of data fusion now is that – in addition to the direct relation 
between Z and each of the Xi – correlations among the observed measurements Xi may 
contain further information about the true state Z that is not available when the Xi remain 
separated from each other. As for the Bayesian model from Figure 2, that means that given 
sets of observations (comprising all or some Xi) can be used as so-called evidences that 
finally allow to compute new probabilities for the real state Z in a mathematically exact way 
by taking account of all statistical dependencies that has been discussed above (see [9] for 
algorithmic details). The result is an updated conditional probability distribution 
P(Z | X1,…,Xn) for Z from which the fusion result can be derived by various means. 
 
Junghans and Jentschel (see [10]), for instance, used two common approaches for choosing 
the final fusion value Z* which are the maximum a posteriori (MAP) estimator 

 Z* = Z*MAP := arg max z  P(Z = z | X1,…,Xn) (1) 

and the random wheel (RW) approach where Z* = Z*RW is just a random guess following the 
distribution P(Z | X1,…,Xn). 
 
For both variants, the quality of the fusion result in terms of the statistical chance of its 
correctness can be derived exactly from P(Z | X1,…,Xn). Namely, let z1,…,zm be the possible 
values of Z and pk := P(Z = zk | X1,…,Xn) their probabilities for k = 1,…,m given the set of 
observed measurements X1,…,Xn. Then, 

 P(Z*MAP is correct | X1,…,Xn) = P(Z*MAP = Z | X1,…,Xn) = max { p1, …, pm } (2) 

and 

 P(Z*RW is correct | X1,…,Xn) = P(Z*RW = Z | X1,…,Xn) = ∑k=1,…,m p2
k. (3) 

It follows that the MAP estimator always performs better in this statistical sense as can be 
shown easily. For, 

 P(Z*RW = Z | X1,…,Xn) ≤ max { p1, …, pm } ∙∑k=1,…,m pk = P(Z*MAP = Z | X1,…,Xn). (4) 

On the other hand, the MAP approach has the drawback that it can never yield correct 
estimates for unlikely events, of course. The largest difference with regard to the quality of 
Z*MAP and Z*RW is obtained if one of the probabilities pk is significantly larger than the others, 
but is not too large at the same time. Both qualities are identical instead if P(Z | X1,…,Xn) is a 
Dirac or Laplace distribution. 
 
Note further that the Bayesian approach as described above takes into account the 
statistical correlations between Z and Xi for i = 1,…,n only. Consequently, other advanced 
fusion methods as discussed in [6, 8], for instance, make use of explicit models of relevant 
traffic flow dynamics. By that, they are able to specify the stochastic (in-)dependencies from 
the joint probability distribution P(X1,…,Xn,Z) more precisely in terms of a physical (and not 
only probabilistic) model. Clearly, this opens the chance for even better fusion results as will 
be further discussed in Section 5. However, adaption and calibration of such models are 
often more complex so that they may not be applicable to all situations. Moreover, there are 
ways to integrate traffic dynamics or other influencing factors into the Bayesian network 
approach as well (cf. [10, 12]). 
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3. Calibration 

With regard to the network from Figure 2, the Bayesian theory implies that the joint 
probability distribution P(X1,…,Xn,Z) can be factorized as 

 P(X1,…,Xn,Z) = P(Z) ∙∏ i = 1,…,n P(Xi | Z). (5) 

This is also called the chain rule for Bayesian networks (cf. [9]). According to that, the 
probabilities on the right hand side of Equation (5) need to be calibrated in order to fully 
define the Bayesian model. Based on reference measurements this could be done via 
adaptive learning as in [10], for instance. Instead of that, this contribution proposes an 
analytical approach based on the following system of equations that is obtained from 
Equation (5) via marginalization over Z. Namely, 

 P(X1,…,Xn) = ∑k=1,…,m  P(Z = zk) ∙∏ i = 1,…,n P(Xi | Z = zk). (6) 

Given a sufficiently large set of real observations {X1 = x1,…Xn = xn}, the distribution on the 
left hand side is known as it is directly estimated in terms of the relative shares of all possible 
realizations of (X1,…,Xn) within this “reference” set. Note that this does not incorporate any 
knowledge about true traffic states or the like so far. 
 
Let now ni be the number of possible states for Xi where i = 1,…,n, and m the number of 
possible states for Z as above. The number of parameters in Equation (6) is then given by 
m + ∑i =1,…,n ni ∙m of which 1 + n∙m are redundant due to trivial normalization constraints. 
Table 1 exemplarily lists the parameters in case of 3 sources Xi and m = ni = 2 for all i where 
xi,l denotes the l-th possible state of Xi. At this, parameters that are not trivially redundant, 
are marked in blue color and are abbreviated as αr for r = 1,…,7. 
 

Z X1 X2 X3 
  x1,1 x1,2 x2,1 x2,2 x3,1 x3,2 

z1 
α1 

 
[P(Z = z1)] 

 

α2 
 

[P(X1 = x1,1 | Z = z1)] 
 

(1 – α2) 
α4 

 
[P(X2 = x2,1 | Z = z1)] 

 
(1 – α4) 

α6 
 

[P(X3 = x3,1 | Z = z1)] 
 

(1 – α6) 

z2 (1 – α1) 
α3 

 
[P(X1 = x1,1 | Z = z2) 

 
(1 – α3) 

α5 
 

[P(X2 = x2,1 | Z = z2)] 
 

(1 – α5) 
α7 

 
[P(X3 = x3,1 | Z = z2)] 

 
(1 – α7) 

Table 1: Parameters of the Bayesian network model (n = 3 | m = ni = 2). 
 
For illustration purposes, consider the following numerical example where the states xi,1 and 
z1 reflect “free-flow traffic” while xi,2 and z2 are representing “congested traffic”. The 
probabilities βs := P(X1 = x1,…,Xn = xn) for s = 1,…,8 are given in Table 2. 
 

x1 x2 x3 P(X1 = x1,…,Xn = xn) 
x1,1 (free-flow) x2,1 (free-flow) x3,1 (free-flow) 0.65445 =: β1 
x1,1 (free-flow) x2,1 (free-flow) x3,2 (congested) 0.11655 =: β2 
x1,1 (free-flow) x2,2 (congested) x3,1 (free-flow) 0.0378 =: β3 
x1,1 (free-flow) x2,2 (congested) x3,2 (congested) 0.0162 =: β4 
x1,2 (congested) x2,1 (free-flow) x3,1 (free-flow) 0.0748 =: β5 
x1,2 (congested) x2,1 (free-flow) x3,2 (congested) 0.0192 =: β6 
x1,2 (congested) x2,2 (congested) x3,1 (free-flow) 0.02295 =: β7 
x1,2 (congested) x2,2 (congested) x3,2 (congested) 0.05805 =: β8 

Table 2: Numerical example. 
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This all leads to a set of eight equations with seven variables (α1,…,α7). Due to its specific 
structure, the resulting system of equations however is still under-constrained. In fact, only 
three variables can be mathematically derived given the others, i.e. four of the αr must be 
estimated externally. This, for instance, could be done by reference measurements in 
context of validating the data sources under some (or all) possible traffic conditions. In 
general, the statistical quality in terms of the relevant αr needs to be known for one sensor 
completely while for the others the quality with regard to one of the true traffic states zk may 
be missing without affecting the unique solvability of the system of equations in Equation (6). 
 
Hence, assume that α2 = 0.9 and α3 = 0.15 as well as α4 = 0.95 and α6 = 0.85. From 
Equation (6), it follows that 

 β1 + β2 + β3 + β4 = α1∙α2 + (1 – α1) ∙α3, (7a) 

 β1 + β2 = α1∙α2∙α4 + (1 – α1) ∙α3∙α5, (7b) 

 β1 = α1∙α2∙α4∙α6 + (1 – α1) ∙α3∙α5∙α7. (7c) 

Consequently, Equation (7a) yields α1 = 0.9. Based on that, Equation (7b) shows that 
α5 = 0.1. And finally, α7 = 0.25 because of Equation (7c). Table 3 summarizes the complete 
calibration results for the considered numerical example. The four input values are marked in 
blue color. Cells with computed values are left white. In particular, note that the statistical 
quality of the measurements X2 and X3 in case of congested traffic (Z = z2) as well as the  
a priori distribution of the real traffic state Z are not input for the calibration but are derived 
from the data instead. 
 

Z X1 X2 X3 
  x1,1 x1,2 x2,1 x2,2 x3,1 x3,2 

z1 90% 90% 10% 95% 5% 85% 15% 
z2 10% 15% 85% 10% 90% 25% 75% 

Table 3: Calibration results for the numerical example (cf. Table 1). 
 

4. Demonstration and evaluation 

In order to demonstrate the Bayesian data fusion approach, floating car data (FCD) as 
provided by two independent vehicle fleets operating in Athens (Greece) were analyzed. 
That is, for both systems, mean travel times ∆t were derived separately via common FCD 
methods (cf. [13]) based on the observed positions of the vehicles. Based on that, mean 
delays d for each road section were computed by subtracting the free-flow travel times that 
were determined by the length L of the road section and the specific speed limit vmax, i.e. 
d := ∆t – L / vmax. Given sufficient data availability, this allowed to reconstruct the cumulative 
delays for every possible route in the considered road network. Most of all, it was possible to 
compare these “system-based” delays to the exact delays that were observed by the 
individual vehicles of both fleets along their driven trajectories. Note that data of the 
particular vehicle were excluded from the computation of the “system-based” delays, of 
course, in order to avoid any circular reasoning. The whole approach is called “self-
evaluation” of FCD and has been described comprehensively by Kuhns et al. in [14]. 
 
As the result of this preprocessing, there is a set of trajectories with known true delays (~ Z) 
and two independent estimates in terms of “system-based” delays (~ Xi). For simplicity, all 
delays were then transformed into three levels of service (A, B, C) that were defined more or 
less randomly such that in each case low delays up to the 50th percentile are considered as 
“A”, delays up to the 75th percentile as “B” and the rest as “C”. Figure 3 shows the resulting 
Bayesian network (without evidences) that is used in the following for data fusion. The full 
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calibration can be found in Table 4 and was done based on the available data from 
December 2012 and 2013. 
 

 
Figure 3: Bayesian data fusion model for the FCD example (generated with GeNIe 2.0, [15]). 
 
 

Z X1 X2 
  A B C A B C 

A 50% 79% 17% 4% 78% 18% 4% 
B 25% 28% 42% 30% 29% 41% 30% 
C 25% 14% 24% 62% 15% 24% 61% 

Table 4: Calibration results for the FCD example (cf. Table 1). 
 
The general probability that Xi is correct in the sense of agreeing with Z, is hence given by 

 P(Xi = Z) = P(Xi = A | Z = A) ∙ P(Z = A) 

   + P(Xi = B | Z = B) ∙ P(Z = B) (8) 

   + P(Xi = C | Z = C) ∙ P(Z = C). 

Based on the numbers from Table 4, one obtains the qualities P(X1 = Z) = 65.5% and 
P(X2 = Z) = 64.5% with regard to the simplified definition of the levels of service. 
 
Obviously, the same formula holds for the fusion result when Xi is replaced with Z*MAP or 
Z*RW (cf. Section 2). It followed that P(Z*MAP = Z) = 66.2% and P(Z*RW = Z) = 60.8% when the 
calibrated model from Figure 3 was applied to the data set from December 2012 and 2013 
(cf. Figure 4). The full list of obtained probabilities P(Z*MAP = ∙ | Z = ∙) as appearing in 
Equation (8) is given in Table 5 which also includes the results when validating the above 
model for the fusion of corresponding data from January 2013/2014 and February 
2013/2014 respectively. 
 

 
Figure 4: Quality of the Xi and the fusion results in the FCD example (December 2012/2013). 
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Z Z*MAP 
(December 2012/2013) 

Z*MAP 
(January 2013/2014) 

Z*MAP 
(February 2013/2014) 

  A B C A B C A B C 
A 50% 83% 11% 6% 82% 11% 7% 82% 11% 7% 
B 25% 33% 30% 37% 33% 28% 39% 31% 29% 40% 
C 25% 16% 15% 68% 17% 15% 68% 16% 15% 69% 

P(Z*MAP  = Z) 66.2% 65.1% 65.7% 

Table 5: Detailed quality of the fusion result (MAP) in the FCD example. 
 
As can be seen, Figure 4 and Table 5 imply that the approach of Z*MAP yields small 
improvements compared to the quality of the Xi in most (but not all) cases. In fact, the MAP 
estimator seems to prefer the extreme values (i.e., A and C instead of B) for some reason 
what finally narrows its quality at the same time. Probably, one of the problems here is the 
very simple way of defining the levels of service that do not reflect any knowledge about 
traffic dynamics or the like as well as possible systematic differences in the data of both FCD 
fleets. The random wheel approach (Z*RW), by the way, provides results that are consistently 
worse than the original measurements. Clearly, this is because of the additional 
randomization when choosing the final fusion value as has already loomed in the discussion 
from Section 2. 
 

5. Conclusion 

All in all, the theoretical and practical results showed that the Bayesian approach for data 
fusion works. However, at least in the considered example (cf. Section 4), the quality lags 
behind the expectations from the theoretical analysis. That is, the overall benefits in the 
demonstration example are relatively small (in case of the MAP estimator). Moreover, even a 
reduction of quality has been observed for some regimes. All this implies that more complex 
fusion models that take into account not only statistical correlations but also physical 
relations between the measurements might be more successful in general. 
 
Despite that, the generic Bayesian network from Figure 2 is valid for a huge number of 
applications and combinations of data sources. Specific sensor properties, for instance, do 
not need to be known for this simple approach. More detailed knowledge should, of course, 
be used for improving the model via additional nodes (cf. [10]). So far, just the statistical 
numbers as in Table 1 (and even that not for all possible states) need to be calibrated for 
situations as in the practical example that was studied in this paper. Interestingly, some 
information about the sensor qualities is even directly derived from the measurements via 
solving the system of equations from Equation (6). In context of a rough traffic state 
estimation with only two possible states (e.g., “free-flow” and “congested” traffic), that means 
that new sensors need to be validated under free-flow conditions only, for instance. This is 
an interesting aspect because validating sensors often is an expensive and time-consuming 
task. Moreover, the limitation to free-flow traffic avoids the problem of reproducing congested 
traffic conditions for the reference measurements. 
 
With regard to the limited benefits in the considered real data example, however, the generic 
model from Figure 2 cannot be recommended unrestrictedly for practical purposes at the 
moment although it is theoretically interesting. Perhaps, other forms of discretizing the traffic 
states in terms of levels of service (cf. Section 4) might help to obtain better results. 
Furthermore, Bayesian models with higher complexity than discussed in this paper might 
overcome at least some of the encountered problems. To this end, it should be considered 
whether so-called dynamic Bayesian networks can help to integrate explicit traffic flow 
dynamics into the described model (cf. [12]), for instance. Finally, also the potential of 
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additional nodes concerning external factors such as weather conditions or the like might be 
interesting to be analyzed (cf. [10]) within the above theoretical framework. 
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