
SUMO2014 - 
Modeling Mobility with Open 
Data

Proceedings

Berichte aus dem DLR-Institut  
für Verkehrssystemtechnik

Band 24



 

 

Reports of the DLR-Institute of Transportation Systems 

Volume 24 

 

Proceedings of the 

SUMO2014 
Modeling Mobility with Open Data 

 

May 15 + 16, 2014 
DLR, Berlin - Adlershof 

 

 

 

Publisher: 

Deutsches Zentrum für Luft- und Raumfahrt e.V. 

Institut für Verkehrssystemtechnik 

Rutherfordstraße 2, 12489 Berlin-Adlershof 

 

ISSN 1866-721X 

 

DLR-TS 1.24 

 

Berlin, May 2014 

 

 

Institute Director:      

Prof. Dr.-Ing. Karsten Lemmer   

  



  

 

 

 



 

iii 

Preface 

Dear reader, 

You are holding in your hands a volume of the series „Reports of the DLR-Institute of 

Transportation Systems“. We are publishing in this series fascinating, scientific topics from the 

Institute of Transportation Systems of the German Aerospace Center (Deutsches Zentrum für 

Luft- und Raumfahrt e.V. - DLR) and from his environment. We are providing libraries with a 

part of the circulation. Outstanding scientific contributions and dissertations are here 

published as well as projects reports and proceedings of conferences in our house with 

different contributors from science, economy and politics. 

With this series we are pursuing the objective to enable a broad access to scientific works and 

results. We are using the series as well as to promote practically young researchers by the 

publication of the dissertation of our staff and external doctoral candidates, too. Publications 

are important milestones on the academic career path. With the series „Reports of the DLR-

Institute of Transportation Systems / Berichte aus dem DLR-Institut für Verkehrssystem-

technik“ we are widening the spectrum of possible publications with a bulding block. Beyond 

that we understand the communication of our scientific fields of research as a contribution to 

the national and international research landscape in the fiels of automotive, railway systems 

and traffic management.  

This volume contains the proceedings of the SUMO2014 – Modeling Mobility with Open 

Data, which was held from 15th to 16th May 2014 in Berlin-Adlershof, Germany. SUMO is a 

well established microscopic traffic simulation suite which has been available since 2002 and 

provides a wide range of traffic planning and simulation tools. The conference proceedings 

give a good overview of the applicability and usefulness of simulation tools like SUMO 

ranging from new methods in traffic control and vehicular communication to the simulation 

of complete cities. Another aspect of the tool suite, its universal extensibility due to the 

availability of the source code, is reflected in contributions covering parallelization and 

interfacing improvements to govern microscopic traffic simulation results. 

The major topic of this second edition of the SUMO conference is open data. Several articles 

cover the acquisition and refinement of traffic networks as one of the fundamental data 

sources. Subsequent specialized issues such as data models for emissions and Bluetooth 

simulation are targeted as well. The conference’s aim was bringing together the large 

international user community and exchanging experience in using SUMO, while presenting 

results or solutions obtained using the software or modeling mobility with open data. Let you 

inspire to try your next project with the SUMO suite. There are many new applications in your 

environment. 

 

 

Prof. Dr.-Ing. Karsten Lemmer 
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1 A situational awareness approach to intelligent 
vehicle agents 

Vincent Baines, Julian Padget 
 
Bath University, UK 
{V.F.Baines, J.A.Padget}@bath.ac.uk 

1.1 Abstract 

As an increasing number of technological developments are made in the field of autonomous 
vehicles, the question of what intelligent system(s) will be placed around these vehicles both 
for the pursuit of individual goal and conformance to regulations as part of a wider collective 
of vehicles becomes pertinent, especially in the context of a mixed environment of 
autonomous and human controlled vehicles. The requirement to conform both to the law and 
with social conventions, in unpredictable circumstances, poses the problem of how to encode 
such knowledge. 

This paper adopts a Situational Awareness approach to agent knowledge, from low level 
perceptions, through to high level projection of future events, and explores a number of 
traffic scenarios where agents adopt different plans based on expected future states. A 
variant on such reactions is also presented, where the use of institutional governance 
frameworks is adopted to enforce certain behaviour, offering a ’late binding’ mechanism for 
socially complex situations. 

Keywords: multiagent systems, autonomous vehicles. 

1.2  Introduction 

This instruction file for Word users may be used as a template. Kindly send the final and 

checked Word and PDF files of your paper to us. You should make sure that the Word and 

the PDF files are identical and correct and that only one version of your paper is sent. It is not 

possible to update files at a later stage. Please note that we do not need the printed paper. 

Developments in the field of autonomous vehicles are already visible on the roads of the 

world and likely to increase in both quantity and importance with time. Having been 

demonstrated operating individually – vehicles such as Google’s [21] and more recently 

Nissan’s [13] – as well as collectively in convoys [5], the question is raised of how can groups 

of intelligent vehicles act together in order to achieve: (i) their own goals, (ii) those of the 

larger collective, and (iii) those of society as a whole? 

We start from the assumption that some communication between vehicles is a necessity (and 

an inevitability) to facilitate coordination, an assumption supported by a recent 

announcement from the US National Highway Traffic Safety Administration (NHTSA) [22] that 

Vehicle to Vehicle (V2V) communication devices may become mandatory in a year. With such 

technology set to enable V2V communication, there follows the consideration of how much 

information needs to be exchanged in order to manage cooperation and coordination 
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between vehicles. We consider this issue in the context of Endsley’s [11] Situational 

Awareness work, that is, “the perception of the elements in the environment within a volume 

of time and space, the comprehension of their meaning and the projection of their status in 

the near future”. This provides a framework in which to consider knowledge exchange 

between system components, that is, ‘low level’ perception data (e.g. a vehicle’s x,y position) 

through to ‘high level’ projection considerations (e.g. given speed and orientation, there will 

be a collision with that detected vehicle). 

Given such an environment, it becomes possible to explore what levels of data (quantitative, 

qualitative) and communication (high frequency, low frequency) are effective in resolving 

complex interactions between vehicles. We can also take account of social conventions (e.g. 

in a given context, what does a flash of headlights indicate) as well as regulation (e.g. at red 

traffic lights with an emergency vehicle approaching, what action to select).  

To investigate these questions, we have built a distributed framework, connecting intelligent 

agents (implemented using the Jason [6] platform), a rich simulation environment (SUMO 

[17]), data analysis tools, plus system- and domain-specific visualization tools, that allows 

components to publish and subscribe to information as required. Through the selection of 

appropriately abstract message types, components are able to process and react to 

information regardless of whether the data originates from the real world, or a simulation. 

SUMO is used to provide a realistic traffic and vehicle simulation component, with an 

intelligent agent layer controlling representations of autonomous vehicles, in order to explore 

what interactions between ‘vehicles of the future’ and ‘vehicles of the past’ may look like. 

This is coupled with an institutional framework [10], capable of issuing obligations to these 

vehicles in an attempt to maximise the broader collective needs and resolve complex social 

situations. Finally, the simulation is based as far as possible on real world information, using 

Open Source Map (OSM) data to build 3D models and SUMO maps, combined with realistic 

traffic flows. For this aspect, data was used from the UK Highways Agency Traffic Flow 

Database System (TRADS [1]), where vehicle trips for a section of the M25 motorway over a 

15 minute period have been extracted, and are used to build flows in SUMO. 

In summary, the contributions of this work are: (i) extending the scope of vehicle control to 

incorporate the use of intelligent agents (ii) integrating open map data to allow 

geographically situated simulations and visualizations (iii) utilizing real-world vehicle data to 

reproduce actual initial conditions, and (iv) capturing conventions and regulations in 

institutional models to provide guidance to vehicle agents. 

1.3  Research Background 

As discussed in Section 1.2 this work attempts to adopt themes from Endsley’s [11] 
Situational Awareness (SA) work in knowledge representation and exchange. This work 
considers Endsley’s concepts of perception, comprehension and projection as transitions 
between ’low level’ data at the perception phase (e.g. a vehicle’s xyz location) through to 
’high level’ data at the projection phase (e.g. an upcoming traffic light will be red when 
arrived at, given current speed and current state of light). 

The Belief-Desire-Intention (BDI) [7] model is used in the intelligent agents implemented in this 
work, allowing some analogies to be drawn between SA levels and BDI (e.g. low level beliefs 



1 A situational awareness approach to intelligent vehicle agents 

3 

to agent perceptions, high level projections to agent plans). The Jason [6] multiagent platform 
is used for the agent component of the work, integrated into the ’Bath Sensor Framework’ 
(BSF) [18] which forms the simulation backbone. 

Earlier work [3] considered Hourizi’s [14] findings (identifying relationships between aircraft 
accidents and lack of SA) as a motivation to improve shared knowledge between vehicle 
convoys; in essence to communicate less but understand more. This theme is developed 
further as any communication network will have some performance limits, and as the results 
presented later in Section 1.4 show, limitations have been identified with the simulation 
framework deployed here, that affect the ability of agents to perform their tasks. Thus, there 
is a need to communicate both at an appropriate level (e.g. within the SA context) and at an 
appropriate rate. 

Effort to explore cooperative vehicle communication seems timely, with increasing progress in 
vehicle convoys such as the ‘SAfe Road TRains for the Environment’ (SARTRE) project [5] 
demonstrating the ability of vehicles to function as vehicle platoons. Continued 
announcements of increasingly sophisticated autonomous vehicles such as Google’s car [21], 
the Volkswagen based ‘MadeInGermany’ [12] vehicle, Nissan’s self-drive [13], etc, 
demonstrate the increasing maturity of real world vehicles suitable for this work. Whilst 
SUMO [17] currently provides the simulation of the vehicles (and allows safe 
experimentation), the Bath Sensor Framework enables low overhead substitution of one 
component for another, thus improving the relevancy of findings presented in this paper for 
potential real world applications. 

Motivation to explore scenarios based on projection of future states is provided by news 
announcements [25] claiming that controlling vehicle speed based on upcoming traffic lights 
could reduce CO2 emissions by 15 percent. Similarly, experimentation in vehicle to traffic light 
communication [15] is also seeking to improve fuel consumption and reduce emission levels. 

An institutional framework is adopted in order to provide a ’late binding’ mechanism for 
agent behaviour, supporting the resolution of complex social conventions (e.g. is a flash of 
headlights to indicate move out of the way, or an offer to provide space to pull out) as well as 
an enforcement of dynamic global requirements (e.g. obey this variable speed limit). The 
enforcement of some requirement for the larger collective benefit contrary to an individual’s 
gain has been demonstrated in other domains [4], while the need for multiple institutions [9] 
interacting (e.g. no lane change in a variable speed limit zone, but permissible to make way 
for an emergency vehicle) will be considered in future work. 

Having established the research background around this work, the simulation framework is 
now presented in detail. 

1.4 Simulation Framework 

One of the central objectives of our work is to use so-called ‘intelligent agents’ in the context 
of large-scale agent-based simulation. Such agents have been perceived as mismatched with 
ABM because of the clearly higher computational requirements. Our aim here is to use a few 
such agents situated in an environment populated by many more conventional agents, in 
order to develop and evaluate behaviours that can operate effectively in typical scenarios. 
Consequently, we are using data obtained from the UK Highways Agency to construct such 
typical scenarios by generating SUMO vehicle populations that reflect real-world data 
collected from the M25 (a motorway that goes around London UK). This section provides a 
technical overview of the framework, as well as performance findings. 
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1.4.1 Technical overview 

These informal requirements have lead to the creation of a distributed environment called the 
’Bath Sensor Framework’ (BSF) [18], whose primary features are: (i) a bus-like communications 
system based on the eXtended Messaging and Presence Protocol (XMPP) [27], and (ii) a 
publish/subscribe interface that can be implemented for a variety of programming languages 
(we currently use Java, C# and Python). Similar XMPP-based approaches have been 
demonstrated in other distributed applications [24, 26]. A notable additional aspect of our 
framework is the adoption of two de-facto standard messaging formats: (i) Resource 
Description Framework (RDF), allowing the association of semantics with messages by 
reference to common ontologies, and (ii) JSON, allowing the low-overhead communication of 
structured data. Simulation components interact via publish-subscribe, where each 
component provides a ‘Sensor’ (output) and ‘Sensor Client’ (input), that connect to topic 
nodes in an XMPP server. 

 

 

Figure 1-1: Illustration of available BSF system components 

A sketch of the framework appears in Figure 1-1 populated with some of the components 
making up a typical instantiation of the framework as used for the work reported here: 

 The SUMO interface is based on the traci4j library, allowing commands to be sent to 
SUMO (based on received input via BSF subscriptions) and information extracted from 
SUMO and published out to the BSF. This component also controls the update rate of 
SUMO, allowing the processing and creation of BSF messages between each 
simulation step. 
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 The Jason component provides an intelligent agent capability, and in the case of 
vehicle scenarios allows Jason agents to request the creation of a SUMO vehicle, which 
they then control. A similar approach has been employed to the control of non-player-
characters in Second Life [19]. 

 The normative framework component introduces the element of institutions [10] 
into the simulation, allowing obligations to be issued to simulation participants (e.g. 
for a vehicle to slow down, or move out of the way), following the principles set out in 
[2] and developed for Jason in [20]. 

 The Area of Interest (AOI) component acts as a data fusion module relative to 
individual vehicles for a given ‘interest volume’. This is based on the assumption that 
the agents controlling a vehicle have a greater interest in certain events and states near 
to their current location, and reduces the level of noise arising otherwise from being 
informed about the entire simulation state. This reports information such as upcoming 
traffic light states given the vehicle’s current route, vehicles in the same lane which 
may become collision hazards, and so on. 

 A 3D engine component is used to provide a human observer with a variety of views 
to the simulation. As this subscribes to multiple feeds, it is able to display: (i) basic 
spatial information (e.g. a 3D view of the SUMO simulation, traffic light states) (ii) 
vehicle state information (e.g. lights, smoke if crashed), (iii) augmented with other 
system component information (e.g. calculated collision volumes, Jason agent belief 
state data), as well as system information (e.g. messages per second graph). The 
visualizer has proved an essential tool in debugging, as the task of understanding 
unintended behaviours with  distributed intelligent system can be very challenging 
otherwise. 

 Finally, there are some runtime tools, one of which is the RDF Monitor suite that 
provides analysis tools for the messages being exchanged over the BSF. This covers 
measures from lower level performance metrics (e.g. message delivery time, volume) to 
higher level simulation specific metrics (SUMO fuel consumption, mean speed). New 
metrics can readily be added, collected and displayed. There is also a database logger 
and replayer tool, allowing simulations to be recorded, analysed via SparQL queries, 
and replayed or stepped through as required. 

All simulation components are built around the Open Source Map (OSM) data format. This 
has been imported into SUMO, and a corresponding 3D model built using the osm2world 
tool [16]. Some modification to osm2world were necessary to ensure accurate correlation 
between the 3D model and SUMO vehicle positions, but the two now match closely. 
Therefore, all tools, models, data, and code can be provided open source to the community 
and are available for download. Similarly, whilst the RDF message vocabulary in use has not 
been formally specified, there is a reasonable coherence of terms and structures used. This 
helps to integrate both new simulation components, as well as analysis tools which might 
query the RDF (Allegrograph) database directly. 

This framework also allows consideration of what we consider ’impedance matching’ 
between simulation components. Publishers of BSF data include both their own ’sensor name’ 
as well as some data definition (e.g. metres per second, miles per hour) in the ’sensor 
reading’, which offers subscribers some control over what data they process. For example, 
considering three simulation components: the Jason agent layer, the SUMO simulation, and 
the 3D viewer, there is a substantial difference between suitable data rates. Whilst a 3D 
engine could be required to run at 30 frames per second for a human observer [8], this would 
require SUMO to have a simulation step of 0.03 seconds to match as a 1:1 data source rate. 
Whilst rendering engines are well suited to such frequencies, simulation (including data 
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extraction and publishing) at such rates becomes challenging. Furthermore, to continue the 
1:1 ratio the Jason agents would also have to operate at such frequency. It was found in 
earlier experimentation with vehicle convoys [3], that agents can quickly suffer from data 
deluge: too many queued position updates to be processed in a given time step, and so the 
agents start reacting to ’stale’ data causing incorrect action selection. Whilst tools have been 
developed to identify overall BSF performance (presented in the following section), we have 
realized the need for a (non-functional) design requirement to take account of appropriate 
data rates for each system component. 

1.4.2 Framework performance 

Whilst the core code and design behind the BSF has been stable for a few years now, 
improvements on how it is deployed have lead to a steady improvement in measured 
performance. As an overview we can consider the key components being the publisher, the 
XMPP messaging server, the subscriber, and the supporting infrastructure. 

Most improvements in BSF reliability have been found in improving the XMPP server, both in 
terms of software and hardware configuration. Issues such as poorly configured WiFi cards 
and lossy networks, combined with poor out of the box configuration in some XMPP server 
software, led to the development of some basic ’RDF Utilities’ being included in the BSF. The 
criticality of having such reliability has led to a number of network tests being included as part 
of the build process (and reported back to a Jenkins1 build server) as otherwise any simulation 
may appear to work but have totally unreliable results. 

 

Figure 1-2: rdfMonitor Tool 

                                            

1 Jenkins Continuous Integration server, http://jenkins-ci.org 



1 A situational awareness approach to intelligent vehicle agents 

7 

Two key tools are used, both are included in the ’RDF Utilities’ suite. Firstly ’rdfMonitor’ which 
subscribes to SUMO and Jason data, and displays a set of realtime graphs of performance. As 
BSF data readings include a timestamp encoded during message creation in the publish 
process, this monitor is able to plot the message delivery time, functioning essentially as a 
’ping’ tool for BSF messages. Supplementing this, graphs are provided for overall message 
volumes, quantity of messages by type, and Jason message types. 

Two key tools are used, both are included in the ’RDF Utilities’ suite. Firstly ’rdfMonitor’ which 
subscribes to SUMO and Jason data, and displays a set of realtime graphs of performance. As 
BSF data readings include a timestamp encoded during message creation in the publish 
process, this monitor is able to plot the message delivery time, functioning essentially as a 
’ping’ tool for BSF messages. Supplementing this, graphs are provided for overall message 
volumes, quantity of messages by type, and Jason message types. 

Figure 1-2 shows the ’rdfMonitor’ GUI, and here a number of characteristics can be seen. The 
’RDF Message Volume’ and ’Message transmission delays’ form the most interesting features 
in this example, highlighting that the communication network is currently saturated and 
messages are suffering from increased delays over time. The test tool creating these RDF 
messages (described shortly) also creates an RDF message with details of how many messages 
were created in the last time step (shown as ’Published Msgs’ series in RDF Message Volume 
graph), in this case a reasonably steady number of just under 200 every update. By contrast, 
the received number of messages can be seen to be frequently below this value (shown as 
’Vehicle Msgs’ series in RDF Message Volume graph). If the received message count is lower 
than the published message count, then there are unprocessed messages awaiting, i.e. a 
queue is growing. This correlates with the ’Message transmission delays’ graph, where as the 
simulation time increases, processed messages have an increasing delay, i.e. the queue of 
delayed messages is growing. 

The component creating this test data is known as the ’rdfTest’ tool, and is developed to run 
either in publish or subscribe mode. In publish mode, data is generated either a specified 
steady state rate, or published as fast as possible. In subscribe mode, output is simply the 
number of messages received per second. This has allowed quantified testing of 
improvements to BSF configuration, and to define the current ’safe’ operating characteristics 
e.g. maximum messages per second before a backlog will be formed. It is also expected that 
increasing the number of subscribers will affect the performance of the system, but as the BSF 
configuration used in these experiments so far have involved a low number of subscriptions, 
this has not been specifically investigated. 
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Figure 1-3: Message delivery performance 

The use of these tools helps establish an operating envelope for the intended configuration. 
In Figure 1-3 the current optimised configuration of the BSF infrastructure in use for these  
experiments can be seen. This highlights that the communication volume could be 
approaching values where not having the luxury of wired networks (i.e. in V2V 
communications) is starting to have an impact. Whilst the received messages per second for 
the wired BSF subscriber closely match the published rate, much more variation can be seen 
in the BSF subscriber using a WiFi network. 

Currently the largest delay in the publish and subscribe components is the time taken in  
serialization of the RDF messages. It is for this reason that JSON has also been explored as an 
alternative, and both message types are implemented and easily interchangeable. JSON offers 
a significantly improved serialization performance, but with a reduction in the additional 
vocabulary provided with the RDF messages. Examples of the variation in serialization 
performance are available [23] which relates to the earlier discussion of identifying the 
required data rate between specific system components. 

Significant effort has been spent in improving the overall system performance and developing 
tools to assess whether the system is performing reliably in realtime, as without timely and 
reliable message exchange, unexpected behaviour occurs. Previous work [3] identified where 
running CPU intensive components (Jason and 3D Viewer) could impact the performance of 
both (e.g. insufficient reasoning cycles for Jason, frame rate drop off for 3D Viewer) resulting 
in unexpected agent behaviour. Whilst some design decisions have been taken in an effort to 
improve the stability of the system (e.g. BDI agents with plan failure mechanisms, SA 
approach to communication of higher level information rather than low level data at high 
frequency) there is still a time critical nature to message exchange that is necessary to 
maintain expected agent behaviour. However, if an assessment of network performance is 
made using the included BSF tools, and message volume is kept below the identified 
maximum value, then we find that repeated reliable simulations runs are achievable. 

Having discussed the simulation framework in detail, the vehicle scenarios built upon the BSF 
implementation are now presented. 
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1.5 Experimental Scenarios 

This paper presents two scenarios, using the platforms and tools described above, through 
which the ‘comprehension’ and ‘projection’ elements of situational awareness are explored. 
The institutional framework plays an essential role in each of these because it provides a form 
of behavioural specification of what a vehicle agent ought to do in a given situation. Thus, 
rather than loading each agent with every conceivable behaviour for every conceivable 
situation, it is instead able to acquire that behaviour via an instance of an institution that is 
created when a situation arises, while still retaining the autonomy to decide whether to 
follow the direction given by the institution. In this way, it becomes possible to encode 
different regulations and different conventions, delivering them through (multiple) 
institutional models, enabling both experimentation with regulations and with their 
combinations2 1 as well as re-use. The details of these two scenarios are now presented in 
more depth. 

1.5.1 Scenario 1: Motorway change lane request 

In this scenario, we are interested in examining the benefit institutions can have in resolving 
inter-vehicle requests. In the UK there are a variety of visual and audible cues used to transmit 
some intention or request to another vehicle. These can range from clear legal obligations 
(e.g. blue flashing lights of emergency vehicles create an obligation to allow that vehicle past) 
to the more ambiguous (e.g. a flash of headlights can indicate some hazard, or a desire to 
overtake). Given the improved capacity to communicate via V2V technology, this “headlight 
flash” request is explored in conjunction with an institution, allowing one vehicle to inform 
the institution of its desire to overtake, and for the institution to resolve this (by issuing an 
obligation to the other vehicle to change lanes). 

Figure 1-4 shows this scenario in the 3D viewer, where a semi-transparent rectangular volume 
is projected ahead to indicate the ‘collision volume’, as computed by the Jason agent based 
on its current speed. Based on the distance ahead to a vehicle detected in this collision 
volume, Jason agents can take various actions. In this scenario, two variations are presented 
between a Jason agent as the leading car (V1) and a Jason agent as the following car (V2). 
Both variations share a similar starting set of events: 

1. Vehicle V1 injected at 8 seconds into SUMO from Jason with speed of 29m/s 
2. Vehicle V2 injected at 11 seconds into SUMO from Jason with speed of 30m/s 
3. After 7 seconds, V2 increases speed to 32m/s 
4. V2 agent belief added of aoiVehicleDetection with position of V1, which 

triggers call to checkCollisionVolume 
5. If V1 within collision volume, then agent belief added 

detectionInCollisionZone(Name,Distance) 
6. If Distance is less than 45m then agent plan brakeHard is triggered, if Distance 

greater than 45m and less than 65m then plan flashlights is triggered. 

                                            

2 Conflict between regulations is inevitable and while there are mechanisms to resolve these (not discussed here), 
in the first instance, the decision about which regulation to follow can be left to the vehicle agent. 
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Figure 1-4: M25 Scenario in 3D viewer 

Lights flash with no institution 

In this case, when approaching the vehicle, V2 flashes lights at V1 but there is no response. 
V2 continues to gain on V1 until the distance is below 45m. The brakeHard plan causes the 
vehicle to slow to 10m/s until V1 is outside of the collision zone, after then it resumes the 
previous speed. This is behaviour cycles as V2 gains on V1 again, and is considered a possible 
extension to investigate the Variable Speed Limit further work described later. 

Lights flash with institution 

This repeats the same background as the previous baseline except that now the institution is 
active: 

1. V2 publishes the event flashLights(V1) to the institution. 
2. Institution issues permission for V1 to change lane perm(changeLane(Agent)) 

and also the obligation obl(changeLane(Agent), deadline, violation) 
3. V1 agent receives changeLane which triggers a quickLaneChange request to be 

sent to SUMO 
4. The TraCI4j interface to SUMO implements quickLaneChange by changing one lane 

across. 
5. V1 moves to inside lane, and V2 is able to overtake. 

1.5.2 Scenario 2: City traffic lights 

In this scenario, the capability for reasoning about future states is explored, combining the 
Situational Awareness concept of ‘projection’ with the Area Of Interest component. A city 
context is used, based on Bath in the UK, which generates more complex routes as well as 
interactions with traffic lights. It is the effect of such traffic lights interactions which is 
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explored in the current scenario, investigating the role institutions could play in managing 
vehicles’ speed in order to coordinate with traffic light states. 

 

Figure 1-5: City Scenario in 3D viewer 

The context of this scenario is shown in Figure 1-5 where the vehicle can be seen stationary at 
the first traffic light it encounters. As with the previous scenario, two variations are presented: 
firstly a baseline with no institution active and secondly with an institution issuing obligations 
to slow down depending on the distance to, and state of, upcoming traffic lights.  

City journey with no institution 

This case is quite simple, as no activity takes place from the institution, and the vehicle simply 
drives along the predetermined route. 

1. Jason vehicle is inserted in SUMO simulation at 30 seconds. 
2. Vehicle progresses along route, stopping at red traffic lights. 

City journey with institution 

In this case, the vehicle receives obligations from the institution, and so the procedure 
followed is slightly more complex: 

1. Jason vehicle is inserted in SUMO simulation at 30 seconds. 
2. Area of interest module retrieves vehicle route info, and identifies upcoming traffic 

lights controlling sections of that route. 
3. Area of interest module publishes upcomingLight,Distance,Colour of 

detected first upcoming traffic light on vehicle’s approach. 
4. Institution framework reacts to upcomingRedLight and issues permission 

reduceSpeed(Agent) and obligation obl(reduceSpeed(Agent), 
deadline, vioQueue(Agent)) 
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5. Agent receives reduceSpeed , triggering shortCruise plan. 
6. This plan reduces vehicle speed to 7m/s for 35 seconds, after which speed control 

returns to SUMO. 
7. Vehicle arrives at traffic lights after they have turned back to green and proceeds along 

route. 

Having provided the detail of the two scenarios being considered in this paper, the 
experimental results are now presented. 

1.6 Results 

We now present some simulation results for the motorway and traffic lights scenarios 
described in the previous section. 

1.6.1 Scenario 1: Motorway change lane request 

In this scenario, the desire is to measure what impact the institution has in maintaining 
average traffic speed and preventing congestion. To do so, a metric has been developed to 
measure the speed of each vehicle, and the distance to the vehicle ahead. Initially the use of 
detector locations was considered, but this mechanism is only able to report gaps between 
adjacent vehicles at one location, whereas we need to establish inter-vehicle gaps in a region 
of the simulation. Another possibility would be to use multiple detectors at regular intervals 
over a multi-kilometer section of road, but given the focus on intelligent vehicles in our 
simulation, we chose to use a vehicle-centric rather than an infrastructure derived metric, 
leaving the latter for future investigation. 

 

Figure 1-6: Vehicle speed and gaps 

The results of this scenario can be seen in Figure 1-6, which presents both the vehicle speeds 
and distance to the vehicle in front, of each vehicle along the route. The most significant 
observation is in vehicle speeds approximately 500m along the route, where with the 
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institution active this remain at a reasonable constant 70mph. With the institution not active, 
as outlined in Section 1.5 V2 will continue to gain on V1 until it is forced to perform a hard 
brake to avoid a collision. The impact of this can be seen in the reduced speed both of V2, 
and furthermore the vehicle behind V2 has also been forced to brake to avoid colliding into 
V2. 

The results shown in the vehicle gap section are more difficult to draw any strong conclusions 
from. It can been seen that either side of this disruption (i.e. ahead by 625m or behind by 
375m) is largely identical for both with and without institution variations, confirming that this 
is a localised disturbance. In this particular scenario, the gap becomes difficult to interpret, as 
this concerns vehicles in a single lane, and as soon as V1 complies with the obligation to 
change lane, there is an immediate disruption to the reported gaps. However, with no 
institution active, there does seem to be some decrease in gaps. As V2 had to perform a hard 
brake (as shown by speed decrease in upper graph), it must have become close to V1, which 
would show as a decreased gap. But as V2 brakes hard, the vehicles behind will start to 
become closer (until they also brake) and so there is likely to be a decrease in gaps for a 
number of vehicles behind V2. This management of this of this kind of ’ripple effect’ is 
considered in the future work section for possible localised variable speed limit institutions. 

1.6.2 Scenario 2: City traffic lights 

In this scenario, the desire is to measure effect of the institution in managing vehicle arrival 
times at traffic lights. The key metric being used is the measurement of fuel consumption, as 
the premise is that by modifying the vehicle speed such that it arrives at the traffic lights 
when they are green, it will result in less wasted fuel sat idling, and less fuel consumed in 
accelerating from stationary. 

 

Figure 1-7: Impact on fuel consumption 

In Figure 1-7 the results of two experiments are shown, showing the contrast between 
running the scenarios with and without institution involvement. In the case of no institution, 
the vehicle progresses along its route, until it is held up by a red light at a junction. This 
results in fuel expended while sat idling, and also in fuel required to accelerate from rest after 
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the light changes to green. In contrast, with the institution active, it issues an obligation for 
the vehicle to slow down due to the state of an upcoming traffic light. By doing so, the 
vehicle arrives at the light when it is green, and the graph shows this results in a fuel saving. 
The expectation is that there would be an increase in journey time, but in fact the vehicle only 
loses approximately ten seconds which can be traded off against the saved fuel. However, it 
can also be seen that considerable fuel saving is made simply due to the slower speed 
adopted by the vehicle due to the institution obligation to slow down. Further analysis is 
required with more variance in the scenario, as well as alternative fuel consumption models. 

Whilst elements of the scenario presented may not be totally realistic at this stage (e.g. 
reduced speed value is very low, signal sequence may not stay red for such a length of time), 
the ability of SUMO to represent fuel and emission consumptions in different use cases, 
coupled with improved development of the institutions in use, suggests a promising avenue 
for exploration. 

1.7 Discussion and future work 

The work presented here demonstrates the use of an opensource solution combined with 
realistic traffic data, real world metrics and a sophisticated architecture, in modelling a 
number of vehicle scenarios. Two scenarios were considered: a city based investigation into 
the effect on an institution model in regulating arrival times at traffic lights in order to 
improve fuel consumption, and a motorway based investigation into the use of an institition 
issuing obligations to move out of the way in order to prevent excessive braking and 
acceleration of following vehicles. 

Whilst the results presented in this work suggest promise, further work is planned to validate 
the metrics used and develop improvements. The gap-speed measure is still relatively new and 
requires development to run for multiple lanes, which will be a useful measurement when 
trying to identify the impact of vehicles switching lanes (e.g. in the flash lights scenario 
presented in this paper). 
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Figure 1-8: Incident management example 

Having demonstrated potential benefits in the combination of the SA approach and 
institutional governance in the two scenarios presented, future work is planned to extend 
these into a larger, multiple institution scenario. One such example under consideration is 
shown in Figure 1-8, where a stationary vehicle is causing disruption. This particular example 
is an extension to the existing flash-lights scenario, where the following vehicle did not reduce 
its speed for some reason and collided with the vehicle ahead. There is now some post-
accident traffic flow management required, with a potential dynamically instantiated 
institutional agreements indicated numerically. Institution number 1 allows the first vehicle to 
move one lane right but requires the approaching vehicle to slow down. Similarly institution 
number 2 allows the second queued  vehicle to move one lane left, but requires the 
oncoming lorry to slow down, and finally institution number 3 allows the last stationary 
vehicle to move one lane right. 

Another planned scenario involves the use of variable speed limits and how institutional 
governance of such an obligation could be of benefit. Currently such speed limits are  
implemented at a coarse granularity, affecting substantial road sections and subject to non-
compliance by drivers (or at least, some percentage ’error’ in speed judgement over the 
specified limit). The first variation of this scenario would enforce a uniform speed, and then a 
second variation would investigate the use of localised variable speed limits i.e. around an 
accident, or to reduce a congestion wave. 
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2.1 Abstract 

It is time consuming to set up a realistic traffic simulation scenario. Even though data is 

available, a large effort is needed to gather, convert and adapt all the data needed to 

replicate a part of a real road network. Available road networks usually have to be corrected 

and adapted to the used simulation model. The demand has to be converted or even 

generated using given measurements. The measurements must be imported into the 

simulation system’s architecture to allow the models’ calibration and validation. Additional 

road side structures must be converted into a proper representation and embedded into the 

scenario. Therefore, three real world traffic simulation scenarios of the city of Bologna are 

made available to the public. With these scenarios researchers are able to start their 

investigations with little preparation effort and can concentrate on their research questions.  

Keywords: Real world traffic scenario, open data, validation 

2.2  Traffic simulation and Open Data 

For modelling real world scenarios the traffic simulation needs input traffic and infrastructure 

data about the real-world traffic conditions. The quality of the input data is crucial for realistic 

simulation results. Therefore the following input data for the simulation are needed: 

1. Representation of the road network 
2. Representation of the demand 
3. Representation of real traffic lights 
4. Representation of infrastructure 

Without these representations a realistic traffic simulation is hardly possible. But collecting, 

processing and validating the input data is time consuming. Sometimes it is difficult to receive 

real world data especially the real traffic light signal plans are rarely open to the public. 

Consequently, it is difficult for traffic researchers to analyse and evaluate their traffic light 

algorithm under real world conditions. Thus, real world scenarios from Bologna are prepared 

and described in this work and will be made publicly available within the SUMO package [1] 

[2]. By making the scenarios available to the public the scenarios can be used for further 

research with little effort.  
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2.3 Bologna Scenarios 

The simulation scenarios presented in this paper have been built in the project iTETRIS (“An 

Integrated Wireless and Traffic Platform for Real-Time Road Traffic Management Solutions”). 

iTETRIS was co-funded by the European Commission between 2008 and 2011 and was 

concerned in developing a simulation system for evaluations of large-scale traffic 

management solutions that work via vehicular communications [3]. A large part of the project 

was dedicated to determining and modelling of real-world traffic. Major contribution on this 

task was performed by the municipality of Bologna who was a project partner in iTETRIS. 

Besides describing the situation and the problems in Bologna, this municipality also delivered 

initial ideas for traffic management applications and additionally a large set of data and 

simulation scenarios. 

The given data included representations of the areas around the “Andrea Costa” and the 

“Pasubio” roads, as input files for the commercial microscopic traffic simulation Vissim, a 

product of PTV AG. Each of the scenarios included the demand for Bologna’s peak hour 

(8:00am – 9:00am). Additional data sets supported by the municipality of Bologna included 

positions of traffic lights, traffic light plans, inductive loop positions and measures and many 

others. A further scenario, “joined”, was implemented within iTETRIS by merging both Vissim 

scenarios.  

 

In the following the three regions of Bologna and the traffic simulation scenario are 
described. 

2.3.1 Andrea Costa 

The Andrea Costa scenario includes the area around the football stadium and was set up to 
simulate the mobility of big events such as football matches or concerts.  

Figure 2-1: Location of Bologna 
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Location in Bologna SUMO Road Network 

  

 

2.3.2 Pasubio 

The Pasubio scenario extends the Andrea Costa scenario about the area around the hospital 
and includes also common routes to the football stadium. 

Location in Bologna SUMO Road Network 

 

 

 

2.3.3 Andrea Costa and Pasubio joined scenario 

Because of the relatively small areal size of the VISSIM networks “Andrea Costa” and 
“Pasubio”, it was decided to generate one scenario based on both. This scenario should be 
obtained by joining both given, as the areas they cover are overlapping. In addition to the 
traffic demand for the morning traffic demand, the Andrea Costa-Pasubio joined scenario 
also includes the traffic demand for a football match. For generating a higher traffic demand 
the induction loop data from 24 March 2010 when a football match took place was 
compared to the traffic flow on the day one week in prior. Additional routes were generated 
from the analysed data set. 

Table 2-1: Selected views on the A. Costa scenario from iTETRIS 

Table 2-2: Selected views on the Pasubio scenario from iTETRIS 
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Location in Bologna SUMO Road Network 

  

 

2.4 Development of the Scenario  

2.4.1 Traffic Network 

The supported VISSIM scenarios model two areas located east to the inner city ring. They 
describe a slightly pruned road network not containing few smaller streets. Traffic lights are 
defined, including their positions and signal plans. Passenger vehicles in each network are 
described in an aggregated manner: the numbers of vehicles to insert are given for certain 
roads located at the network’s border. Following their initial route, the vehicles pass certain 
“routing decision points” at which they get a new route assigned randomly, according to a 
given distribution. This method is used for reproducing the turn percentages at intersections 
measured in reality. Both scenarios describe the traffic at the morning peak hour, between 
8:00 a.m. and 9:00 a.m. 

In addition to the passenger vehicles, both scenarios include a description of the public bus 
transport taking place in the regarded area. Both, positions of the bus stops and bus routes 
and schedules are given. 

2.4.2 Traffic lights 

Definitions of traffic lights were given as telemetry files in dwg format an according signal 
time plans given in Excel format. One may note that the Excel sheets contain “variable 
phases” used by the UTOPIA system to adapt the traffic lights to the current demand on the 
controlled roads. 

2.4.3 Traffic Demand 

Two datasets containing detector measures were supplied by the municipality of Bologna. The 
first one contains measures from the days 11.11.2008-13.11.2008, Tuesday to Thursday. 
Choosing these days is conforming to the fact that Tuesday to Thursday are usually the only 
“common” weekdays in means of traffic. Mondays and Fridays have different traffic shapes; 
on Mondays, the shape is differing due to the slightly later departure of passenger traffic and 

Table 2-3: Selected views on the "joined" scenario from iTETRIS 
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in some countries due to prohibitions of heavy delivery traffic on Sundays. On Fridays, the 
afternoon peak is often earlier, due to earlier end-of-business times. 

The given measures were aggregated into intervals of half an hour. 636 detection sites were 
listed, where about 90 detectors (11.11.2008: 95, 12.11. 2008: 92, 13.11. 2008: 91) 
reported an error marked as the value “-1”. Each of the given time line values represents the 
number of vehicles that passed the detection site. Because the detection is done using single 
induction loops, no speed information is available. Also, no distinction between different 
vehicle classes is given. Each detection site may cover more than one lane. The detector data 
is of a very good quality compare to other sites where the known number of errors in the 
detector data is much higher.  

The second data set contains the measures for the same days, aggregated into intervals of 
5min. The quality corresponds to the data set aggregated into 1800s. 

The given VISSIM scenarios describe both the infrastructure and the demands within the 
modelled areas with a great detail and including additional information about public 
transport. Due to this, all information available within these inputs was imported. 

Although VISSIM is a microscopic simulation just as SUMO, it follows a completely different 
concept of modelling the road infrastructure. The main difference is that VISSIM is not using a 
graph concept, consisting of nodes (intersections) and edges (roads) as SUMO does, but only 
of roads and connections between them. This difference makes import of VISSIM networks 
very complicated and the results must often be edited by hand after an initial conversion. 

Because SUMO only allows importing VISSIM networks stored in German language – VISSIM 
uses a man-machine language for network description – the supported networks had to be 
translated from English into German, first. The manual validation step shown in this figure 
was done by comparing the network with images from Google Earth [4] and Google Maps 
[5], and with the supported junction telemetries. While the number of lanes was correct for 
all edges within the VISSIM networks, manual corrections were done on the connections 
between lanes over intersections.  

2.5 Demand Evaluation 

The city of Bologna has 636 detectors which are measuring the traffic flow. The measured 
values from three days are used for analysing the real traffic flow. Unfortunately, the 
detectors are measuring only the amount of vehicles which are passing the detectors within 5 
Minutes there are no other values like speed or vehicle type available. 

Generally, the measured traffic flow looks similar to the detector values which are shown in 
Figure 2-. There is only a small amount of vehicles driving during nights. In the morning hours 
the traffic flow is rising until there is a morning peak between 8 a.m. and 9 a.m. Afterwards, 
the traffic flow decreases a little bit and remains at a certain level. In the evening the traffic 
flow is rising to another peak.  
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For the validation of the simulation the real world measurements were compared to the 
results of the simulation. The imported networks were compared against the supplied 
induction loop values. Here, only the flow over the detectors were given, and were used for 
the evaluation. In the following, comparisons of the demands imported from VISSIM files 
against measures from the real world. 

Andrea Costa: one hour simulated 

 

Whole simulation 

 

 

 

 

 

 

 

 

Figure 2-2: Example traffic flow of three days; blue: 11.11., red 12.11., green: 13.11. 

Table 2-4: Comparison of the simulated traffic flow compare to the measured traffic flow from the detector 

data. (Top to bottom: Andrea Costa, Pasubio, Joined; Left: Simulation of one hour, Right: whole simulation run). 
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Pasubio: one hour simulated 

 

Whole simulation 

 

Andrea Costa Pasubio joined: one hour 

 

Whole simulation 

 

 

Table 2-4 shows the comparison of the average values of real measures from all detectors 
within the according area for the time between 8:00 and 9:00 against the ones obtained 
from the simulation using the demands imported from VISSIM. Two comparisons are given 
for each scenario: the left one shows the comparison between the real flow and the 
simulation results for the vehicles which passed the simulated detectors within the same time. 
Within the right comparison, the real world measures are put against all simulated vehicles 
(until the simulation ends). For both, the optimal results would be a bisectrix. 

From all results the following can be seen: The overall number of vehicles which are simulated 
in SUMO are relatively well (right). Also the simulation results for one hour are not bad, but it 
can be seen that the simulation has problems to simulate the traffic demand in the joined 
scenario within one hour. The reason is very straight forward: with a growing areal size of the 
scenario, the vehicles need a longer time to populate it and cross the available induction 
loops. As a conclusion, it should be stated that a certain amount of simulation time is needed 
to fill the scenario with vehicles, before the real network state is reached. This simulation 
“warm-up” is a known need within traffic simulations. Normally, double of the maximum 
travel time through the network is used.  
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2.6 User guidelines 

The Bologna scenarios are a good way to start traffic simulation based research with. The 
provided network, traffic demand and additional infrastructure data is broad and a lot of 
work was done on improve the simulation quality. For first simulations with real world data 
the scenarios can easily be used with less effort. But the use of the scenarios is also limited. 
For one hand side, the given traffic demand is only for one hour. Considering also a warming 
up and cooling down phase of the simulation, there is only approximately 30 minutes of 
simulation which can be used. Furthermore, the network size of the scenarios are relatively 
small so the route choice in the scenarios are very limeded. So rerouting algorithms should 
better not be simulated. Examples for traffic management strategies which can be simulated 
with these scenarios can be found in [6] and [7]. 

2.7 Further research 

The Bologna scenarios provide traffic networks, traffic demands and representations about 
the traffic infrastructure to simulate a real world scenario in SUMO. But still there are open 
issues which should be improved. The multi-lane roundabouts produce unrealistic traffic jams. 
Pedestrians are currently not included into the simulation, this issue will be handled during 
the COLOMBO project [8].  

On the one hand side, by making the scenario available to the public researcher can use these 
scenarios for their purposes and on the other hand side they can improve the quality of the 
scenarios by their corrections and enhancements. 
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3.1 Abstract 

Over the past years the open source traffic simulator SUMO has been improved and extended 

a lot. One of the most important factors to simulate urban traffic is the traffic light control. 

Currently available are various control methods like embedded fixed time and actuated 

control, but also external controllers that use the extensive TraCI interface of SUMO that 

allows reading and changing many parameters in the simulation. However, this interface has 

not yet been used to couple proprietary controllers, which would enable to use the simulator 

for accurate studies for governments who consider changing the traffic light controllers. 

This paper will describe how Imtech controllers were coupled to SUMO. It will consider the 

topics of architecture, detection, signal group control and simulation speed optimization. In 

the last section results of the SUMO simulation will be compared to those of the commercial 

Vissim simulator for the exact same scenario. 

3.2 Introduction 

Over the past years the open source traffic simulator SUMO has been improved and extended 

a lot with at the time of writing already a 19th version available. With a large community 

involved and a history of more than 10 years, the simulator can be considered a serious 

alternative to available commercial solutions. The open source nature and easy access to 

almost all parameters during runtime make the simulator suitable for research projects. 

Therefore, the European funded project COLOMBO [1] chose to use SUMO for traffic 

simulations.  

The COLOMBO project works on traffic surveillance algorithms for low penetration 

cooperative systems [2], in which both vehicle-to-infrastructure (V2I) and vehicle-to-vehicle 

(V2V) communications are modelled using the ns-3 [3] communications simulator. The output 

of these traffic surveillance algorithms is used by new traffic control algorithms to control 

signalized intersections. 

Currently SUMO supports various kinds of traffic control; fixed time and vehicle actuated are 

fully supported by SUMO itself. For other types of control and variations on the embedded 

vehicle actuated method, external controllers can take over control through TraCI (Traffic 

Control Interface). Currently, these external controllers are stand-alone applications 

specifically made for connection to SUMO, like the example Python program that comes with 

SUMO. However, for good comparison between traffic systems currently running on the 
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street and results of research projects, it is important to use the same scenario and simulation 

environment. Therefore, an interface between SUMO and a real-world controller would be a 

very useful tool for COLOMBO to compare its solutions with what is currently available on the 

market. 

Fixed time and vehicle actuated controllers can still be approximated by either SUMOs internal 

traffic control options or external applications. City specific rules about pre-starts, not early 

cutoff and variable safety margins according to detection information can make this a very 

complicated task that would favour using the real world controllers instead. This holds even 

stronger for traffic adaptive control, like Imflow [4], which is too complicated and differences 

between competing products are too large to simulate their behavior with a different external 

application.  

For these reasons it was decided to create an interface between Imtech’s real world 

controllers and SUMO. This paper will describe the architecture, detection, signal groups, 

speeding up the simulation and a comparison between Vissim and SUMO. This is done for the 

scenario of Assen-Noord, a small network in the north of the Dutch city Assen. 

3.3 Architecture 

The architecture of the interface and all involved components is described in the picture 

below. 

The TLC (Traffic Light Controller) blocks in the diagram are the real-world traffic light control 

executables. They accept either detection cards and lamp control units or a connection to the 

SimInterface to work properly. The SimInterface is a C++ dynamic link library (dll) that can 

maintain connection to multiple TLCs at once. On the other side it can connect to any 

external application that supports the dll. This has been used to connect to the commercial 

simulators Vissim, Paramics and Aimsun. For SUMO an intermediate block, the SumoInterface, 

has been created in Java that supports both the dll and can talk to TraCI to get information 

from SUMO. The flow of information consists of 2 main flows, detection information going 

from SUMO to the TLCs and signal group status from the TLCs to SUMO. 

The execution flow of the interface starts with setting up a TraCI connection and connection 

to the SimInterface dll. When this is done all available detectors are requested through TraCI 

and linked to the correct intersection. Then the main execution loop is entered that checks 

Figure 3-1: Interface architecture 
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detector status and signal group status every 100ms. Changes to signal group status are 

written to SUMO, while detector status is sent directly to the dll. Finally, SUMO is ordered to 

execute another simulation step through TraCI. 

3.4 Detection 

Detection is a key element for a controller, because without it only fixed time control is 

possible. Therefore, having proper detection functionality is vital for accurate simulation. 

SUMO supports 3 different kinds of detectors, inductive loop, lane area and multi-entry multi-

exit detectors. Current traffic control is mostly based on detectors that cover an area in a lane, 

this can be an inductive loop, but also a marked area in a video detector. Therefore, the 

original inductive loop detector of SUMO is actually not sufficient for traffic control 

simulation, since it’s an infinitely small detector that doesn’t cover an area in a lane, but just a 

point on the lane. Even real world inductive loops cover larger areas, so a real inductive loop 

cannot be modelled accurately with a SUMO inductive loop. Many vehicle actuated strategies 

use long area detectors of up to 30 meters to cut off the green phase at an efficient moment.  

 

Figure 3-2 shows a loop close to the stopline and a longer loop at around 15 meters behind it 

that has a length of 20 meters. When a vehicle leaves this loop, the front of the vehicle is 

maximally 12 meters behind the stopline. Turning the light to amber at this moment will not 

make the vehicle stop, since the distance is less than 1 second. This enables the controller to 

utilize part of the amber time by letting the last vehicle of the platoon pass through during 

amber. This technique of detecting the end of the platoon would also work at the stopline, 

but then the amber time cannot be utilized. The reason for using a long loop of 20 meters is 

to deal with small gaps in platoons due to different acceleration rates. If the loop would be 

shorter, a threshold gap time would have to be introduced that would make usage of the 

amber time impossible. The most usable alternative would be a small loop at 15+20 = 35 

meters from the stopline, but its working would be based on a presumed fixed vehicle speed, 

which is inaccurate close to an intersection. Additionally, this work focusses on simulating real 

world controllers and the original controllers expect long area loops. Connecting different 

loops in the simulator will give different behavior unless parameters inside the controllers are 

changed. 

Interfacing with the detectors through SUMO is quite straightforward. During the 

development of the interface a small extension to Traci was made to be able to access 

Figure 3-2: Typical detection field for vehicle actuated control 
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occupancy of lane area detectors. This extension is available in version 0.20. This is done using 

command 0x8E (get LaneAreaDetector Variable) and variable 0x10, the number of vehicles on 

the loop. In the dll this is fed back as a list of detectors that can be occupied (1) or not 

occupied (0). Main challenge in this is the configuration, since the dll does not use detector 

IDs. The order of the detectors has to be the same as it is configured in the controller 

executable. This problem was previously solved for Vissim simulations by a naming 

convention, detector numbers have an ID number specified as follows: intersection ID * 1000 

+ detector sequence number. So the first detector for intersection 37 has an ID of 37000, the 

second 37001, etc. The network conversion tool of [5] automatically uses the correct naming 

conventions when the original network has the correct numbering as well. 

As described in the architecture section, the update time for detectors is 100ms. This is done 

in order to never miss any detection. Motorcycles can be as short as 2 meters and on the 

highway, the speed can be over 30 meters per second. This means they occupy a detector for 

only 100 milliseconds. When vehicles are shorter and drive faster, a shorter update time will 

be required. In urban environments with longer vehicles the simulation may speed up when 

speeds are lower by checking the detectors less frequent. For 4 meter vehicles at 15 m/s, it is 

only required to check every 300ms.  

Another important aspect to consider is the stopping distance in front of a red light. This is 

shown in the figure below. 

 

The loop indicated by the blue line is not occupied because vehicles always stop at 2.5m 
before the signal head. Therefore, the request is not registered at the traffic light controller 
and the signal group will never become green. In SUMO 0.20.0 this stopping distance was 
decreased to 1.0m. 

3.5 Signal Groups 

Sumo uses a different kind of numbering for the signal groups than is usual in traffic light 

controllers. Vissim has one signal head per lane and a signal group can contain multiple signal 

heads, which happens for example when there are two lanes for a certain direction. SUMO, 

on the other hands defines connections, which can be considered signal heads, in the 

.net.xml. There is one connection per turn direction per lane. So when there is one lane from 

which a right turn, through direction, left turn and u-turn are possible, it will have 4 signal 

heads as opposed to only 1 in Vissim. Therefore a translation XML file is used by the interface 

Figure 3- 3: Problem with detector location and stopping distance 
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to convert TLC signal group number to a SUMO identification number. An example of a 

translation file is shown below: 

<intersection id ="1">  

  <signalgroup id="1000" sumoSGs="2,3,4"/>  

  <signalgroup id="1001" sumoSGs="5,6,7"/>  

  <signalgroup id="1002" sumoSGs="1,8"/>  

</intersection> 

The translation is made as an add-on to the software of [5] during the network conversion 

process. Per edge the convertor knows which Imflow signal group number belongs to it, 

while the list of connectors per edge in the .net.xml is also known. The conversion file simply 

contains per signal group ID, the list of linkIndices. During operation of the interface the 

traffic light status is translated according to the file. Suppose the controller wants signal 

group 1000 green and the rest red, the SUMO translation is as follows: rGGGrrrr.  

Again in the dll there is no ID registration, the order is always the same and therefore it is 

important that the translation file has the signal groups numbered according to the order in 

which they are configured in the controller executable. Also, there are more states defined 

than in SUMO: undefined, green, red, off, red+amber, amber, amber flashing, red flashing, 

green flashing, red+green flashing and green+amber. Some of these states don’t exist in 

SUMO and are converted to simpler states, like red+amber is functionally red, so it will just 

show red in SUMO, since the driver model wouldn’t take this into account. Similarly, 

green+amber is just shown as green. Most flashing states are implemented to show “O” for 

half a second and “Y” or “G” for the other half second. Note that the symbols have to be 

capital otherwise vehicles may decelerate unnecessarily. For red flashing it is slightly different, 

it will just show continuous red to prevent vehicles from entering the intersection while the 

light is temporally off as part of the flashing. When no external controller is connected to the 

dll, the state is automatically set to amber flashing. During operation in every 100ms the 

software checks whether the status has changed and if so sends a “Change Traffic Lights 

State” 0xC2 with a new state tuple (0x20) String. The reason to choose for new state tuples is 

because the traffic light can show many combinations of some lights being yellow while 

others are still green during stage transitions. Putting all these possible combinations into 

either a program (0x2C) or predefine them in a SUMO configuration file and selecting the 

right phase index during operation (0x22) would be a lot of work. 

3.6 Simulation speed 

It was noticed that the network used for testing this interface was running much slower after 

the detectors were connected. Although the number of detectors is high, with 168 over 5 

intersections, the delay was much larger than expected. An implementation that sends 

separate TraCI commands for each detector requires up to 30ms per intersection per 

simulation step of 100ms. This meant that the simulation ran approximately at the same 

speed as real-time speed (on a 2.53 GHz core 2 duo). So each second of simulation took one 

second on the clock. Without detection this speed was 50x realtime. A hypothesis that the 

large number of Traci calls caused this led to combining all detector requests of 1 intersection 

in one call. This led to an increase in simulation speed to almost 2x realtime speed, which is 

an improvement with respect to the first implementation, but still not acceptable. It appears 

there is an internal SUMO problem with TraCI causing the large delays. Subscriptions are also 
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not going to solve this problem, because reducing the amount of requests from 168 per 

timestep to 5 did only marginally decrease the delay. A further reduction from 5 to 0 would 

not reduce the delay significantly. Further investigation in cooperation with the SUMO 

development team is required to investigate this issue. 

3.7 Comparison between Vissim and SUMO 

This is done for the scenario of Assen-Noord, a small network in the north of the Dutch city 

Assen. The network only has pedestrian and bicycle crossings at the middle left intersection. 

All other intersections have just vehicles. The larger traffic streams (up to 1500 vehicles per 

hour) are going north-south on both sides of the network and the major bottleneck is the 

bottom intersection where the two north-south streams come together. 

 

When watching the simulations in both Vissim and SUMO, no clear differences could be 

noted, except the uniformity of SUMOs vehicle injection and that all vehicles have the same 

acceleration at the stopline. SUMO was used in a standard way creating the routes with a trip 

file that would inject vehicles with a constant time period in the resulting .rou.xml. Evaluation 

in Vissim was done by putting a travel time section for each signal group and in SUMO a 

multi-entry multi-exit detector. 

 

When evaluating the results it was found that the Vehicle count in SUMO was off, sometimes 

only 35% of the actual volume was measured. It appears to occur mostly when there is a 

high density on the multi entry multi exit detector, since signal groups with low volume were 

counted correct. The delay time could be acquired directly in Vissim, but in SUMO a run with 

all signal heads switched to “O” was done to acquire the free flow travel time, which was 

subtracted from the measured travel time to get the delay time. From this it could be noticed 

that on average the delay for pedestrians and bicycles was 2.0 seconds higher for SUMO than 

Figure 3-4: Simulation network of Assen-Noord 
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for Vissim. On the other hand, for normal vehicles this delay was 1.3 seconds lower for 

SUMO.  

 

These results were obtained using as much standard settings as possible. However, SUMO has 

many options for car following models and different vehicle models with other acceleration 

parameters for vehicles, bicycles and pedestrians. Tooling also exists for more random vehicle 

injections with normal or Poisson distributions. Using these options will make it possible to 

have the results closer to Vissim simulation results. 

3.8 Conclusion 

The paper has shown a method of coupling Imtech proprietary controllers to SUMO. The 

architecture used the same dll as other simulators use to couple to these controllers and 

therefore enables a user to freely select the preferred simulation software. For the interface 

different methods of assigning IDs to signal groups, signal heads and detectors between 

controllers and SUMO were overcome with a translation xml and a naming convention. On 

the SUMO side some extra variables were added to the TraCI interface to be able to access 

lane area detectors as well. A test network that was implemented both in Vissim and SUMO 

showed that the results do not differ more than could be explained by different vehicle model 

configuration parameters. 

 

Open issues identified during the work were problems with counting vehicles on the multi-

entry multi-exit detectors and slow response to detector status requests through TraCI. Both 

issues will be taken up with the SUMO development team. 
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4.1 Abstract 

Over the past years the open source traffic simulator SUMO has been improved and extended 

a lot. To improve compatibility with other traffic related software, network conversion tools 

are available. However, due to the different modelling architecture of these tools, network 

conversion proves to be difficult. Most tools choose a road as a starting point for the 

modelling, while SUMO uses nodes and connects between these nodes with streets/edges.   

This paper gives an overview of the problems that can be encountered while converting 

networks to SUMO format. A possible solution is given for each problem by using example 

networks from the Imflow traffic control configurator which uses a format similar to the 

commercial traffic simulator Vissim. The end result is a conversion tool from Imflow 

configurator format to SUMO of which the lessons learned can be used in future conversion 

tool development. 

4.2 Introduction 

Over the past years the open source traffic simulator SUMO has been improved and extended 

a lot with at the time of writing already a 19th version available. With a large community 

involved and a history of more than 10 years, the simulator can be considered a serious 

alternative to available commercial solutions. The open source nature and easy access to 

almost all parameters during runtime make the simulator suitable for research projects. 

Therefore, the European funded project COLOMBO [1] chose to use SUMO for traffic 

simulations.  

The COLOMBO project works on traffic surveillance algorithms for low penetration 

cooperative systems [2], in which both vehicle-to-infrastructure (V2I) and vehicle-to-vehicle 

(V2V) communications are modelled using the ns-3 [3] communications simulator. The output 

of these traffic surveillance algorithms is used by new traffic control algorithms to control 

signalized intersections. 

In order to evaluate the results of the project accurately, test scenarios were required. These 

scenarios were already available from different projects, but only in Vissim and Imflow [4] 

configurator format. Since some of the baseline scenarios would use Imflow and also because 

parts of the project results will be integrated in Imflow as well, it was decided to make a 

convertor between Imflow configurations and SUMO. The main advantage of this conversion 

is that signal group and detector mappings can also be derived during the conversion process. 

The paper will describe the differences between the two network models and explain the 

conversion process. Topics discussed are how to convert edges with connectors to nodes and 

edges, intersection areas, signal group and detector locations and right of way rules. 
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4.3 Basic Layout: from Streets and Connectors to Nodes and 
Edges 

The Vissim and Imflow model use streets, which can be connected with connectors. Creation 

of a start and end node for each street and making edges that connect between these nodes 

results in the following straightforward solution:  

 

The original street 111 is now connecting nodes 111_start and 111_end. The connector from 

111 to 61 is connecting between node 111_end and 61_start. In the file format of Vissim, the 

street 111 looks as follows:  
LINK    111 NAME "" LABEL  0.00 0.00  

    BEHAVIORTYPE     1   DISPLAYTYPE     1   

    LENGTH   12.659 LANES  1 LANE_WIDTH  3.50 GRADIENT 0.00000 COST 0.00000   

    FROM  2196.640 926.585  

    TO    2209.263 925.632 

Between “FROM” and “TO” optional “OVER” fields can be added to describe a curvature. In 

Imflow format this is very similar, but there is no distinction between from, to and over, the 

fields are simply processed in the order of appearance, with the first and last being the from 

and to fields of the Vissim format:  
<VISSIMLINK> 

<id>111</id> 

<points> 

<p> 

   <x>2196.640</x> 

   <y>926.585</y> 

</p> 

<p> 

   <x>2209.263</x> 

   <y>925.632</y> 

      </p> 

  </points> 

For connectors the information is similar, but the streets that are connected should be 

specified. In Vissim this looks as follows: 
FROM LINK 111 LANES 1 AT 9.043 

TO LINK 27 LANES 1 AT 4.126 

 
In Imflow a few XML elements are added: 

<from> 

    <link>111</link> 

    <lane>1</lane> 

Figure 4-1: Streets to nodes and edges 
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    <location>9.043</location> 

</from> 

<to> 

    <link>27</link> 

    <lane>1</lane> 

    <location>4.126</location> 

      </to> 

The main advantage of the Imflow format is the XML structure that makes it easier to read. 

However, the information regarding streets and connectors is exactly the same and 

conversion between the two would only be a change of format. 

 

For the conversion to SUMO several steps are taken. First all the information about the streets 

and connectors is read and stored in a series of “Link” objects that contain per street or 

connector the following data: id, name, number of lanes, shape points and whether it is a 

connector or not. The name is optional and will not be used in SUMO. 

 

The following step is to calculate where the nodes and edges should be. This process is quite 

straight forward, all Link objects that are not a connector will have a node at the location 

where the Link starts and one where it ends. When this is done a .nod.xml file for SUMO can 

be generated, for the example link 111, this looks as follows: 
<node id="111_start" x="2196.64" y="926.585" /> 
<node id="111_end" x="2209.263" y="925.632" /> 

The .edg.xml can be created as well. Regular links go from their x_start node to their x_end 

node. Connectors are just like other edges in SUMO, but go from an x_end to an x_start 

node. For the example of link 111 and connector 111 to 27 this looks as follows: 
<edge id="111" from="111_start" to="111_end" spreadType="center" /> 
<edge id="10167" from="111_end" to="27_start" shape="2209.263,925.632  

       2221.886,920.63 2235.889,917.116 " spreadType="center" 

/> 

The shape field is optional and used when a curve was described in the original format as 

well. The spreadType is set to center, since just like in the original network format the 

coordinates indicate the center of the lane. Another optional field is numLanes="x", used 

when the edge has more than one lane. 

 

The following step is to generate the .net.xml file from the .nod.xml and .edg.xml, which is 

done by using netconvert with the options –offset.disable-normalization, --no-turnarounds 

and –no-internal links. The offset normalization is disabled to keep following the coordinates 

supplied as precise as possible. No-turnarounds and no internal links are used because there is 

a specific logic used for the controlled intersections, which is described later in this paper. The 

resulting .net.xml is loaded again by the conversion software to apply corrections. 

The first correction is applied to the resulting edges. This is related to the exact positioning of 

the lanes, which is for some reason not entirely accurate in SUMO. For example in the Assen 

network, node 113_start has the following node specification: 

<node id="113_start" x="2058.636" y="982.16" /> 

And the edge is simply specified to go from 113_start to 113_end, but still netconvert results: 

<…shape="2058.64,981.91 2060.13,937.22"…/> 

For some reason the Y-coordinate is shifted by 0.25. Larger differences do occur though, with 

up to 12 meters observed, significantly changing the topology specified in the .nod.xml file.  

The figure below shows a part of the network that was affected mostly by the changes of 
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netconvert. It is a bus-stop construction where busses can also make a U-turn after leaving 

and another parallel street nearby. Both have a 1 lane in each direction. 

 

 

It appears like some edges even connect to the other street, but that is only visual. The shapes 

are therefore recalculated according to the node definition that was created earlier. The 

length of the lanes is also recalculated to keep the definition consistent. 

 

Connectors in Vissim or Imflow do not necessarily need to connect at the end of a street, 

which would not be possible in SUMO with just start and end nodes. Using an extra mid-node 

solves this problem, but it is recommended not to use this in the editors of the original 

programs, since the SUMO network structure will become more complicated and thus more 

complex for manual editing. 

4.4 Intersection areas 

In Vissim and Imflow intersections are no separate entities, they are a set of signal groups and 

right of way rules that apply to a set of streets and connectors that may cross each other. In 

SUMO, however, the intersection is a separate area that has its own shape. The original 

streets and connectors can be used as internal lanes, but the shape of the intersection needs 

to be defined. The Imflow configurator has a special function for this, the intersection area 

polygon as shown in Figure 4- by the green area. The conversion process uses this area to 

identify all connectors within as internal lanes to the intersection. The shape of the junction is 

determined using the end points of the streets that enter the intersection area and the 

starting points of the streets that leave the area. 

 

Figure 4-2: Edge movement by netconvert (left) and corrected version (right) 
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The conversion process builds on the information acquired for converting the regular streets 

and connectors to nodes and edges. A distinction is made between controlled and non-

controlled intersections. The latter are regular junctions in SUMO that should be made as 

small as possible to resemble the original network topology the best. They need small 

corrections for the same reason as the edges. The main goal of these small junctions is to 

make the network look better and prevent situations like these: 

 

The figure shows a number of segments of an edge in a corner, there are openings in 

between them on the outer side of the curvature because they are displayed as pure 

rectangles. Between two edges this can be prevented by defining the junction as a triangle 

that fills this gap. Similar effects occur when multiple lanes are connected and the junction 

should form a shape that fills the gap between the lanes smoothly. 

For controlled intersections the situation is different. A much bigger area has to be converted 

in a junction, which is done using the intersection rectangle of the Imflow configurator. 

Additional information is also required about the signal groups, this can be found in the 

“lane” element in the Imflow file format or in a separate Signal Controllers section in the 

Vissim file format. So as a first step these intersection areas and signal groups are read. This 

results new intersection objects being created and the signal groups being added to the link 

objects (which resemble edges in SUMO) in the conversion software.  

When all this information has been read, the .net.xml file can be changed. All junctions inside 

the intersection rectangle are removed and all edges that were originally a connector in 

Figure 4-3: Intersection area marker (left) and result in SUMO (right) 

Figure 4-4: Lane "openings" in a curve 
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Vissim/Imflow are converted to internal edges (adding a “:” to the beginning of the edge 

name according to SUMO standards). Then the connection elements of the generated 

.net.xml are checked if they are inside the intersection rectangle. If this is the case, the state, 

linkIndex, via and tl variables will be added to the connection element.  

The latter is a more complicated procedure, the original “from” and “to” elements of the 

connection are read, for example:  

<connection from="1" to="10001" fromLane="0" toLane="0" dir="s" state="M"/> 

It is then checked if the end node of 1 is inside an intersection rectangle. In this example that 

is the case, so the logic proceeds. The “to” field is changed into “via” and the new “to” is 

looked up, which in this case is edge 16. This is because originally there were two junctions (1 

to 10001 and 10001 to 16), but the whole area is merged into one large junction with 10001 

an internal edge. When there are multiple lanes on 16 it is possible that there are two 

connectors between 1 and 16. The direction is calculated by comparing the headings of the 

last two points of the incoming lane and the first two of the outgoing lane. The turn 

directions are divided in classes, from 0 to /8 is a through direction, /8 to /4 is a slight 

right/left, /4 to 7/8 is a normal right/left and 7/8 to  is a u-turn. These thresholds could, 

however, be chosen differently when this makes the arrows on the street in SUMO look 

better. This implementation has few cases that will show slight right/left, its threshold could 

be changed to /8 - 3/8 for instance. The tl variable is set to the intersection number and the 

linkIndex is put in the order of appearance of the original .net.xml generated by netconvert. 

The state is put to “o” (off) by default, as during operation this should be changed by either a 

manually created tl-program or an external controller that connects to the simulation. The 

resulting line for this connection is then written to the new .net.xml as follows: 
<connection dir="l" from="1" fromLane="0" linkIndex="0" state="o" tl="45"    

                                         to="16" toLane="0" via="10001_0"/> 

Later the connection between 10001 and 16 is also found by the connection correction logic 

and a small modification is made to add the “:” to the 10001.  

The next step in the conversion process is to create TL logic entries for each intersection. This 

entry is basically only put there because it is required to be a valid .net.xml file and contains 

no intelligent program. It creates a new xml tlLogic section for each intersection with program 

ID 0 and a static program consisting of two phases. These two phases both have 60 seconds 

duration and show all lights as off. The only intelligence in the software at this point is that 

the correct number of “o”’s should be shown in the phase definition. This number was 

acquired while reviewing the separate connections; the last “linkIndex” is the total number of 

characters in the phase definition. For intersection 45 it looks as follows: 
 <tlLogic id="45" offset="0" programID="0" type="static">  

 <phase duration="60" state="ooooooo"/>  

 <phase duration="60" state="ooooooo"/>  
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The last step for the intersection conversion process is the intersection itself. The signal group 

order and a dummy traffic light plan are also defined already. To define the shape of the 

intersection area all incoming and outgoing edges are ordered clockwise, like shown in the 

figure below: 

  

 

The intersection polygon shape is then defined by first taking the two points of end of the 

incoming edge marked with 1 in the figure. This process is shown by the green line in the 

figure and continues the same way for the 2nd lane, drawing a line between the last point of 

link 1 and the first of link 2. For link 3 it is a bit different because the two points are the 

beginning of the outgoing edge. The last line is drawn between edge 11 and edge 1 to 

complete the polygon. The same procedure is followed for each intersection and an example 

result can be seen in Figure 4-3. In the .net.xml file this results in a long series of 22 

coordinates for the shape variable of the junction.  

To complete the junction definition, some lines to define the right of way rules are required. 

These lines have this format:  

<request cont="0" foes="0000000" index="0" response="0000000"/>  

The number of these lines and the number of characters in the foes and response variables 

are again defined by the number of connection entries there are for the intersection. 

Currently there are no right of way rules defined automatically, since this depends on local 

regulations and sometimes even on the traffic light state. Therefore the entries have all zeroes 

and the user should define it manually when right of way functionality is required. 

Figure 4-5: Ordering of incoming and outgoing lanes of an intersection 
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4.5 Signal groups and detectors 

Signal groups are by definition in the end of an edge in SUMO and cannot be in the middle. 

In the previous section the signal groups in SUMO were already defined in the form of the 

connection entries per junction. This may be a problem when an intersection has a more 

complicated shape, with signal groups in the middle of the rectangular intersection area, like 

shown in the figure below: 

 

The situation of the Vissim network on the left has many pedestrian crossings inside the 

intersection area. On the south side of the intersection there are multiple signal heads before 

entering the intersection. This is due to the railroad crossing (white), which requires an extra 

signal head to prevent spillback on the crossing. As can be seen on the right, where only 

pedestrian crossings are present, this will result in a strangely shaped junction in which the 

pedestrian lanes are completely inside the junction shape and thus not visible as separate 

lanes. However, the network does function well and theoretically this is not a problem. 

Traditional SUMO networks solve this problem by defining multiple intersections controlled by 

the same traffic light controller. In theory all signal groups can be modelled like this with extra 

mid-nodes for a street, and a polygon for the intersection area instead of a rectangle. A less 

complicated solution would be possible when signal groups are allowed to be at a different 

position than the end of a lane. Because of the latter it is also recommended to put the signal 

heads in Vissim and Imflow at the very end of a street. 

Another difference is the definition of a signal group in SUMO and in Vissim/Imflow. In the 

first it is basically a connection from an incoming lane to a via lane. This means there can be 

multiple signal groups per incoming lane. In the latter this is not possible, each lane has 

exactly one signal head and a signal group can contain multiple signal heads. A conversion 

between the two definitions was required to connect an external controller to SUMO and is 

described in [5]. 

Figure 4-6: Complicated intersections for conversion 
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Detectors in SUMO have the option of being anywhere on an edge. There are three different 

kinds, inductionloop, lane area and multy-entry multi-exit detectors. The first is, despite the 

name not suitable to model inductive loops, as they cannot cover an area in a lane and many 

control strategies rely on presence in an area. The figure below shows a typical detection field 

used in the Netherlands: 

 

The loops close to the stopline are just 1 meter long and can still be modeled with a SUMO 

inductionloop, but the second loop is often longer than 25 meters and cannot be modelled 

with an inductionloop that has a length of 0. This would significantly change the behavior of 

the traffic light controller and therefore lane area detectors have been used as output of the 

convertor. More details on the importance of accurate detection can be found in [5]. For the 

rest the conversion is very straightforward, in Imflow and Vissim format the detectors are 

specified on which street or connector they are, at which distance from the beginning and 

their length. Those variables can simply be copied into the format of the .det.xml file for 

SUMO. Adding the file to the .sumo.cfg will then make the detectors available for the 

simulation. 

4.6 Other network formats  

The paper focused on Vissim and Imflow network formats. Other well-known network 

simulators are Aimsun and Paramics. Aimsun has a file format *.asn that is not human 

readable, since the simulator requires the same kind of data, conversion should be possible 

but not easy to achieve. An older publication [6] cites that Aimsun also has a separate 

network graphical editor (TEDI), which has a human readable format. For Paramics, the files 

are human readable, and in [6] it is described that the network has a more node-edge like 

structure like SUMO uses. This should enable easier conversion, although curves are described 

as an arc, part of a circle, which will require calculating the smaller segments to be used for 

SUMO edge shape modelling. 

Figure 4-7: Detection field of a typical Dutch intersection 
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4.7 Conclusion 

This paper demonstrated a conversion tool from Vissim/Imflow network format to SUMO. The 

tool has been used on several networks for the COLOMBO project resulting in directly usable 

SUMO networks without the need for further manual editing. The main challenges that were 

overcome during the conversion were correcting the output of netconvert and the definition 

of the intersection area. 

 

Further developments can be done for more complex intersections that should be made up of 

multiple intersection areas, but still be controlled by the same traffic light controller. 

Additional functionality for right of way rules and traffic demand conversion is also 

recommended. A short review of the other popular traffic simulator network formats revealed 

that both Aimsun and Paramics network conversion should be possible, but both have their 

own specific challenges.  
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5.1 Abstract 

Microscopic vehicular simulations can be computationally intensive due to the sheer size 
of the road network and number of vehicles. One solution is to parallelize the simulation 
through distribution and concurrent execution of the scenario being simulated. To 
enable distributed simulation of an area, the partitioning of the map into different areas 
for parallel execution on different nodes is required. How the map is partitioned is also a 
critical factor for distributed simulation, as a poor partitioning can lead to a 
communication overhead and/or an imbalance of workload among the computing 
nodes. 

In this paper, we ask: Can traffic volume information improve the classical structural 
partitioning algorithms? In the context of improving distributed simulation in SUMO, we 
propose a modification to three existing mechanisms for road network partitioning, 
SParTSim, Smart Quadtrees and Quadtrees, with the aim of creating more balanced 
partitions (in terms of workload) derived from traffic volume data.  

Keywords: Distributed Simulation, Road Partitioning, Graph Partitioning, SUMO 

5.2  Introduction 

Urban populations are growing dramatically: for instance, the aggregated annual population 
increase of six major developing-country cities is already higher than Europe's total population 
[1]. With the increase in the size of cities, traffic simulation requires more computation time in 
order to simulate more individual vehicles. This is particularly the case for microscopic traffic 
simulation, which can offer interesting insights to its users, but has a high computation time. 
Microscopic traffic simulation can accurately model urban traffic patterns and evaluate 
different scenarios and their impact on traffic, e.g. placement of additional bus stops at a 
route, traffic light sequencing, etc. By using microscopic simulation, stakeholders can directly 
observe the impact of their potential decisions on the traffic. As stated above, microscopic 
simulation models are generally slow, as they need to process a large number of elements 
(e.g., individual cars). A standard solution to reduce the overall required computation time is 
to parallelize and distribute the simulation. 

Classically, parallel or distributed systems split the problem space into different partitions, i.e., 
sub problems for concurrent execution, this may involve synchronisation between nodes if 
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data from one partition needs to be moved to another partition. For vehicular simulation, 
these partitions are typically based on the road network or the spatial map - we call this style 
of partitioning, structural. The partitioning algorithms are evaluated using two main metrics 
[2]: (i) the balancing of computational workload across the nodes that run the partitions; (ii) 
the communication overhead generated by the distribution.  

Distributed simulations are currently an active area of research interest within the SUMO 
community. There has been recent work to provide a multi-agent system on top of SUMO [3] 
by combining it with an existing multi-agent development framework [4]. Another approach 
for distributed SUMO simulation is dSUMO [5], a framework that interconnects SUMO 
instances, each running separate, but spatially connected areas of a map. Both solutions 
require mechanisms to divide the road-network into different areas for parallel processing on 
their respective nodes.  

In this paper, we propose an enhancement for distributed simulation using SUMO by using 
traffic volume data to improve the load balancing of the individual partitions and minimizing 
the communication overhead, in order to reduce the overall required computation time of the 
distributed simulation. We evaluate this idea by comparing results against those obtained for 
SParTSim [6], Quadtrees [7] and Smart Quadtrees [8]. 

5.3 Related Work 

Partitioning in general is a key concept in distributed and parallel computing. In MapReduce 
[9] the mapping is a partitioning which is responsible for distributing the input data to 
different processes. This partitioning step enables the distributed and parallel execution of the 
work. 
Other, more domain-specific partitioning schemes, provide guidance how to select and 
choose appropriate partitioning algorithms.  

 
Space partitioning, for example, is often used in computer graphics [10-12] and visualisation. 
An overview about different space partitioning algorithms was provided by the authors in 
[13]. Here the authors discussed Quadtrees, unconstrained k-d trees, constrained k-d trees 
and region growing with region growing performing best for their simulation. Space 
partitioning is widely used in distributed or parallel computation, such as Massively 
Multiplayer Online Role-Playing Games (MMORPG) or Raytracing [14]. Employing a binary 
space partitioning mechanism, such as Quadtrees, will lead to the creation of a spatial 
hierarchy. This hierarchy can be used to divide a city, and assign pieces of it (partitions) to 
different nodes. Another approach for the space partitioning of cities is to reuse existing 
boundaries such as postal districts. The problem with both approaches is that they typically do 
not use the road-network for the partitioning but only spatial information. With regards to a 
distributed vehicular simulation, this can lead to uneven distribution of workload. This in turn, 
will lead to decreased simulation performance as a result of uneven processing times for 
simulation steps, resulting in some nodes waiting for others when synchronisation is required.  

 

Graph-partitioning on the other hand, does not consider the space but uses the graph-
structure of the problem. Graph partitioning has been used to parallelize clustering of 
documents [15], parallel factorisation of sparse matrices [16] as well as workload distribution 
[17]. Graph partitioning has been originally implemented with heuristics [18] and was later 
extended to utilize genetic-algorithms [19]. Graph-growing, is a refinement and extension [2] 
of classical graph partitioning and expands individual partitions in each step. Region growing, 
similar to graph-growing, has been shown to be best solution for crowd simulations [13]. 
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Graph partitioning is widely used [20, 21] in different domains such as workload distribution, 
task scheduling and in the VLSI [22] domain. Using graph partitioning for vehicular 
simulations solves multiple issues encountered with space partitioning, such as uneven 
distribution of roads in a partition as graph partitioning works on the street level and not on 
the map. Taking road properties into account can further refine graph partitioning, i.e. edges 
provide attributes about the significance of a particular street. By using additional attributes 
of street-data, a graph partitioning targeted for road networks can be derived, such as 
SParTSim.  

5.4 Experimental Evaluation 

In order to use input data for the different partitioning algorithms, we have to extract volume 
data to provide the partitioning. In real-world scenarios, such data can be extracted from 
existing Traffic Management Systems, such as SCATS [23] or IRIS3. In this work, we use the 
dataset provided by TAPAS Cologne [24] with SUMO to extract the volume data. Below, we 
describe the formula used for providing a weight for nodes in the road graph based on traffic 
data, as well as modifications to the existing algorithms. 

5.4.1 Volume extraction 

As some of the algorithms used are graph based, we provide a weight per node instead of a 
weight per edge. This allows us to use the same weighting for all algorithms, whether they 
are graph or space-based. We use a weighted sum as shown in (1), to calculate the weight of 
a node,   , with    being the total number of cars present at step t,     the number of cars at 
node n at step t.  

                                                                             ∑  
   

  
 .      (1) 

Where the weight    is defined as the number of cars in this step over the maximum number 
of observed cars (in any one step), as shown in (2).  

         
   

    
.       (2) 

By using (2) we ensure that steps with a low traffic volume have a lower impact on the overall 
weight of a node.  

5.4.2 Modification of Quadtrees 

Quadtrees are a space-dividing partitioning method, often used to divide two-dimensional 
spaces. Quadtrees divide a space recursively into sub-regions, until a specific stop condition is 
met, e.g., the space is divided evenly or, into the required number of partitions. 

The original version of the used Quadtree algorithm uses the sum of the street size (street 
length * number of lanes) to select the partition to divide. We modify Quadtrees to not use 
the sum of the street size but the sum of the volume data from Section 5.4.1 oben, in order 
to select the partition to divide further. By using the sum of the volume data for each 
partition, we choose the area with the highest weight to divide further. 

                                            

3 http://iris.dot.state.mn.us/ 
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5.4.3 Modification of Smart Quadtrees 

Smart Quadtrees, also referred as grid based partitioning, are an extension to Quadtrees 
where the map is initially divided into small, independent grids. These grids are then merged 
together according to some heuristic, based on the value of an individual region. This differs 
to Quadtrees as Quadtree divides a map into 4 similar regions, while Smart Quadtrees divides 
a map into small grids and merges them until all grids are merged.  

 

Figure 5-1: Output of the modified Quadtree algorithm (left) and unmodified Quadtree (right) with ten partitions 
or three divisions. 

The unmodified version of the Smart Quadtree implementation uses the street size (street 
lengths * number of lanes) as a heuristic. We modify Smart Quadtrees by changing the 
heuristic to use the sum of the volume data, as described in Section 5.4.1, for each grid. The 
difference between the two implementations is shown in Figure 5-2. 

 

Figure 5-2: Output of the modified Smart Quadtree algorithm (left) and unmodified Smart Quadtree (right) with 
eight partitions. 

5.4.4 Modification of SParTSim  

SParTSim uses the concept of creating a domain-specific partitioning algorithm for road 
networks by combining space partitioning (region-growing) with graph partitioning. By 
utilizing both space-, and graph-partitioning methodologies, SParTSim aims to produce better 
partitions for vehicular distributed simulations. SParTSim determines the starting point of each 
partition by choosing the node with the highest degree. After the starting point for the 
individual partitions is selected, each partition grows, starting from the starting point. 
SParTSim grows the partitions based on road-network attributes, such as number of lanes. 

As unmodified version of SParTSim determines the starting point of a partition by choosing 
the nodes with the highest degrees, the starting point of a partition impacts the shape of an 
individual partition as the partition starts to grow around this point until it can't grow any 
more as a result of all areas now belonging to other partitions, i.e. all areas on the map are 
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covered. SParTSim then trades road segments between partitions to minimize the road cuts 
between partitions and to achieve load-balanced partitions. The SParTSim algorithm only uses 
static graph properties to achieve evenness of road topology between partitions. In order to 
do this it uses a heuristic to determine the workload for the individual partitions. However, 
SParTSim considers that if the road topology is balanced between partitions, then the 
workload will be similar, irrespective of the actual traffic volume. Therefore, we modified the 
starting point selection in SParTSim to use the nodes with the highest traffic volume (as 
determined in Section 5.4.1) instead of using the nodes with the highest degree. Figure 5-3 
shows the partitioning result of both the unmodified and modified version of SParTSim. 

5.5  Evaluation 

In this section, we evaluate the use of traffic volume data for Quadtrees, Smart Quadtrees 
and SParTSim. We divide the city for both Smart Quadtrees and SParTSim into four and eight 
partitions while we use for Quadtrees four and ten partitions. The visual partitioning outputs 
for Quadtrees with 10 partitions is shown in Figure 5-1, with the outputs for Smart Quadtrees 
with eight partitions is shown in Figure 5-2 and those for SParTSim are shown in Figure 5-3. 

 

Figure 5-3: Output of the modified SParTSim algorithm (left) and unmodified SParTSim (right) with eight 
partitions. 

5.5.1 Metrics 

In our evaluation we focus on two metrics, communication overhead and workload balance. 
For communication overhead, we calculate the number of messages sent between partitions 
in each step. These messages represent the movement of a vehicle on a road segment, which 
is divided across partitions. We can calculate this with SUMO by extracting the position of 
each vehicle in each step. If a street intersects or touches a partition border, it is part of 
multiple partitions. This ensures that states are shared between different nodes.  If a vehicle is 
on a road segment, which is divided across partitions, a message has to be sent to the 
neighbouring partition to transfer the state of the vehicle across to the new partition. As each 
message has to be communicated and processed by dSUMO, the lower the number of 
messages, the better. The results for this metric are provided below. 

To evaluate the workload balance between partitions, we calculate the Simpson Diversity 
Index [25], as shown in (3), with    being the cars in partition p,    the total number of cars in 

step t and   the number of partitions. The result is between 0 and 1 with 1 being a perfectly 
load balanced system and 0 being the opposite for unbalanced workloads between partitions. 

                                                                             
 

∑             
.       (3) 
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5.5.2 Results 

We use the TAPAS Cologne [24] 0.17 scenario to evaluate our result. TAPAS Cologne is a 
simulation describing the traffic of Cologne on a workday between 06:00 and 08:00 am. The 
data was captured as part of the TAPAS project [26]  and has been refined multiple times. The 
scenario consists of 7200 steps, with one step representing one second in real-time. TAPAS 
Cologne contains more than 250,000 vehicles traces for the two-hour period. 

Figures 5-4 and 5-5 display the number of messages between partitions per simulation step 
for Quadtrees, Smart Quadtree and SParTSim. We don’t distinguish between the modified 
and unmodified Quadtree for four partitions, as both results are exactly the same. 

 

Figure 5-4: Number of messages sent per simulation step for Quadtrees (left) and Smart Quadtrees (right). 
Modified and unmodified versions are both shown. 

 

Figure 5-5: Number of messages sent per simulation step for SParTSim, both modified and unmodified for 4 and 
8 partitions 

 

Due to the regular, rectangular shape of the partitions the Quadtree shows the best 
communication properties. In all cases, though, the modified versions of the algorithms show 
increased levels of communication, compared to the unmodified versions. The modified 
Quadtree algorithm selects the city centre (Figure 5-1) for further partitioning, resulting in 
additional communication overhead. For the Smart Quadtree algorithm, our modified version 
created some small partitions (Figure 5-2), causing additional communication overhead. Our 
modified algorithms show higher communication overhead compared to the unmodified 
versions. This is expected as our modifications focus on load balanced partitions and does not 
optimize with regard to communication. However, as can be seen below (in terms of 
workload balance) our algorithms achieve a higher level of balancing between partitions, 
which should provide higher utilisation across all compute nodes as delays incurred by waiting 
for simulation should be decreased. 

SParTSim has a trading phase, which aims to reduce the communication overhead. This 
behaviour can be observed in Figure 5-5 for the unmodified versions, which perform better 
than the Smart Quadtree. Our modified initial starting point selection for SParTSim caused the 
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increased communication overhead. This shows, that even though SParTSim has a trading 
mechanism to reduce the communication overhead, the initial point selection has a large 
impact on the resulting partition. 
 

For the case of workload balance between partitions, Table 5-1 shows the properties of the 
Simpson diversity index (the higher the number, the better) over the complete simulation for 
all 3 algorithms. For both Quadtree and Smart Quadtree our modification provides better 
load-balanced partitions compared to the unmodified versions of the same algorithm, e.g. for 
the Smart Quadtree our modifications are twice as good as the unmodified versions. Our 
modifications to SParTSim on the other hand, provide slightly worse results compared to the 
unmodified algorithms. This is due to the trading phase of SParTSim, as we did not adjust the 
trading phase but only the initial starting point selection.  

 

Table 5-1: Simpson diversity index for the different partitioning algorithms over the simulation. 

Name  Min Median Mean Max 

 

Quadtree 

4 partitions 0.3680 0.7190 0.7318 0.8540 

10 partitions – modified 0.3570 0.6070 0.6021 0.6330 

10 – unmodified 0.2270 0.3530 0.3674 0.5540 

 

 

Smart Quadtree 

4 partitions - modified 0.5610 0.9000 0.9157 0.9940 

4 partitions - 
unmodified 

0.358 0.431 0.427 0.568 

8 partitions – modified 0.4460 0.7760 0.7798 0.8550 

8 partitions – 
unmodified 

0.2840 0.3890 0.3889 0.4940 

 

 

SParTSim 

4 partitions – modified 0.4810 0.6650 0.6718 0.7340 

4 partitions – 
unmodified 

0.7210 0.7920   0.7854 0.8450 

8 partitions - modified 0.4060 0.4540 0.4642 0.6430 

8 partitions – 
unmodified 

0.4710 0.6850 0.6573 0.7780 

Comparing the different algorithms to each other shows that our modified Smart Quadtree 
produces more even partitions than the other partitioning algorithm. Our modified version of 
the Quadtree took 1h13min to compute 10 partitions, Smart Quadtree took 1h22min to 
compute eight partitions while SParTSim took 5h14min for eight partitions on a 4 Core I7-
2600 with 16GB of memory. As shown in [27, 28] load balanced simulations are a required to 
optimize the overall computation time. 

The modified Smart Quadtree provides more balanced partitions compared to the other 
algorithms. Furthermore, the modification to Quadtree and Smart Quadtree provide more 
balanced partitions compared to unmodified versions of their algorithm. In addition to 
providing more balanced partitions, we can observe that for Smart Quadtree, the time taken 
to compute these partitions is significantly lower, compared to SParTSim. In the case of 
Quadtree, the time taken to compute the partitions is significantly lower than SParTSim (and 
Smart Quadtree) but at the expense of workload balance. Our modification to SParTSim on 
the other hand, did not provide better results, due to the unmodified trading phase. We 
expect that by modifying the trading phase, the result for SParTSim will improve as well. 
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5.6 Conclusion 

In this paper we propose the of use volume data to improve road partitioning for distributed 
simulations using SUMO. We modify three existing partitioning algorithms to take volume 
data into account. In general, the volume data can be extracted by a Transportation 
Management System for a city or by examining results from previous simulations. We show 
the impact of volume data on the individual partitioning algorithms for the partition topology, 
as well as the impact on the distributed simulation by comparing communication overhead 
and workload balance between the different algorithms. 

We show that partition algorithms have a large impact for distributed simulation, either 
providing workload balanced partitions or reducing the overall communication overhead. 
SParTSim, the algorithm trying to optimize for both cases, has a long runtime making it 
impractical for dynamic load balancing. By using traffic volume, we can improve the workload 
balance of simple spatial partitioning algorithms, which could make them useful for dynamic 
repartitioning of large simulations. This means that in order to be able to scale and distribute 
large-scale simulations with dSUMO, the focus for dSUMO should be on the communication 
overhead with external systems, as balanced partitioning has been shown reduces the overall 
computation time. 
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6.1 Abstract 

Statistically, emergency vehicles (EVs) encounter a higher risk of getting involved in accidents 

during their missions than other road users. The successful completion of these missions can 

be facilitated by new applications. As it is not possible to test new applications in a real traffic 

system, suitable simulations can address that issue. Simulation of Urban Mobility (SUMO) is 

one possible tool to conduct simulations within real traffic systems. However, SUMO is not 

capable of modelling a realistic behavior of EVs, new types of infrastructure, and individual 

vehicles (IVs) concerning EVs by a predefined function. We propose models for each of the 

missing pieces towards an integrated approach to simulate EVs in an urban environment. The 

models are adjusted with a video analysis, simulated and assessed. They are a reference for 

testing new applications. The example applications are a traffic light preemption via V2I and 

an automated cooperative formation of a rescue lane via V2V. The models and the two 

applications are assessed regarding travelling time.  

Keywords: Simulation of emergency vehicle, Simulation of EV, Urban, Intersection, Real EV 

behavior, Rescue Lane, Intelligent Transportation System, Intelligent Traffic light, V2X, 

Preemption, Automated Formation of a Rescue Lane, Travelling time 

6.2 Introduction 

Statistics about missions of rescue services in Germany indicate over 14 million missions a year 

[12]. This corresponds to several ten thousand missions of emergency vehicles (EVs) a day. 

Each mission is carried out under enormous time pressure as regional response time regulates 

the maximal time difference between the incoming call and the arrival of the rescue team 

[17]. The travelling time of an EV may be influenced by any incident on the road. Especially in 

urban environment, red traffic lights are a serious threat for reaching the destination in time 

[4, 5, 13, 14]. A red traffic light has two effects on the trip. First, the red light itself which 

indicates possible crossing traffic and second the obstruction by other road users waiting in 

front of the red light. This leads to a reduced speed as well as a higher risk of getting involved 

in an accident [11, 8]. A study examined the likelihood of having an accident by comparing 

accidents per kilometer of EVs and individual vehicles (IVs). According to the study, the risk of 

being killed is four times higher, being severely injured is eight times higher, and having a 

material damage is seventeen times higher while being on a mission in an EV [11].  

To support EVs in urban situations, research and development presented many systems [5, 7, 

13, 14]. A new set of applications for EVs may further enhance the safety and efficiency of 
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rescue services. These applications may require new types of traffic infrastructure and 

communication among vehicles (V2V) and vehicles and infrastructure (V2I). In short this 

communication is called V2X communication. To evaluate the potential of new applications, 

prototype systems need to be deployed in a real traffic environment and analyzed over a long 

time period. This is a severe alteration of the traffic system and it is hardly imaginable that 

local authorities allow such a procedure. However, simulations are a suitable tool to perform 

the necessary potential analysis. 

6.3 Problem Statement 

An applicable simulation framework allows us to conduct research concerning effects of new 

applications for EVs on the traffic system. We decided to use the simulation tool Simulation of 

Urban MObility (SUMO) as its strength is to simulate V2X applications improving traffic 

efficiency [9]. However, simulating special situations – e.g. situations comprising EVs – are not 

covered. EVs are allowed to not obey general traffic rules. They can drive faster, may drive 

through red lights, and are allowed to use their siren and light bar to inform others about 

their arrival and their right of way. Thus, the EV has an effect on the behavior of individual 

vehicles (IVs).  Research community does not agree whether these effects need to be 

modelled in order to evaluate new applications e.g. preemption systems. Driving through red 

lights and the behavior of IVs may be neglected because only the difference in travelling time 

with and without the application is significant [10]. Others argue that by neglecting these 

effects the potential of new applications may be overestimated and thus needs to be 

implemented [18]. Bieker [1] does not implement a driving through red lights because the EV 

coincidental arrives during the green phase. She points out that a model to overcome the red 

light issue needs to be investigated. Additionally, the study implements the behavior of IVs as 

stopping when an EV is approaching.  

The effects mentioned above issue a challenge for SUMO. Within this paper, we want to 

present models enabling SUMO to simulate V2X applications improving traffic efficiency 

involving EVs and conduct simulations of two applications, namely a preemption and an 

automated cooperative formation of a rescue lane by IVs. This paper is organized as follows. 

Section 6.4 describes the simulative environment with all boundary conditions and input 

parameters. Section 6.5 explains the different implementations. Section 6.6 deals with the 

calibration of the proposed models. Section 6.7 describes two example applications as well as 

the simulation and assessment of the models and the example applications. Section 6.8 

completes the paper by giving a conclusion and outlook.  

6.4 Simulative environment 

Material provided by OpenStreetMap is the basis for the traffic system used in this paper. It is 

shown in Figure 6-1 and includes three urban intersections in Braunschweig4, Germany. Apart 

from this realistic traffic system, a real traffic signal timing plan and a collected traffic census 

data is the basis for an approximated real traffic flow. Figure 6-2 shows the underlying data 

                                            

4 Intersections from west to east: Rebenring / Pockelsstraße, Rebenring / Hagenring, and Hans-Sommer-Straße / 
Langer Kamp 
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of the traffic census. Straight arrows and the corresponding numbers indicate straight traffic 

whereas angled arrows and corresponding numbers indicate turning traffic (left or right). The 

percentage share of trucks is 3% with a distribution of semi-trailer trucks (Truck1) and short 

trucks (Truck2) in a ratio of 1 : 1. The remaining road users are passenger cars divided into 

three groups in a ratio of 1 : 2 : 1 (Car1 : Car2 : Car3). They differ in vehicle dimensions, 

maximal speeds, reaction time of the driver, and driver attention. Values for type Car1 are 

comparable to the vehicles of the A00 segment. Type Car2 represents the A segment, type 

Car3 equals the B segment, type Truck1 comprises of semitrailer trucks, type Truck2 is a 

smaller truck, and type EV a fire truck. Values for the maximal acceleration and maximal 

deceleration consider a comfortable acceleration and are not equal to the maximal physical 

values. Table 6-1 shows vehicle related parameters and used driver models (minGap, Sigma 

and Impatience). The table also contains data about the parameters used for the EV.  

Type 
Max. 
Speed 
[m/s] 

Speed-
factor 

[-] 

Max. 
Accel. 
[m/s2] 

Max 
Decel. 
[m/s2] 

Length 
[m] 

minGap 
[m] 

Sigma 
[-] 

Impatience 
[-] 

Car1 40 0.8 1.9 3.0 3.5 2.00 0.6 0.3 
Car2 50 0.95 2.6 3.5 4.2 1.20 0.8 0.5 
Car3 60 1.0 3.1 4.0 4.7 0.65 0.8 0.8 

Truck1 22 1.0 0.8 3.5 18.4 0.75 0.9 0.7 
Truck2 22 1.0 0.8 3.5 12.4 0.75 0.9 0.5 

EV 30 1.2 2.5 7.0 12.4 0.5 1 1 
 

 

 

 

Table 6-1: Vehicle parameters and driver behaviors 

Figure 6-1: The simulated traffic system  

Figure 6-2: Collected data of a traffic census at the relevant intersections during the peak hour  
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6.5 Models 

6.5.1 EV behavior 

EVs are allowed to not obey general traffic rules. SUMO is not able to model the necessary 

behavior of EVs with a predefined internal function. Our implementation concerning the EV’s 

behavior considers speeding and the abilities to drive through red lights. The usage of a siren 

and a light bar is not visualized within the simulation. However, the effect on the IV is 

described in Section 6.5.3.  

Speeding: 

The EV may override speed restrictions by using the implemented speed factor. Table 6-1 

shows the maximum speed of the EV (30 m/s) and the speed factor (1.2). By setting the speed 

factor to a value greater than 1.0 (=100%), the related vehicle is allowed to drive faster than 

the speed limit. The speed limit is set to 13.8 m/s (equals 50 km/h), as the traffic system is 

located in an urban environment. Thus, the EV could drive 16.56 m/s (1.2∗13.8 m/s ≈ 60 

km/h) within the traffic system, if the maximum speed of the EV (30 m/s) is not exceeded. 

Drive through red lights: 

The TraCI (Traffic Control Interface) enables an enhanced alteration of the EV’s behavior. 

Using this interface, the EV may cross an intersection while having a red light. This is possible 

by using our method which works as follow. The EV is approaching a red traffic light with full 

speed. As implemented in the driver model, the EV starts to brake in order to not violate 

traffic rules. Even if no vehicle is congesting the intersection, the EV will wait until the traffic 

light switches to green. Figure 6-3 shows a flowchart to of the implemented algorithm which 

allows an EV to drive through red lights even with obstructing vehicles. First, the algorithm 

determines the speed and the lane of the EV as well as the signal state of the intersection. 

Additionally, a minimal and maximal speed value is read from a configuration file which 

allows modeling a realistic approaching behavior (see Section 6.6). Second, it checks whether 

the EV is in front of  
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an intersection. As a third step, the EV’s speed is checked against the minimal speed value 

and the maximal speed value. If the EV is driving slower than the lower threshold the signal is 

hold or switched to green. If the EV is driving faster than the upper threshold, the signal is 

hold or switched to red. This leads to an averaged approaching behavior of the EV which can 

be observed in real situations with EV approaching intersections. The algorithm is executed 

every time step in the simulation. 

6.5.2 Intelligent infrastructure 

New applications require a novel type of infrastructure. Characteristics of a new 

infrastructure, for instance accessibility by special road users, influence the modulation. We 

propose a model to interact with traffic infrastructure using TraCI and inductive loops. 

Inductive loops are a trigger to start an application on the infrastructure, e.g. setting a new 

traffic signal timing plan. The implemented loops are adapted in a way that they only react to 

vehicles of the type EV. The distance between the loops and the intersection represents the 

V2X reception radius. 

6.5.3 IV behavior 

The implementation of the IVs’ behavior is essential, especially in congested traffic situations. 

Road users respond in a certain way when perceiving a siren or blue light. The most favorable 

way is to respond in a cooperative manner as discussed in [6]. One possibility to behave 

cooperatively is described in the Road Traffic Regulations [16] as creating a rescue lane in 

order to let the EV drive through the congested area quickly. A method to implement such a 

behavior is presented. An example situation clarifies the functional principle of the method. 

Figure 6-4 (top) shows an oneway road with three lanes. Ten vehicles drive on that road as an 

EV s approaching on the middle lane from behind. In this example, the method clears the 

middle lane by forcing the obstructing vehicles to change the lane and the other vehicles to 

stay on their lane. It induces a lane change maneuver using the SUMO internal ChangeLane()-

function based on the SUMO vehicle dynamics. Figure 6-4 (middle) shows the turn signals  

 

Figure 6-3: Flowchart showing one EV model 
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indicating a lane change of the obstructing vehicles. The direction of the lane change is 

random but may be defined. Figure 6-4 (bottom) shows the final rescue lane created by the 

method. The flowchart in Figure 6-5 shows the algorithm. The algorithm determines the 

number of vehicles on the EV’s lane (amount) and their identification number. After that, a 

procedure is applied for each vehicle. The speed of the vehicle is determined. Afterwards, a 

check clarifies if the vehicle entered the EV lane within the last simulation step. If so, a 

reacting distance is calculated in which the vehicle reacts on the EV’s presence (see 

Section 6.6 for the sub function). If not, the old values are used. The algorithm calculates the 

distance between the vehicle and the EV. The calculated distance to the EV needs to be lower 

than the reacting distance and the vehicles speed needs to be higher than 3 m/s to induce a 

lane change. This procedure is repeated for each vehicle and each time step in the simulation. 

 

Figure 6-4: Example situation for the IV behavior 
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6.6 Calibration 

The calibration of our models implementing EV and IV behavior aims to resemble a realistic 

behavior. Therefore, different methods are conceivable. For instance, assessments of traffic 

census comprising missions of EV’s indicate the effect on the EV’s travelling time. Using this 

data, it is possible to estimate an average time loss. We forego using such a method. First, a 

traffic census in required dimensions involving EVs does not exist. Second, and more 

important, an average time loss may not be representative to the scene and ineligible to 

calibrate the models in required detail. Some intersections and urban roads may cause only 

little time loss whereas others are a major issue for EV’s travelling time. That is why we focus 

on a real data analysis using videos at congested urban roads and intersections. The videos 

reveal the behavior and retarding effects in real situations. This analysis gives several example 

situations to adjust parameters of the models.  

Assessing videos to gain insights of interactions between EVs and IV was also done in 

Buchenscheit et al. [3]. They mounted a camera on the dashboard of an EV and recorded 21 

typical emergency response trips with a total length of 147 minutes. They came to the 

conclusion that dangerous and/or retarding factors can be condensed to a late perception of 

the approaching emergency vehicle and a non-optimal switching of traffic lights. Red traffic 

lights, which occur in 50% of the trips, cause a delay of 15-30 s each. Moreover, on average 

2.5 drivers are misbehaving which leads to a loss of 1 minute in average for each trip. As we 

want to calibrate the proposed models, we need a more detailed analysis. However, we seize 

Figure 6-5: Flowchart showing the model “IV behavior” 
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the idea of assessing recorded EV missions. Because data protection laws require a certain 

protection for people, we decide to assess already declassified videos available of different 

rescue services in Germany. The selection of video files is based on the following factors:  

 The regional rescue service declassified a couple of videos (not only a few). This 

reduces the risk of extracting unique environmental/traffic impacts and come to flawed 

conclusions 

 The database comprises of different videos of different rescue services. This reduces 

the risk of adjusting the models according to a regional instruction of EV drivers 

 The videos do not include exceptional situations (e.g. missions during natural disasters, 

educational films). 

The video database consists of urban and suburban/rural missions. Necessary parameters such 

as distances between road users and speeds are either recorded or estimated. The overall 

length of the video material is 90 minutes with 116 traffic light controlled intersections and a 

variety of numbers and composition of vehicles and environments. Concerning the traffic 

lights, 56 times the traffic light was red at the moment of passing whereas it was green in 60 

instances. This indicates that the EVs had red in 48% of the times an EV passes a traffic light 

controlled intersection. Although the EV drivers reduced their speed in these instances 

dramatically (on average 20 km/h) misbehavior of crossing IV almost leads to two accidents. 

Additionally, 36 instances showed heedless behavior of IV which leads to critical situations 

caused by wrong perception of the situation. Concerning the analysis of distance for the 

noticeable first reaction regarding the EV, the reacting distance is divided into the three 

clusters: "50 m and more", "50m – 20 m", and "20 m and less". Depending on the 

environment and the perception of the EV’s presence, circa 25% of the IVs react in a distance 

of 50 m and more. Around 50% of the IV’s drivers react in a distance between 50 m and 

20 m, whereas 25% of the drivers react in a distance of 20 m and less. However, the time to 

form a rescue lane is strongly depended on the traffic density. This is why the model is 

adjusted concerning the distance for first reaction and not the time for successfully creating a 

rescue lane.  With this analysis, the models can be calibrated. The average speed for the EV is 

about 20 km/h. Hence, the upper speed limit is set to 7 m/s whereas the lower speed limit is 

set to 4 m/s (see Figure 6-3). Thus, the average speed equals 5.5 m/s (=19.8 km/h).   

The IV reaction model is calibrated according to the estimated values which are used as 

shown in the flowchart in Figure 6-6. The discovered distribution over the obtained reacting 

distances is modelled by a random, uniformly distributed float generator. 
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6.7 Simulation of the Models and V2X-Applications 

We present an intelligent traffic infrastructure and near realistic behavior of IV and EV to 

enable tests of different V2X applications related to EVs. We conduct a simulation with the 

normal SUMO models and a simulation with the proposed models to show the differences. 

Afterwards, we conduct simulations for two applications: preemption system and an 

automated formation of a rescue lane. The next two subsections describe the functionality of 

the apps. Afterwards, the simulation procedure and the assessment are presented. 

6.7.1 Preemption 

Preemption is a technical system that enables an EV to register its arrival at a traffic light 

regulated intersection. A special infrastructure at the intersection runs the necessary 

application. This application switches to a special phase program that allows the EV to pass 

while having green. The approaching EV triggers the system by sending a V2I message. The 

principle is shown in Figure 6-7. The algorithm determines if an EV-Preemption program is 

active. If not, it checks for a request at the starting induction loop. When an EV triggers the 

loop, the signal program and signal phase is determined. Depending on the current program 

and phase, the algorithm chooses a suitable, German Guidelines for Traffic Signals (RiLSA) 

[15] conform, predefined EV-Preemption program and starts a timer. If an EV-Preemption is 

active, the algorithm checks whether the ending induction loop is triggered by the EV or the 

maximal timespan has expired. There are two factors that influence the success of the 

preemption system.  

Figure 6-6: Flowchart to calibrate the IV behavior model (SetReactingDistance) 
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First, the moment of registration at the infrastructure influences the possibilities to switch the 

signal phase according to the RiLSA. Second, the communication distance depending on the 

intersection’s topology and environmental message signal attenuation. In general, there are 

two initial states when the preemption request is sent: the EVs traffic light shows green or 

yellow/red. While having green, the RiLSA defines that a green light may be held as long as 

the other directions do not have a red light for more than 3 minutes. When the traffic light is 

yellow or red, the phase program is shifted to a special phase program at the next possible 

moment. This also leads to the maximum requirement for the communication distance. When 

the EV is having a red light, under certain circumstances, the RiLSA standards require a secure 

time to shift the phase program. The distance between registration and the intersection must 

be great enough to allow the EV driving as fast as possible while the phase shift takes place. 

To ensure a lawful traffic light program switching behavior, our method obeys restrictions 

based on the RiLSA. By observing the guidelines, our method does consider pedestrians 

implicitly. By simulating this application, the dependency between communication distance, 

the signal phase shift and the success of the preemption for the investigated intersection may 

be found. Therefore, the two effects are varied. The communication distance can be varied. In 

this paper, it is set to a distance of (west to east) 165 m, 450 m, 165 m and realized by using 

induction loops. The cycle second in which the EV is approaching, is also varied over the 

whole phase time. The travelling time of the EV is then assessed and compared. The goal is to 

minimize the travelling time of the EV in urban environment. A secondary goal is to minimize 

the impact on the IV. Therefore, different special phase plans may help solving traffic jams 

and congestions while and after a preemption system is active. 

Figure 6-7: Flowchart of the traffic light preemption 
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6.7.2 Automated Formation of a Rescue Lane 

The second application is a system that supports drivers to automatically form a rescue lane. 

By doing so, it makes the vehicles behavior cooperatively according to an operationalization 

of cooperative behavior as shown in [6]. To apply the aforementioned concept of cooperative 

behavior, both the EV and the IV require a cost function. In this elementary assessment, the 

EV wants to pass through this area as quickly as possible, meaning that the cost increases 

when the travelling time increases. The IV wants to let the EV pass by, which results in a cost 

function that also increases when the EV has to wait longer. This means that every reaction of 

the IV improving the travelling time of the EV is a cooperative behavior. A conceptual system 

assisting drivers forming a rescue lane by proving additional information can be found in the 

literature [3]. Depending on the system, it can give additional information and thus assists the 

driver, give advice or induce maneuvers itself. V2X communication enables sharing necessary 

information. The information itself needs to meet two requirements: First, the obstructing 

vehicles know that they are blocking the EV and get helpful information on how to solve that 

issue. Second, the information needs to be consistent among different IVs. Determining a 

cooperative coordination among IVs can be obtained by using different methods. In this 

application, a rule based approach is employed. Figure 6-5 shows the implemented algorithm 

to model IV behavior. The automated formation of a rescue lane is based on this flowchart, 

but the SetReactionDistance function is set to a constant value of 150 m. The application has 

one master and several slaves. The master with the implemented rules runs on the EV, 

determining what the IVs have to do. The slave instances are running on the IVs which send 

ego information (i.e. own lane, own position) to the master. Additionally it is assumed that 

the slaves execute the commands sent by the master without sending an acknowledgement. 

6.7.3 Simulation Procedure 

The simulation procedure describes configurations of executed simulations. Table 6-3 shows 

employed models and applications for different runs of the simulation. Each test is performed 

50 times to take randomized effects into account and ends when the EV reaches a specific 

point at the end of the simulation. Models are implementations as discussed in section 6.5. 

The two applications are employed as shown in section 6.7.1 and 6.7.2. 

No Speeding 
Driving 
through 
red lights 

IV reaction Preemption 
Autom. 

Rescue Lane 

M 1 X     
M 2 X X X   

A 1 X X X X  
A 2 X   X  
A 3 X X X  X 
A 4 X X X X X 

 

The simulation runs for 500 seconds without modification. After that, the EV gets in the 

simulation. The moment the EV enters the simulation is varied from the 500th second in steps 

Table 6-2: Setup of the different tests 
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of 1 second to the 585th second. The timespan of 85 seconds matches the timespan of one 

phase shift for all three intersections. The first test has only the speeding model activated to 

show the travelling time of an EV as implemented in SUMO. The second test includes the 

other proposed models to show the difference in travelling time. These simulations are 

assessed to decide which setup is the reference for the applications. Afterwards, the 

applications are simulated and evaluated. Test A1 includes the first application, which is a 

traffic light preemption system. Test A2 shows the effects on the travelling time when the 

models driving through red lights and IV reaction are not activated. The last two tests include 

the other application, the automated formation of a rescue lane. A3 simulates the application 

alone whereas A4 includes both applications. The figures introduced in the following 

discussion have the following properties. The x-axis denotes the introduction second in which 

the EV entered the simulation whereas the y-axis indicates the travelling time of the EV 

through the traffic system. The gray area marks the range of values obtained during the 50 

simulations. The dashed line represents the median of travelling times in order to classify the 

resulting range of the travelling time. The solid line is a trendline to illustrate the general 

course of the travelling times over the introduction second. 

6.7.4 Assessment of models 

 

 

Figure 6-8 shows the travelling time of an EV within simulation M1. None of the presented 

models are activated, so that the EV behaves as a normal road user. Only the speeding 
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Figure 6-8: Travelling time in test M1 
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method is activated as this can be modeled by SUMO itself. The travelling time is not constant 

over the introduction second. This variance is caused by randomized behavior of IVs. This 

leads to direct interference (e.g. changing the lane very late) and indirect interference (e.g. 

that the EV is slowed down so that it does not arrive within the green phase at the next traffic 

light). At small introduction seconds, the first traffic light is red and switches to green. This 

leads to a delay of the EV due to waiting vehicles and causes a travelling time around 190 s. 

These vehicles have more time to start with increasing introduction time of the EV. Around 

introduction second 43, a green wave is established with a travelling time of around 165 s. 

After that introduction second, the travelling time is increasing and has its maximum value 

(about 200 s) around introduction second 78. Considering the data scope, noticeable 

differences around introduction second 50, 60, and 70 can be observed. These introduction 

seconds are mainly affected by waiting vehicles as the green wave breaks down and the EV 

has to wait for one complete cycle to cross at least one of the intersections. 

 

 

Figure 6-9 shows the simulation M2 with all three models activated. It shows that the 

travelling time depends on the introduction second. Moreover, there are different values for 

one introduction second. This distribution of values is also caused by randomized behavior of 

IVs. The trendline reveals four distinct areas that can be interpreted as follows. At introduction 

second 8 and travelling time around 100 s, the EV approaches the first intersection while 

having a green light. The vehicles in line are already moving and are slowly clearing the path. 

In comparison with introduction seconds smaller than 8, the EV is approaching in an 

advantageous moment, because the waiting vehicles have some time to start. The second 
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Figure 6-9: Travelling time in test M2 
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traffic light is red and some vehicles are waiting in line. If trucks are waiting on the EV’s lane, 

the travelling time is severely affected (as indicated by the gray area). In introduction second 

8, the vehicles waiting in front of the second traffic light can clear the lane quick enough so 

that the EV reaches the third traffic light at green. However, around introduction second 23, 

the IV interferes the movements of the EV in a way that it reaches the third traffic light while 

having red. This explains the local maximum of about 90 s around introduction second 23. 

The global minimum of 85 s around introduction second 43 can be explained as the optimal 

entrance second to catch the green wave. This introduction second is not influenced by 

variations of IV behavior as the data scope is relatively small. This can be explained by the 

circumstance that vehicles which are located at the intersections may start early enough to 

clear the route when the EV arrives. After that introduction second, the green wave gets 

interrupted easily by obstructing vehicles. Considering the median graph, introduction 

seconds 23, 28, 72, 75 and 82 have a relatively high travelling time (about 100 s) for the EV. 

At least one traffic light is red with waiting and obstructing vehicles. This leads to a delay so 

that at least one other traffic light after it changed red to green and thus also obstructs the 

EV.  

The comparison of the two simulations M1 and M2 shows that the travelling time of the EV is 

reduced by half by using the EV and IV models. Using the first simulation results as a 

reference, applications improving the EV’s travelling time would be overestimated as the 

behavior of the IV and EV is neglected. Additionally, the peaks at introduction seconds 50, 60 

and 70 can be considerably reduced. This is mainly caused by the EV model that allows the EV 

to drive through red lights. Therefore, it does not have to wait for one cycle in order to pass 

the intersection. In the following, the results of test M2 are used as a near realistic reference 

to estimate the potential of EV applications. 

6.7.5 Assessment of the applications 

Figure 6-10 shows the travelling time over the introduction second for test A1. The course of 

the trendline drops from a value of around 85 seconds at introduction second 1 to a 

minimum of 70 seconds around introduction second 45. Afterwards it rises to a travelling 

time around 95 seconds at introduction second 78. Then it decreases again. The maximum at 

small introduction seconds can be explained by the late preemption at the first traffic light. 

The congested intersection cannot be cleared in time so that the EV has to wait. Between 

introduction seconds 13 to 55, the preemption comes in time to either hold the green phase 

or change the red/yellow traffic light to green. The variances are caused by IVs randomly 

merging into the EVs lane causing its delay. Taking the median values into account, 

introduction seconds 28, 31, 43, 64, and 65 are an advantageous moment for the 

preemption so that the travelling time is less than 63 seconds. Introduction second 65 shows 

that the randomized IV behavior does not necessarily have an effect of the EV’s travelling time 

as the maximum and minimum values of the 50 runs are in a range of 2 seconds.  

Overall, the travelling time can be reduced by using a traffic light preemption system. The 

trendline indicates that the EV is faster for all introduction seconds compared to results of test 

M2. The difference in travelling time is about 15 seconds for all introduction seconds. 

Additionally, a more detailed calibration of the traffic light preemption can take place. The 

influences of parameters such as i.e. distance between the induction loops and the 

intersections, congestion in front of the intersection, or speed of participants need to be 
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analyzed to adjust a better system behavior. This study is out of scope of this paper but will 

be addressed in further work. 
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The travelling time of test A2 is represented by the graph in Figure 6-11. The gray area is not 

very distinct as the IV behavior and the drive through red lights models are deactivated. Thus, 

it is comparable to the simulation M1 with the difference that the preemption system is 

activated. The course of the trendline starts at a travelling time of about 95 seconds, then 

declines to a minimum around 80 seconds at introduction second 36 and eventually rises to a 

maximum of 105 seconds around introduction second 75. The dropping course of the 

trendline can be explainable by the EV encountering delays due to waiting vehicles at the 

intersections. The preemption allows vehicles to clear the intersection earlier. For later 

introduction seconds, the preemption gets more efficient by holding the green phases. After 

a minimum around introduction second 35, the EV reaches the first traffic light while it 

changes to red. The preemption takes some time and does not switch to green fast enough 

which causes the EV to slow down. As none of the two models IV reaction and drive through 

red light is active, IVs do not clear the lane while waiting at a red traffic light to let the EV 

drive through. Additionally, they stay in the EV’s lane and obstruct its mission until they 

voluntary change the lane. The maxima at introduction second 64 and 68-79 are caused by 

this effect at different or multiple intersections.  

The results indicate that the travelling time is dramatically reduced compared to test M1. This 

indicates that studies comparing a preemption system to a reference situation without 

considering IV reaction and the EV behavior, vastly overestimate the potential of a preemption 

system.  

Figure 6-12 shows the travelling time with the second application, namely the automated 

formation of a rescue lane. Taking a look at the trendline, the graph drops until introduction 
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second 8, then increases until introduction second 23, declines until second 43, rises until 

second 71 and decreases again. Starting from introduction second 1 to 8, the first traffic light 

switches green, but vehicles have slightly more time to start and clear the lane for the EV. On 

the EV’s route between the first and the second traffic light, all vehicles clear the lane for the 

EV. However, these change maneuvers are the reason for the high travelling times around 

introduction second 23. Vehicles are forced to move to the neighboring lane despite their 

desire to turn at the next intersection. This leads to situations in which vehicles in a distance 

of e.g. 140 m receive the command to leave the EV’s lane although they would not interfere 

with the EV. Eventually, to reach their destination, the area in front of the second intersection 

becomes a highly congested area. This congestion also affects the EV’s travelling time. 

Simulations at introduction second 38 and 43 show that by avoiding this effect, the travelling 

time can be significantly reduced. The first traffic light is green, but depending on the 

congestion and phase in front of the second traffic light, the EV may reach the third traffic 

light while having green as well. This green wave allows the EV to drive through the traffic 

system very fast. The maximum starting around introduction second 64 is a consequence of 

the red light at the intersections. The EV enters the simulation and reaches the first traffic 

light while having red. The waiting vehicles start but they also need to change the lane in 

order to let the EV drive in the direction of the second intersection. The second traffic light is 

also red, which means that waiting vehicles also obstruct the EVs way. After the maximum, 

the first traffic light switches to green again. This state is comparable with the first 

introduction seconds.  

Comparing these results with the reference M2, the plots are very similar. However, the fact 

that some lane change commands lead to a congested second intersection reduce the 

potential of the application. A constant value to apply an automated lane change may affect 

the travelling time of the EV negatively. That means that a rule based application needs smart 

rules. Using a distance alone is not enough. A dynamic set of rules is a possible enhancement. 

For instance, the IV can be forced to slow down to reach their individual goals after the EV 

drove away. Additionally, the lane change of other vehicles to the EV’s lane should be 

prohibited. Even if the vehicle tries to immediately leave the EV’s lane after it changed to it, 

the EV still needs to slow down. 
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Figure 6-13 shows the travelling time of the EV in test A4. The trendline declines from a 

travelling time of 90 seconds at the first introduction second to a local minimum of 74 

seconds between introduction seconds 22 and 36. After that, the travelling time decreases 

again to a minimum of less than 70 seconds around introduction second 50. The course of 

the trendline rises rapidly to a maximum of 95 seconds around introduction second 78 and 

then declines to 80 seconds of travelling time at introduction second 85. The reason for high 

travelling times at small introduction seconds is that the preemption is started too late at the 

first intersection. The vehicles already waiting in front of the traffic light cannot be moved by 

the automated application. They need to wait for the preemption and clear the lane for the 

EV. With rising introduction seconds, the effect’s impact is decreasing, because the vehicles 

have more time to start and thus clear the lane. After introduction second 13, the first traffic 

light is green and the IVs have enough time to start with stopping the EV at all. The 

comparatively high travelling time at introduction second 21 is due to misbehavior of IV as 

they change to the EV’s lane and thus obstructing it in front of the traffic light. This behavior 

is caused by the constant reaction distance influencing the IVs since the algorithm does not 

obey individual goals. The vehicles are forced to change to e.g. the left lane although they 

want to make a turn to the right at the next intersection. Minimum values of the solid line 

can be found at various introduction seconds. For instance introduction second 24, 27, 30, 

38, 43 and 65 show a short travelling time. These introduction seconds are advantageous for 

the EV, because green phases may be hold by the preemption system and IVs have enough 

time to clear the lane without congesting any of the three intersections. The high travelling 

times at introduction seconds 68-83 due to congestion which is not solved with the 
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preemption. The distance between the induction loops and the intersections are too short to 

make the vehicles disappear, especially at the first and the third intersection. At the second 

intersection, the preemption system has a range of 450 m which is enough for that 

intersection. 

 

 

Comparing these results to the reference M2, the trendline of this test is about 10-15 seconds 

better. The two applications allow the EV to quickly pass through the simulation. The gray 

area, describing the range of travelling times, is smaller as the IV behavior is controlled by the 

automated lane change. Comparing to the traffic light preemption only, the results of this 

application indicates a smaller gray area. Comparing these results the with automated lane 

change only, the combination of both applications is much better. This indicates that the IVs 

are obstructing the EV mostly at intersections with slow speeds in which the automated 

formation of a rescue lane application does not work. A combination of a traffic light 

preemption system and an automated formation of a lane change integrate the advantages 

of both systems to support the EV reaching its destination as fast as possible. 

6.8 Conclusion and Outlook 

Within this paper, we showed that emergency vehicles (EVs) encounter a higher risk of 

getting involved in accidents during their missions. To support EVs, new applications may be 

developed and tested with the issue that such prototypes cannot be tested in real life traffic 
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systems. Simulations however, are a suitable tool to do so. We decided to use SUMO as it is 

applicable to simulate V2X applications improving traffic efficiency. Yet, SUMO does not 

feature necessary models such as a realistic EV behavior, enhanced infrastructure, and realistic 

individual vehicle (IV) behavior responding to EVs. In addition, research community disagrees 

whether these effects have to be modelled to assess applications regarding EVs. We created a 

traffic system based on a real traffic system in Braunschweig, Germany. The traffic flow within 

this net was based on traffic census data during peak hour. We presented models regarding 

the three road users EV, infrastructure, and IV. The EV model implements speeding and 

driving through red lights. The infrastructure model consists of an interface for access by 

special road users (in this case EVs) to initiate infrastructure based applications. The IV model 

implements a response behavior to the EV. A calibration of these models took place. We 

showed that a realistic reference scenario is needed to not overestimate the potential of new 

applications. Finally, we simulated two applications, namely a traffic light preemption system 

and an automated formation of a rescue lane via V2X. By assessing the simulations, we 

showed that neglecting aspects of EV or IV behavior leads to different travelling times of the 

EVs. Concerning the applications it can be stated that a preemption system reduces the 

travelling times of the EV compared to a reference travelling time. The automated formation 

of a rescue lane does not necessarily reduce the travelling time as a consequence of various 

factors. However, a combination of both applications has the potential to support an EV on 

its mission best by allowing the EV to pass through congested and traffic light controlled 

urban environments quickly. 

As the field of simulating EVs in urban environments is very important but only little 

investigated, further work needs to be done. As shown, realistic models are necessary to 

estimate the potential of EV applications. Hence, a wider calibration and validation for the 

proposed models may take place, e.g. by driver studies or suitable traffic data. We also want 

to investigate additional aspects that are not yet covered by our models. Some areas to 

mention are: realistic delays in road users’ starting behavior (e.g. shown in [2]), IV behavior 

receiving multiple requests of EVs to form a rescue lane, occurrences of critical situations 

while forming a lane, and misbehavior and the consequences for the travelling time. 

Concerning the early stage of exemplary V2X applications, further research needs to be 

conducted as well. For the preemption system, a study concerning parameters such as 

communication distance, phase program, and communication requirements and their effect 

on the travelling time is necessary. The automated formation of a rescue lane needs to be 

further investigated as this application is just in an early stage of development. Challenges 

regarding penetration rate, communication requirements, and security need to be addressed 

as well as more enhanced methods to determine intelligent cooperative maneuver 

combinations for the IVs. Instead of static using rules, other maneuver planning methods can 

calculate a better behavior of the IVs by considering the IVs’ individual goals.    
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7.1 Abstract 

SUMO is an open source microscopic traffic simulation. A major component of modelling 

microscopic vehicle behavior is the lane-changing behavior on multi-lane roads. We describe a 

new model which uses a 4-layered hierarchy of motivations to determine the vehicle behavior 

during every simulation step and motivate in which ways it improves the current lane-

changing model.  

Keywords: microscopic simulation, lane changing. 

7.2 Introduction 

The SUMO application suite [1, 2] provides tools for the Simulation Of Urban MObility. It 
consists of a microscopic simulator for multimodal road traffic and a host of applications for 
preparing simulation input data (network import and modification, traffic import, routing) 
and for working with simulation outputs. The microscopic driving dynamics of road vehicles 
are determined by the interplay of several models briefly listed below: 

- Car-following model: determines the speed of a vehicle in relation to the vehicle 
ahead of it. 

- Intersection model: determines the behavior of vehicles at different types of 
intersections in regard to right-of-way rules, gap acceptance and avoiding junction 
blockage. 

- Lane-changing model: determines lane choice on multi-lane roads and speed 
adjustments related to lane changing. 

When simulating traffic on complex road networks with multi-lane roads, most routes which 
a vehicle might use require changing lanes. Even where there are no such hard necessities, 
lane-changing behavior is often a major determinant for traffic efficiency which underscores 
the importance of the respective model.  

The lane-changing model in SUMO has been under continuous development since the start of 
the project in 2001 and will certainly undergo changes in the future. Due to a large number 
of improvements in 2013 we see the need to report on the current state of the model. These 
changes were prompted by problems and visibly implausible behavior in some of our 
simulation scenarios. 

- Motorway traffic which requires many vehicles to change lanes at a point where the 
motorway splits exhibited heavy jamming contrary to real-world measurements (A92 
scenario). 

- Heavy jamming where motorway traffic in the main direction came to a stop because 
of vehicles merging at on-ramps (Braunschweig scenario). 
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- Jamming because vehicles did not change to their respective turn lanes in time and 
thus blocked the flow (Braunschweig scenario). 

- Jamming because vehicles only used the outer lanes of a two-lane roundabout 
(ACOSTA scenario) 

The model changes which were undertaken to alleviate these problems are tightly interwoven 
with the previous model which makes it impractical to discuss them in isolation. Instead we 
will describe the new model fully in the following sections and then describe areas of 
improvement relating to the above scenarios in section 7.10. Where the new model differs 
significantly from the previous model this is indicated by the flag (new) within the 
descriptions. 

The lane-changing model described herein fulfills two main purposes: It computes the change 
decision of a vehicle for a single simulation step based on the route of the vehicle and the 
current and historical traffic conditions in the vehicles surroundings. Furthermore, it computes 
changes in the velocity for the vehicle itself and for obstructing vehicles which promote the 
successful execution of the desired lane change maneuver. 

In comparison to other microscopic lane-changing models, this model explicitly discriminates 
between four different motivations for lane-changing. After discussing the general 
architecture of lane-changing within the simulation, the handling of these four motivations 
will be discussed in detail. The complete formulas and decision trees used in the 
implementation cannot be given due to lack of space. For those wishing to re-implement or 
modify these models, this paper should serve as a useful guide when reading the source files 
of the implementation in SUMO [3].  

7.3 Architecture 

Road traffic simulation in SUMO represents the road network in terms of edges which are 
unidirectional street segments between intersections and remain constant in their number of 
lanes, and their maximum speed (among other attributes).  An edge consists of one or more 
parallel lanes which correspond to the (mostly marked) lanes found in European road 
networks. These lanes are indexed from right to left starting at 0. The route of a vehicle is 
stated in terms of the edges it needs to follow but during the simulation it moves along the 
lanes with mostly free choice of lane usage (except where lane usage restrictions are explicitly 
defined). Connectivity in the road network is defined on the level of lanes, with each lane 
having 0 or more successor lanes. If the lane on which a vehicle drives does not have a 
successor lane which belongs to the next edge along this vehicles route, the vehicles must 
change its lane in order to continue.  

The speed of a vehicle is mainly determined by the next vehicle in front of it called the leader, 
which may be on the same lane or on the preferred successor lane after the current lane. This 
preference is discussed in section 7.4.1. The speed for following the leader is defined by the 
car-following model which is not discussed in this paper [5]. A vehicle may only change its 
lane if there is enough physical space on the target lane and if it neither comes to too close 
to the leader on the target lane nor to its immediate follower on the target lane (too close 
being defined by the car-following model). If either of these conditions is not met, the vehicle 
is said to have a blocking leader or a blocking follower. To distinguish the vehicle currently 
under consideration from its leaders and followers we will refer to it as the ego vehicle. A 
vehicle that advances to a lane on the next edge is said to advance the lane, whereas a 
vehicle that changes to a parallel lane on the same edge is said to change lane. 

During each simulation step, the following sub-steps are executed in order for every vehicle: 
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1) Computation of preferred successor lanes (called bestLanes)  
2) Computation of safe velocities under the assumption of staying on the current lane 

and integration with lane-changing related speed requests from the previous 
simulation step 

3) Lane-changing model computes change request (left, right, stay) 
4) Either execute lane-changing maneuver or compute speed request for the next 

simulation step (involves planning ahead for multiple steps). Whether speed changes 
are requested depends on the urgency of the lane-changing request. 

The sub-steps 3 and 4 are handled by a customizable software component the 
laneChangingModel. This gives a high amount of configurability within the bounds of the 
architecture. The laneChangingModel described in this paper is can be swapped against the 
previous model by setting user-configurable parameters. In the following, the four 
motivations for lane-changing are discussed in the order of their priority beginning with the 
most important. In section 7.9 we explain how conflicts between these motivations are 
resolved. 

7.4 Strategic lane changing 

Whenever a vehicle must change its lane in order to be able to reach the next edge on its 
route, we call this type of lane changing strategic. This happens whenever the current lane of 
the vehicle has no connection to the next edge of the route. In this case we say that the 
vehicle is on a dead lane. Note that such a lane does not have to be a dead-end in the 
common sense. A left-only turn lane is dead from the perspective of a vehicle that wants to 
go straight. A vehicle may perform a strategically motivated lane change well in advance 
before reaching the dead lane if no other motivation prevents it. This topic is discussed in the 
next two sections. 

7.4.1 Evaluating subsequent lanes 

Vehicles (or rather their assumed drivers) need to decide a sequence of lanes to follow along 
their route of edges. In this they have some degree of restriction (because some lanes are 
dead-ends) and they have some degree of freedom because there are multiple lane sequences 
available. In SUMO a data structure is computed which allows retrieving the following 
information necessary for subsequent computations:  

a) For every lane on the current edge, a sequence of lanes that can be followed without 
lane changing up to the next dead-end or to a maximum distance (bestLanes).  

b) For every lane on the current edge, the traffic density along the bestLanes 
(occupation) 

c) For every lane on the current edge, the offset in lane index to the lane which is 
strategically advisable (bestLaneOffset)  

Note, that multiple lanes may have a bestLaneOffset of zero. In this case, the bestLaneOffset 
of other lanes points to the closest best lane. Most parts of this data-structure are only 
updated whenever the vehicle advances to the next lane. The algorithm for computing this 
data structure is discussed in [3]. The strategically advisable direction is not part of the 
customizable architecture because it is rather unambiguous (being based on maximizing the 
drivable distance and minimizing the number of necessary lane changes). Nevertheless, 
improvements in this part of the lane-changing model were made by fixing long-standing 
implementation bugs during the work on improving the lane-changing model in SUMO. 
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7.4.2 Determining Urgency 

While approaching a dead-end lane, a vehicle has some amount of freedom to pursue the 
strategically advisable lane (which may involve changing or staying) or to follow conflicting 
motivations. The urgency for following the strategic necessities (i.e. changing to the left if 
bestLaneOffset < 0 and changing right if bestLaneOffset > 0) correlates with the following 
factors:  

a) remaining distance to the dead-end 
b) the presumed speed while approaching the end of the dead lane (lookAheadSpeed) 
c) magnitude of the bestLaneOffset 
d) occupation on the ultimate target lane (lane with bestLaneOffset = 0) 
e) occupation of the intermediate target lane (next target in direction of the 

bestLaneOffset 

A strategic change is deemed urgent if the following relation holds true: 

                                                         

Where d is the distance to the end of the dead lane, o is a discount due to occupation and f is 
a factor that encodes the time typically needed to perform a successful change maneuver set 
to 10 for changing to the left and 20 for changing to the right. 

Notably, if there are multiple lanes in between the current lane and the ultimate target lane, 
all their occupations should also matter, but are not currently evaluated. The lookAheadSpeed 
depends on the current and historical speed of the vehicle. This is necessary to avoid vehicles 
which temporarily have to slow down from losing all sense of urgency (new). The expected 
number of seconds until reaching the end of the dead lane (remainingSeconds) is used in 
subsequent computations.  Currently, urgency is only considered for strategic lane changes 
but we discuss how it could apply to other motivations in section 7.11. 

7.4.3 Speed adjustment to support lane-changing 

Whenever a desired lane change cannot be executed due to blocking vehicles, a vehicle may 
adjust its speed to allow the lane change to succeed in later steps. Furthermore a vehicle may 
exert an influence on the speed of blocking vehicles (in reality this typically happens as a 
reaction to observing the turn signals of the ego vehicle). Due to the importance of 
completing strategic lane changes, it is assumed that the ego vehicle will take careful 
adjustments to enable the change. Basically, vehicles are assumed to drive at the maximum 
safe speed, so speeds can only ever adjusted downwards. However, as a part of the car-
following model, vehicles may have a stochastic component which prevents them from using 
their maximum possible acceleration. Preventing this stochasticity (called dawdling) is a way 
of increasing vehicle speeds somewhat. 

To compute the desirable speed adjustments, the following hierarchy of situations is 
distinguished by comparing ego speed, blocker speed, gaps and remainingSeconds (new): 

(1) Has blocking leader 
a. Will be able to overtake leader: request leader to refrain from speeding up, 

prevent dawdling, (prevent overtaking on the right where forbidden by law) 
b. needs to stay behind the leader 

i. slow down to stay behind the leader 
ii. keep speed since the leader is faster anyway 

(2) leader is not blocking: set a maximum speed to ensure that the distance to the 
leader remains sufficiently high 
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(3) there is no leader: drive with the maximum safe speed 

The above decision tree results in a plannedSpeed with regard to a blocking leader. Using 
this value,  

(4) has blocking follower 
a. will be able to cut in before follower 

i. fast enough to do so with current speeds: request follower to refrain 
from speeding up, prevent dawdling 

ii. follower decelerating once is sufficient to open a gap: request 
follower to decelerate as much as needed, prevent dawdling 

b. needs to be overtaken by follower 
i. follower should slow down a bit to increase the chance that 

subsequent followers will be slow enough: request follower to 
decelerate a bit, slow down to be overtaken fast enough 

ii. follower should overtake quickly: prevent follower from dawdling, 
slow down to be overtaken fast enough 

Speeds, computed in this way are integrated with the maximum safe speed (vSafe) as 
computed by the car-following model by using the minimum of vSafe and all requested 
speeds. 

The distinction between cases (4)b.i  and (4)b.ii warrants further explanation. Whenever a 
vehicle tries to change from an on-ramp onto the motorway it has to yield to vehicles already 
on the motorway. These vehicles may slow down slightly to help merging vehicles, but they 
must not cause the flow on the motorway to break down. For this reason, vehicles that try to 
change to the left only cause blocking followers to slow down if their own speed exceeds a 
threshold value (currently 27m/s). 

7.4.4 Preventing deadlock 

If a vehicle needs to stop on a dead lane because changing to a continuing lane did not 
succeed it creates an undesirable impediment to traffic flow. The measures in the previous 
section help to prevent this situation from occurring too often (and it does occur in reality as 
well). However, if two vehicles on adjacent lanes both need to change to the lane occupied 
by the other vehicle (counterLaneChange) and both vehicles reach the end of a dead lane, a 
deadlock occurs. Neither vehicle has the option of driving any further nor can either vehicle 
get the space it needs to execute the strategic lane change (vehicles in SUMO cannot go 
backwards). This situation blocks the flow of traffic on both lanes and is highly undesirable. 
Currently, it can only be resolved by moving vehicles in a non-standard way (teleporting) after 
a time threshold is elapsed. 

To prevent this type of deadlock, special care is taken whenever two vehicles are in a 
counterLaneChange relation. We refer to the vehicle which is closer to the end of the dead 
lane as the blocking leader and the other vehicle as the blocking follower. Note that this 
relation may change from one simulation step to the next. Generally, the blocking follower 
slows down when approaching the dead-end to ensure that the blocking leader has enough 
space to complete its lane change. In some cases the blocking follower is too fast or the 
blocking leader is too long. In this case the blocking leader must slow down to leave enough 
space for the follower before the dead-end (new). 

Unfortunately, dead-lock situations can still arise if vehicles need to perform strategic lane 
changes across multiple lanes. In this case, a counterLaneChange situation can arise at a time 
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where both vehicles have already reached the dead-end and are unable to move. To prevent 
this, vehicles reserve additional space in front of the dead-end whenever they have to change 
across more than one lane (new). Currently, additional space of 20m is reserved for vehicles 
which need to change to the right across and 40m for vehicles which need to change to the 
left. The asymmetry is necessary to prevent yet another type of deadlock. The values were 
selected because they were found to perform well in preventing deadlock. Eventually they 
should be made configurable and be subject to rigorous calibration. 

7.5 Cooperative lane-changing 

In some real-world situations vehicles (or rather their drivers) perform lane-changing 
maneuvers with the sole purpose of helping another vehicle with lane-changing towards their 
lane. In the current model, vehicles are informed by other vehicles about being a blocking 
follower (the reason being that the turn-signals of the vehicle being blocked are always visible 
to the follower, whereas being a blocking leader is less obvious). If there are no strategic 
reasons against changing the lane, the ego vehicle may change in either possible direction to 
clear a gap for the blocked vehicle. Contrary to expectation, this was found to have a 
beneficial impact on traffic flow in some scenarios even if the ego vehicle attempts to change 
towards the blocked vehicle. This effect is not yet understood and warrants further 
investigation. 

Vehicles which cannot perform a cooperative lane change adjust their own speeds slightly to 
increase the success probability for subsequent simulation steps. However, they do not 
request speed changes if they are blocked. 

A special case for cooperative behavior arises at multi-lane roundabouts. Typically, all vehicles 
enter the roundabout at the outermost lane and also need to leave again at the outermost 
lane. Due to the short distances involved, this means they should always remain on the 
outermost lane for strategic reasons. However, this effectively turns all multi-lane 
roundabouts into one-lane roundabouts and thus degrades throughput. For this reason, the 
lane-changing model compels vehicles which are not yet on their final roundabout edge to 
change towards the inner lane (new). While this ignorance of strategic motivations sometimes 
results in stranded vehicles it has a beneficial impact on roundabout performance (see results 
for the ACOSTA scenario). 

7.6 Tactical lane-changing 

Tactical lane-changing refers to maneuvers where a vehicle attempts to avoid following a 
slow leader. It requires balancing the expected speed gains from lane changing against the 
effort of lane-changing (which is arguably a very driver-subjective value). The expected speed 
gains must also be balanced against the obligation for keeping the overtaking lane free. 
Failure to do so results in situations where slow vehicles with minor speed differences become 
major impediments to traffic flow. This part of the model is left unchanged from the old 
model [4]. Each vehicle maintains a signed variable speedGainProbability which by its sign 
indicates the beneficial change direction and by its magnitude the expected benefit. If the 
magnitude exceeds a threshold value, a tactical lane change is attempted.  The variable 
speedGainProbability is modified incrementally during each simulation step and reset upon 
lane changing to prevent oscillations. If the lane to the left is faster than the current lane the 
value is updated according to the following formula:  
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Where v is the expected speed on the left lane and u is the expected speed on the current 
lane. If the left lane is slower, speedGainProbability is divided by 2 instead. If the right lane is 
faster than the current lane by at least 5 km/h the value is updated as: 

                                           
   

 
           

Where v is the expected speed on the right lane and u is the expected speed on the current 
lane. If the right lane is slower, speedGainProbability is again divided by 2 instead. The 
asymmetry in handling changes to the left and to the right and the size of the thresholds (-2.0 
for changing to the right, 0.2 for changing to the left) serve to prevent oscillations in lane 
usage. 

Currently, whenever a slower vehicle cannot be overtaken because the ego vehicle is on the 
right side of it (and overtaking on the right is prevented in SUMO in accordance with German 
driving regulations), an impulse to move towards the left lane is generated. This should allow 
the blocking vehicle to move to the right and be overtaken on the left. This prohibition and 
the resulting behavior can be disabled by setting the simulation 
option --lanechange.overtake-right5. 

7.7 Obligation to clear the overtaking lane 

The compulsion to clear the overtaking lane could be framed as cooperative behavior because 
it helps other faster moving vehicles. However, contrary to the cooperative lane-changing 
behavior described in section 7.5 which is optional, the behavior described in this section is 
mandated by traffic laws. In the current lane-changing model, each vehicle maintains a 
variable keepRightProbability which is decremented over time and triggers a lane change to 
the right once a lower threshold value of -2 is exceeded (negative values are used in allusion 
to the variable speedGainProbability). 

In reality, (German) drivers are obliged to change to the right unless they plan to overtake 
another vehicle. This anticipation of future behavior is modeled in the following way (new): If 
the current lane is not faster than the right lane by at least 5 km/h the ego vehicle determines 
the time t it could expect to drive with its desired maximum speed on the right lane before 
having to perform an overtaking maneuver depending on the gap and speed difference to 
the lead vehicle on the right. This is used to update the value of keepRightProbability p: 

     
 ∗  

 ∗   ∗  
             

Where L is the legal speed limit on the current road, V is the maximum desired speed of the 
ego vehicle, v is its current speed and T is a calibration parameter currently set to 5. Thus, 
vehicles only change to the right if the expectation that they may stay there for some time is 
confirmed repeatedly. Vehicles which desire a lower speed are more eager to change to the 
right. 

7.8 Remote controlled lane changing (TraCI) 

Running SUMO simulations can be controlled by external programs using an interface called 
TraCI (Traffic Control Interface). Among the things that can be controlled is the lane usage of 
the vehicles. Remote requests to change to a target lane or keep the current lane must be 

                                            

5 Available in the current source repository and in version 0.21.0 which is expected to be released at the time of 
this publication.  
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integrated with the “intrinsic” requests computed by the lane-changing model. This is 
accomplished by letting the user determine the urgency and the priority of remote requests 
by setting appropriate flags (new).  

As an example, the interface allows the remote program to specify that a given vehicle should 
try to change to the left lane with urgency (i.e. with speed adjustments to itself and to 
blockers), unless there are urgent strategic reason against changing to the left and that the 
vehicle should ignore all other requests by the lane-changing model. 

7.9 A hierarchy of lane changing motivations 

The four motivations discussed above are considered in a hierarchical fashion as described by 
the following decision schema. The first statement which applies determines the vehicles 
change request. In every simulation step, each vehicle first considers changing to the right, 
and if no change to the right is performed, a change to the left is considered as well. 
Accordingly, the currently considered direction d is either right (-1) or left (1) according to 
resulting offset in lane index. 

1. Urgent strategic change to d needed: change 
2. Change to d would create an urgent situation: stay 
3. Vehicle is a blocking follower for another vehicle with urgent strategic change 

request: change 
4. speedGainProbability above threshold and its sign matches d: change 
5. non-urgent strategic change to d needed: change (new) 

An important aspect of preventing stopping at a dead lane is avoiding detrimental lane 
changes. Generally speaking, the fewer lane change maneuvers vehicles have to perform, the 
less chance they have to become stuck.  One change that was found to be quite beneficial 
was the avoidance of changing to a dead lane which continues elsewhere. This is most often 
the case for turn-lanes at an intersection. A vehicle which intends to go straight should not 
use the left-only turn lane to get ahead because it will find it difficult to go back onto the 
required lane (new). In reality these turn-lanes often have directional markings at their start 
and there are rules which prohibit their use by vehicles which follow another direction. 

7.10 Improvements over earlier Model 

For a quantitative evaluation of the improvements, the following metrics were computed for a 
selection of benchmarking scenarios. 

- avgWaitingTime: the average time each vehicle spent with speed below 0.1m/s 
- wrongLaneTeleports: the count of vehicles which had to be moved artificially 

(teleported) because they could not complete a strategic lane change (after a threshold 
time t) 

- jamTeleports: the count of vehicles which had to be moved artificially (teleported) 
because the successor lane was occupied (after a threshold time t) 

The scenario Braunschweig contains the urban area of the German city Braunschweig 
(Brunswick) and the surrounding area with sections of motorway. The scenario spans one day 
and contains 650000 vehicle movements. The threshold time for teleporting was set to 120 
seconds.  
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The scenario A92 consists of a motorway section in southern Germany with a length of 
20km. It contains 63000 vehicle movements over the course of one day. The threshold time 
for teleporting was set to 300 seconds. 

The scenario ACOSTA is comprised of a section of the Italian city of Bologna and contains 
9000 vehicles over the course of 1 hour. It is notable for containing a 2-lane roundabout. The 
threshold time for teleporting was set to 300 seconds. 

The algorithms old and new correspond to the SUMO vType parameters 
laneChangeModel=”DK2008” and laneChangeModel=”JE2013”. As can be seen in Table 7-
1, the new algorithm brings a significant improvement in all considered scenarios. Additional 
topics for future improvement are discussed in the next section. 

Scenario/Algorithm avgWaitingTime wrongLaneTeleports jamTeleports 

Braunschweig/old 89.73 845 464 

Braunschweig/new 46.66 7 9 

A92/old 17.16 21 1 

A92/new 0.02 0 0 

ACOSTA/old 144.59 0 7 

ACOSTA/new 76.69 0 0 

 

Compared to the old lane-changing model described in [4], the new model shows 
improvements in the following areas: 

- Fine grained control over speed adjustments to ego vehicle and blockers lead to higher 
fulfillment rate of change request. In the old model, vehicles always reacted to 
blocking leaders by slowing down and they always slowed down when being a 
blocking follower (improved all metrics and all scenarios). 

- Extrapolation of dynamics over multiple steps allows better choices between 
overtaking blockers and allowing to be overtaken (also improves the success rate and 
thus improves all metrics). 

- Improved checking for deadlock-prone situations avoids deadlocks in more cases. In 
the old model, some cases of deadlock were avoided by allowing neighboring vehicles 
with opposite change requests to swap their positions instantly. This oversimplification 
is no longer necessary (primary impact on wrongLaneTeleports but secondary effect for 
the other metrics).  

- Asymmetrical behavior when helping other vehicles with lane-changing (depending on 
the direction of change) prevents the main flow from breaking down at busy highway 
on-ramps (improved avgWaitingTime especially in Braunschweig).  

- Special behavior within multi-lane roundabouts ensures that all lanes are used whereas 
in the earlier model only the outer lane was ever used (improved avgWaitingTime and 
jamTeleports, only ACOSTA). 

- The explicit discrimination between the 4 different motivations for lane changing 
allows fine grained control for integrating model dynamics with external change 
requests (TraCI). This was necessary to successfully complete a project which simulated 
automated platooning (not discussed here). 

Table 7-1 Performance metrics for old and new lane-changing model and different scenarios. 
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Note, that a large number of model changes were tested in isolation using the above metrics. 
To simplify the presentation of our results we only show the effect of all combined model 
changes. It can be seen that all metrics improved for all scenarios except for the few cases 
where they had the best possible value to begin with, thus validating the useful ness of the 
new lane changing model. The A92 scenario is based on fine grained detector measurements 
which showed no jamming in the real world data. Also, the Braunschweig scenario exhibited 
deadlocks and jamming with a frequency that was utterly implausible for the demand model 
of a normal working day. Although improved traffic flow is not generally a sign of a more 
realistic model (after all, jams are a fact of life), for the above scenarios an increase in realism 
can be posited. 

7.11 Outlook 

The focus of the recent improvements of the lane-changing model was on deadlock-
prevention and success rate of lane-changing. Since these dynamics are qualitative rather 
than quantitative and the failure cases a visibly obvious, simulation behavior could be tuned 
by inspection. The next goal is to calibrate the model to reproduce empiric lane-usage data.  

Current measurements are promising but indicate room for improvement. Figure 7-5 and 
Figure 7- show the evolution of simulated traffic measurements with the leftmost data points 
being taken directly from traffic measurements on the German motorway A3 whereas data 
points to the right are measured at successive points on an otherwise featureless 3 lane road. 
It can be seen that vehicles more or less maintain the lane distribution and speeds which were 
measured in reality. Numbers are averaged over a simulated period of 24 hours. 

 

Figure 7-5 Evolution of lane usage over space for a 3-lane motorway section 
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To allow model calibration, several hard-coded model parameters shall be exposed to the end 
user in a future release. There should at the very least be one parameter for each of the four 
motivations: 

- Urgency of strategic changes 
- Tradeoff between altruistic and egoistical behavior  
- Eagerness to realize speed-gains 
- Eagerness to clear the overtaking lane 

Using these parameters the model will be calibrated and validated using real world 
measurements.  

Cooperative lane-changing has not been extensively looked at and is a probable candidate for 
model improvements. Currently, only blocking followers change cooperatively whereas real-
world situations are conceivable in which blocking leaders change as well. A typical situation 
which is not yet considered by the lane-changing model is the coercion to change to the right 
because a faster vehicle is approaching from the rear on the same lane.  Another point is the 
usage of multi-lane roundabouts where currently, some vehicles become stuck on a dead-end 
inside lane. Additional checks should be done to prevent these situations from arising. It 
would also be helpful to know the degree in which inner lanes of roundabouts are used in 
reality. The curious fact that cooperative lane changes towards the vehicle being benefit 
simulation performance should also be investigated. 

Some of the above issues might be resolved by extending the concept of urgency to all four 
motivations. A cooperative lane change is more urgent if the supported vehicle is about to 
suffer a bigger speed loss unless it receives help. Likewise a tactical lane change is more 
urgent if the ego vehicle is about to suffer a bigger speed loss (due to a slow leader on its 
lane). Changes with the intent of clearing the overtaking lane are more urgent if the follower 
on this lane is about to suffer a bigger speed loss as well. 

  

Figure 7-2 Evolution of speeds over space for a 3-lane motorway section 
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8.1 Abstract 

Traffic puts a high burden on the environment in means of emitted pollutants and consumed 
fuel. Different attempts exist for reducing these impacts, ranging from traffic management 
actions to in-vehicle ITS solutions. When equipped with a model for vehicular pollutant 
emissions, microscopic traffic simulations are assumed to be helpful in predicting the 
performance of such approaches. We report about the implementation of a second 
generation of pollutant emission models. 

Keywords: emissions, modelling, environment, traffic management. 

8.2  Introduction 

Air pollution is a well-known problem that ranges from local air quality issues up to global 
effects the humanity is confronted to. Following the International Transport Forum ([1]), “[the] 
Transport-sector CO2 emissions represent 23% (globally) and 30% (OECD) of overall CO2 
emissions from Fossil fuel combustion. The sector accounts for approximately 15% of overall 
greenhouse gas emissions.” Different actors are involved in reducing road traffic’s 
environmental impact and resource consumption, often forced to do so by law. In Europe, 
automobile manufacturers shall reduce their fleet emissions [2]. Cities try to keep the 
amounts of pollutant concentrations below the thresholds formulated in according 
regulations, such as [3]. Finally, pollutant generation is closely coupled with the consumption 
of fuel. As fuel price has increased in the past years the reduction of pollutants is also in the 
focus of end users – individuals as well as (e.g. logistics) companies. 

The development of technical solutions for critical systems usually includes a step where the 
solution is modelled and simulated. This step allows to validate the assumptions about the 
solution’s functionality and to a-priori benchmark or proof its performance. Traffic simulations 
are an established tool used by both, consultants and researchers. Conventionally, 
microscopic models are applied to areas that cover few intersections, while macroscopic 
models are used to replicate areas at city level. Academic approaches, such as the traffic 
simulation SUMO [4, 5] that is discussed herein, attempt to simulate large, city-wide areas 
using microscopic models. 
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In any case, for evaluating a solution that was designed to reduce road traffic’s impact on the 
air quality, the involved traffic simulation must be capable to compute the amount the 
emitted pollutants to reduce with a predictable error. A large variety of emission models is 
described in the scientific literature. They differ in the required input parameters, the covered 
pollutants, the coverage of the real-world vehicle population (regarding their emission 
behavior), and the aggregation of the results in time and area. Therefore, it is necessary to 
formulate the requirements before choosing a model to implement. 

In the following, the recent work on vehicular emissions modelling in SUMO will be 
presented. This work has been performed within the projects “COLOMBO” [6, 7] and 
“AMITRAN” [8, 9]. The models implemented within these projects replace SUMO’s initial 
emissions model that was developed within the project “iTETRIS” [10, 11]. All three project 
are or respectively were co-funded by the European Commission. 

The remainder is structured as following. A discussion of SUMO’s requirements to an emission 
model is given, first, followed by an overview about emissions modelling and available 
emission models. A description of the implemented emission models into SUMO is given 
afterwards. Then, using and extending the emission models embedded in SUMO is described. 
Some use cases are presented afterwards. The report ends with a summary. 

8.3 SUMO’s Requirements to an Emissions Model 

Briefly said, the model to choose should be capable to be used as a further measurement 
within the applications the traffic simulation is usually used for. As SUMO’s goal is to simulate 
real-world traffic in large areas, the model should cover the population of vehicles found on 
roads nowadays. This counts for passenger vehicles as well as for heavy duty vehicles, busses, 
motorcycles, etc. One should also take into regard that the deployment of currently 
developed ITS applications will be realized in the future. Therefore, the model should be 
capable to represent future compositions of vehicle population. Some types of investigations 
require a distinction of regulative emission classes, e.g. the EURO-norm. Such a classification 
also helps in representing the population of vehicles over time, as most statistics on past and 
current vehicle fleets are represented this way. 

A second top-level requirement is that the emission model should match the resolution of the 
traffic simulation. It should be sensible to all vehicle (or traffic) state attributes that are 
available in the simulation. In case of a microscopic simulation, a vehicle’s acceleration, speed, 
and the slope of the road beneath the vehicle are the major attributes to consider. On the 
contrary, the model is wanted to use only parameters that are offered by the traffic 
simulation model. Such a close connection to the traffic model implies the possibility to 
compute emission values for each simulated time step, usually having a length of 1 s. To 
achieve this, the emissions model must allow to compute emissions at such a time scale. 

Not all available models cover all pollutants emitted by road traffic. Therefore the pollutants 
assumed to be needed should be defined. Within the iTETRIS project (see [12]), it was decided 
to model the emission of CO, CO2, NOx, PMx, and HC, because these emissions are toxic (CO), 
cause cancer (PMx), are responsible for ground-level ozone increase and smog generation 
(NOx and HC) or are greenhouse gases (CO2). Additionally, the fuel consumption should have 
been modelled. 

The model has to fulfil some other, non-functional requirements. It should be portable 
matching SUMO’s overall portability. It should be fast in execution for not prohibiting its 
usage in large-scale scenarios. And it should be directly embedded into the simulation to 
avoid additional interaction (e.g. socket-based) or file exchange. 
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SUMO’s viral GPL license requires the implementation of the model to be made available 
under the same license. And, of course, the model should be easily usable. Summarizing, the 
following requirements are put on the model: 

 Cover the complete vehicle population (in means of emission classes); 

 Offer a classification of classes into EURO-norms; 

 Compute certain pollutants (CO, CO2, NOx, PMx, HC, and fuel consumption were 
chosen); 

 (Be) sensible to microscopic parameters available in the simulation; 

 Require only information that is available in the simulation; 
 (Be) able to compute emissions in simulated time steps; 

 (Be) easy to parameterize: 
 (Be) portable, fast in execution, and directly embedded into the simulation; 

 (Be) licensed under a GPL-compatible license. 

8.4 Emission Models Overview 

Most of nowadays vehicles burn petroleum-derived fuel for propulsion. When regarding small 
time scales6, fuel consumption depends on the vehicle’s engine characteristics as well as on 
the current load on the engine. The load is dictated by the force a vehicle needs to overcome 
as well as by the chosen gear (see [13] for a good explanation). The majority of the fuel burns 
to CO2 and water, but other, often poisonous gases are generated as well. Catalytic 
converters convert a major portion of some of these pollutants into non-poisonous gases. The 
performance of the catalytic converter mainly depends on the catalyst’s temperature as well 
as on the engine’s current operating point. Different other influences exist, such as drive train 
losses, the road’s slope, or the air-fuel ratio at combustion to name a few. Additionally, long-
term effects of certain driving styles may change a vehicle's emission behavior. 

In summary, every vehicle has an individual emission behavior. But when investigating road 
traffic, many vehicles of different types have to be regarded. It is thereby necessary to find a 
tradeoff between the amount of vehicle emission classes a model covers and the details in 
modelling each single vehicle or emission class. The literature accordingly distinguishes the 
following major emission model classes: 

 “inventory” emission models that include data for the major portion of the vehicle 
emission classes; their input usually includes a vehicle population composition and the 
amount of driven distance, optionally also the average speed or an abstract traffic 
state. Such models usually cover a large set of different pollutants. 

 “instantaneous” (or “modal”) emission models that simulate a single vehicle’s 
emission, where [14] proposes a further distinction into emission maps, regression-
based models, and load-based models. Trying to model the emissions for a single 
vehicle as exact as possible, these models usually regard a small number of vehicles 
only. 

As one can see, the models differ in granularity and the input parameters they need as well as 
in the number of pollutants covered. One should note that some “instantaneous” models 
exist which databases were incrementally extended over the years to cover a large portion of 
real-world’s vehicle emission classes. The model PHEM (“Passenger and Heavy Vehicles 

                                            

6 Most instantaneous consumption models work with steps of 1 second 
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Emission Model”) [15, 16] which derivate was included in SUMO, see section 8.5.2, is one of 
such models. Its sub modules and their inter-dependencies are shown in Figure 8-1. 

 

Figure 8-1: Schematic representation of the PHEM emission model [18]. 

Within the iTETRIS project, 15 non-commercial (freely available in means of data or a 
document that completely defines them) emission models have been investigated to 
determine candidates for being embedded into SUMO. Commercial models have not been 
included in this investigation. None of the 15 models fulfilled the posed requirements directly. 
The inventory models were found to be too coarse due to being insensitive to the vehicle’s 
acceleration. Most microscopic models either did not include methods for computing all of 
the desired pollutants or the needed input parameters were not completely given or would 
introduce a high number of additional parameter into SUMO’s vehicle type description. 

8.5 Implemented Emission Models 

As no emission model could be found that is instantaneous in means of regarding vehicle 
attributes used in a microscopic simulation but still covering a major part of the vehicle 
population, the decision to build an own model based on data from the HBEFA [17] database 
was taken. HBEFA, in version 2.1 at that time, is one of the investigated inventory models. 
This initial implementation of an emission model in SUMO will be described in the following 
sub-section. Two recently developed emission models will be presented afterwards: 
PHEMlight which is derived from PHEM and a new approach to reformulate the emissions 
inventory database HBEFA in its version 3.1. The models have been implemented in the 
projects “COLOMBO” and “AMITRAN”, respectively. 

8.5.1 Initial HBEFA v2.1 Derivation 

The model was implemented by extracting the data from HBEFA and fitting them to a 
continuous function that was obtained by simplifying the function of the power the vehicle 
engine must produce to overcome the driving resistance force. The simplified function is given 
as (1-1): 

            
         

     
     (1-1) 

The same functional form has been used for all emission types, only the parameters change 
per emission type and vehicle. HBEFA’s lack of a dependency on acceleration was 
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compensated by using the contained information about the dependency of the emissions on 
the road slope. But it should be noted that the only values up to ±0.6 m/s2 can be determined 
this way, the dependency on higher acceleration/deceleration was obtained by extrapolating 
given values. The used version 2.1 of HBEFA lacked data for rare vehicle classes (e.g. Euro-
Norm-6 vehicles at that time). Both low as well as high velocities, the latter mainly for heavy 
duty vehicles, were missing for some emission classes as well. Therefore, the obtained curves 
did not match some basic emission properties, such as being always above zero or producing 
emissions at a velocity of 0 m/s. Emission classes that were recognized to be badly 
represented by the fitted function were removed. 

The so obtained curves for the remaining vehicle classes were clustered into groups of similar 
behavior. The initial idea for performing this step was to reduce the number of emission 
classes to reduce the effort needed to set up a simulation scenario. In fact, this attempted 
simplification yielded in a set of badly usable emission classes. The lack of an explicitly given 
Euro-norm does not allow investigations of regulatory actions such as environmental zones 
that distinguish between vehicles of a certain emission class and the lack of a projection from 
the clusters back to the original classes makes setting up a realistic emission population 
complicated. 

These issues were regarded during the implementation of the new HBEFA-based emission 
model described in section 8.5.3. 

8.5.2 PHEMlight 

PHEMlight is a simplified version of the emission model PHEM. PHEMlight has been designed 
and implemented by the Technical University of Graz within the COLOMBO project. PHEM 
itself provides basic emission factors for HBEFA 3 and COPERT and thus can be regarded as an 
de facto European reference. 

PHEMlight uses characteristic emission curves which define the emission amount [g/h] as 
function of the actual engine power of the vehicle. These characteristic curves were 
computed using PHEM with representative dynamic real word driving cycles. The amounts of 
emissions produced by a vehicle (as well as the amount of consumed fuel) during a simulation 
step is determined by computing the power needed by the vehicle as shown in the following 
Figure 8-2, first. Then, this value is used to look up the characteristic emission curves. 

 

 

Figure 8-2: Computation of the needed propulsion power in PHEMlight [18]. 

PHEMlight is available as a commercial add-on. The implementation itself is included in the 
usual SUMO version. But the major information is stored in the characteristic curves‘ and 
vehicle attribute files. Only two emission classes are included in SUMO’s open source release: 
an Euro-4 passenger car with a gasoline engine and a passenger car with the same emission 
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class, but running on Diesel. The remaining emission classes have to be purchased from the 
Technical University of Graz. 

8.5.3 HBEFA v3.1 Derivation 

Given the lessons learned while implementing and using the initial HBEFA v2.1-based 
emission model and the availability of a new HBEFA version that includes new measures for 
modern Euro-Norm-6 vehicles, a new attempt to build an emission model was done in the 
scope of the AMITRAN project. 

The basic procedure is similar to the one used for the initial HBEFA derivation: values included 
in HBEFA are extracted for each emission class and the function (1-1) is fitted against them. 
Again, the slope information given in HBEFA was used to take the part of the missing 
dependency on acceleration. The restrictions concerning available acceleration values remain 
as in the initial implementation. 

Fitting the values to the given function is a linear problem, since only the linear coefficients    
to    need to be evaluated. The fitting was performed using a linear model estimation 
algorithm from Python’s “statsmodels” package. Since a linear fit usually does not lead to a 
clear answer whether or not a coefficient is zero, a couple of slightly different models is 
tested in each case (one emission class and one vehicle class), where some of the coefficients 
of (1-1) are set to zero and are not estimated in the fit. By comparing these candidate 
functions, the best one (based on RMS and t-value) is used as the final result, i.e. a set of 
fitting parameters for this case at hand. This works quite well in most of the cases, the 
remaining challenges are that not all emissions seem well represented by (1-1). 

In principle, emission curves could be fit to all emission classes included in HBEFA’s version 3.1 
resulting in coefficients for some hundred different emission classes in SUMO. It was but 
decided to use only the most common emission classes. 

8.5.4 Comparisons 

In a first step, fulfilling the requirements formulated in section 8.3 by the models is presented. 
It should be mentioned that all models compute the desired pollutants’ emissions (CO, CO2, 
NOx, PMx, HC, and fuel consumption). Table 8-1 shows a summary of other named 
requirements. 

Table 8-1: A comparison of features for the three implemented models. 

Requirement HBEFA 2.1-based HBEFA 3.1-based PHEMlight 

No. of emission classes 56*2(+1) 45(+1) 112(+1) 

coverage no modern (Euro 6) 
and seldom classes 

Major passenger, heavy 
duty, and bus classes 

almost complete 

Euro-Norms - x x 

Covers chosen polutants x x x 

Uses speed x x x 

Uses acceleration x x x 

Uses slope - - x 

Needs further attributes - - - (are included) 

Step-size resolution x x x 

Easy parameterization x x x 
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The number of respectively covered emission classes requires an explanation. The “+1” 
denotes that each model includes an emission class that does not produce emissions 
(“zero_emissions”). The initial model derived from HBEFA v2.1 duplicates all vehicle classes, 
where the second set ignores the current acceleration. These acceleration-free models were 
used within the investigations on emission-optimal routing (see section 8.7.2). The model 
does not include 56 distinct emission classes, but rather classification scheme clusters of such. 
Passenger vehicles can be chosen from three sets that include 3, 6, and 12 emission classes, 
respectively. Clusters with 7 and 14 emission types can be used for modelling heavy duty 
vehicles. As mentioned in section 8.5.3, the number of emission classes in the HBEFA 3.1-
based model could be increased when necessary. 

As discussed, it is hardly possible to give a comparison of the models against real-world data 
as such are not available for a complete vehicular population. Currently under investigation 
are comparisons against a single Euro 4 passenger car emissions as well as comparisons 
against PHEM. 

8.6 Working with SUMO’s Emission Models 

8.6.1 User Interaction 

The implementation tries to give the user the highest grade of flexibility by allowing him to 
compose the vehicle fleet using the implemented emission classes. Each vehicle type can be 
assigned to a dedicated emission class. A vehicle type can be shared by an arbitrary number 
of vehicles. Emission computation is performed as soon as the user a) asks for an according 
output, b) asks to visualize the emissions, and/or c) asks for a vehicle’s current emissions via 
TraCI. All these interfaces cover all of the modelled emissions and – ignoring the visualization 
of emissions – are available in both, the command line and the graphical version of the 
simulation. The available outputs include: 

 aggregation of emissions per lane with variable interval time spans 

 aggregation of emissions per edge with variable interval time spans 

 aggregation of emissions for each simulated vehicle 

 non-aggregated (step-wise) vehicle emissions 

 a vehicular trajectory file as defined in AMITRAN 

In addition, SUMO’s on-line interaction interface “TraCI” allows to retrieve the emissions a 
single vehicle “produced” in the last simulation step, as well as emissions produced on edges 
or lanes. The visualization allows to color lanes and/or vehicles by the amount of pollutants 
emitted on them or generated by them, respectively. 

 



8.6 Working with SUMO’s Emission Models 

96 

    

Figure 8-3: Examples of emissions visualization in SUMO; left: CO2 emitted in the last time step by individual 
vehicles, right: lanes colored by the amount of fuel consumed in the last step by vehicles that were on the 
respective lane [12]. 

The AMITRAN trajectory file is an intermediate data exchange file that may be converted into 
inputs for emission models such as VERSIT+, PHEM, and HBEFA. It is interchangeably usable 
among different traffic simulation ecosystems such as SUMO, VISSIM and TNO ITS Modeler. A 
similar approach was used to generate input files for the PHEM emission model: a converter 
script was set up that obtains an “fcd-output” as generated by SUMO and converts it to files 
that resemble the vehicle fleet, the road network, and the trajectories as read by PHEM. 

SUMO’s user documentation includes a description of the output functionalities and was as 
well extended by a chapter on emissions modelling. 

8.6.2 Router Support 

Besides enabling the traffic simulation to compute pollutant emissions, the route computation 
applications included in the SUMO suite were extended. The wish was to perform route 
computation based on the amount of emitted pollutants instead of the conventionally used 
travel time. To achieve this purpose, the shortest-path router was extended to read time lines 
of vehicular emissions as weights of edges of the road network graph. The implementations 
of the shortest-path algorithms were extended to use these read values as edge weights, but 
additionally keep track of the travel time to obtain these weights from the correct time slice 
of the loaded time line. This extension has already been used for different purposes, see 
section 8.7.2. 

8.6.3 Tools 

Several additional tools support the development and usage of emission models in SUMO 
context. 

“emissionsDrivingCycle” takes trajectories consisting of speed, acceleration (optional), and 
slope (optional) for each time step of a virtually driven drive cycle for one or multiple vehicles 
and computes the according emissions. The obtained emission time lines can be visualized 
using additionally available scripts. The tool as well reads trajectories in the AMITRAN format 
mentioned above and can thus be employed to use SUMO’s emission models with trajectories 
from other simulation tools. 

“emissionsMap” computes a matrix that contains the emission amounts of modeled 
pollutants in dependence to a driven speed, acceleration, and slope for a named emission 
class. Additional visualization script allow to investigate the so obtained matrices. 
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8.6.4 Embedding new Emission Models into SUMO 

The co-existence of different emission models was realized by deriving a common “interface“. 
The interface is kept very simple. For each known pollutant, a method exists that returns its 
computed emission amount in mg/s (ml/s for fuel). The method obtains the vehicle’s emission 
class, its speed, acceleration, and the slope of the road it drives at. The model to use is 
encoded in the internal representation of the emission class which uses a 32 bit integer where 
the upper 16 bits are used to encode the used models while the lower 15 bits define a single 
emission class within this model. Bit 15 (the 16th bit) denotes whether the regarded emission 
type is a heavy duty or a light (passenger) vehicle. This information is needed to compute the 
vehicles’ noise emissions using the embedded Harmonoise noise emission model [19]. 

When being asked to compute the amount of a pollutant emissions, the interface determines 
the model to use based on the upper 16 bits, first. Then it asks the model implementation for 
computing the emission amount, passing all given values. 

Besides giving access to the emission computation, the interface holds several further 
methods, mainly for computing parameters needed for file exchange between AMITRAN 
tools. As SUMO does not force emission models to fulfill a common view on emission classes, 
these methods derive information such as the fuel type, the Euro Norm, or the type of the 
vehicle based on the information known to the emission model implementations only. 

The interface offers a clean access to the implemented models, but it should be noted that 
currently only models that rely on the selected parameters – emission class, speed, 
acceleration, and slope – can be implemented. As soon as other parameter have to be taken 
into account, the interface would have to be extended. 

8.7 Use Cases 

Being available for several years, the emission models have been already used in a large 
variety of investigations of which some are outlined in the following.  

8.7.1 Investigating Environment Impacts of ITS Solutions 

The major application is surely to measure changes in produced emissions when investigating 
new methods that influence traffic. In such cases, the computed emissions are used as a 
performance indicator besides the commonly used traffic efficiency measures, such as travel 
time or waiting times. Given SUMO’s output capabilities, such measurements can be easily 
obtained. 

As increasing traffic efficiency usually reduces pollutant emission, often no new insight 
despite obtaining numbers can be gained from such evaluations. But it is interesting to note 
that in some cases, the deployment of a new ITS solution may increase the amounts of 
produced emissions. This was shown for the GLOSA (Green Light Optimal Speed Advisory) 
application [20] where, when assuming long communication ranges of more than 500 m, a 
vehicle may be advised to run at a low velocity (below 25 km/h) for a long time, yielding in 
emissions above the non-equipped situation. Therefore, it is advised to include environmental 
performance indicators when evaluating a new method or system. 

8.7.2 Emission-optimal Routing 

Usually, route computation is performed using travel times as weights for the edges of a road 
network. But what if one would use the emitted pollutants instead? Would their emission be 
reduced? The first investigations on this topic were performed using a real-world network 
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[21]. To gain a deeper understanding about the dynamics of the processes, later 
investigations ([22]) were performed using synthetic scenarios. Neither a singular user nor a 
singular system optimum are assumed to be computable using currently available methods. 
Besides new assignment methods. But the research is as well supposed to increase the 
understanding about the inter-dependencies between traffic flow and pollutant emissions. 

8.7.3 Evaluation of real Traffic Management Actions 

European authorities are forced by the “Directive 2008/50/EC of the European Parliament and 
of the Council” to assure certain air quality. Traffic management, usually operated by local 
authorities, has the duty to perform corrective actions that reduce road traffic’s impact, if 
needed. A proof-of-concept for simulating such actions that used SUMO and the HBEFA 2.1-
derivation is presented in [23] where three speed limit changes were investigated – 30 km/h 
and 60 km/h for urban areas and 80 km/h for highways. 

In his Master thesis ([24]), Tomàs Josep Vergés investigates the MARLIS [25] database that lists 
actions performed by traffic management authorities, first, to evaluate which of the actions 
can be simulated using only a microscopic traffic simulation. The evaluation shows that most 
actions target at a change in the population’s mobility behavior, mainly for changing to a 
more environment-friendly transport mode. This can only be simulated using an according 
population model that was not available within his research. The resulting selection of actions 
to be implemented in SUMO consists of a) a reduction of the allowed velocity in inhabited 
areas to 30 km/h, b) a restrictive environmental zone, and c) a permissive environmental zone. 
These actions are modeled, simulated using PHEMlight, and discussed within the thesis. 

8.7.4 Emissions-related COLOMBO Solutions 

The major objective of the COLOMBO project is the development of traffic management 
solutions that use data from vehicular communications, assuming only a small number of 
vehicles to be equipped with this technology. Here, not only the impacts of solutions on the 
environment are investigated. Instead, some parts of the work are directly concerned with the 
development of solutions and methods that measure or influence emission behavior. Among 
the targeted topics one may find a “local emissions monitoring” system that uses trajectories 
obtained from vehicular communications and inductive loop measures to compute the 
amount of emitted pollutants. A further methodology under development is the “emission 
optimal driver behavior” that given a vehicle and a traffic situation determines the emission-
optimal longitudinal behavior of the vehicle. COLOMBO will use the PHEMlight emission 
model, verifying the results against the original PHEM model. 

8.8 Summary 

Recent steps in modelling and using emissions within the open source traffic simulation 
SUMO were presented. As shown, the inclusion of emission models into microscopic road 
traffic simulations allows to gain insights into the effects of evaluated solutions on the 
environment. Even though in most cases the induction “smoother traffic -> less emissions” 
holds, evaluating pollutant emission behavior may offer some surprises, as named for the 
GLOSA example in section 8.7.1. In addition, embedding emission models into a traffic 
simulation allows new investigations besides measuring the impacts of ITS solutions or 
regulatory actions on the environment. 

Three emission models that are currently implemented in SUMO were outlined. Issues 
regarding the first HBEFA implementation were recognized and named, and a recently 
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implemented model that tries to solve them was described. In addition, the extension of 
SUMO by a commercial emission model, PHEMlight, was presented. 

The presented extensions cover the work defined for the projects “COLOMBO” and 
“AMITRAN” well. Nonetheless, several possible extensions were already identified that may 
be targeted in the future. As discussed, all currently implemented models rely on the vehicle’s 
speed, acceleration, and the slope of the road it is located at. When looking at possible future 
applications, the vehicle’s mass comes into play. Incorporating this attribute would improve 
the simulation’s usability for simulating fleet management and other logistics approaches. 
Further model improvements could be expected if the gear choice and cold-start emissions 
would be incorporated, but both would need new, respective models and additional input 
data that the user would have to supply. 

But given the currently implemented models, the next steps towards a further improvements 
of the results should be performed on increasing the simulation’s representation of single 
vehicles’ longitudinal behaviour; it is known that nowadays car-following models neither 
replicate approaches to an intersections correctly nor their acceleration. As acceleration has a 
major influence on pollutant emissions, its correct representation should be attempted. 
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9.1 Abstract 

SUMO provides an interface for the implementation of arbitrary additional vehicle devices. 

This paper describes how this interface was used to implement Bluetooth devices with a 

special focus on the inquiry process and how its modelling relates to real world measurements 

and a simple analytic model. 

Keywords: Traffic simulation, Bluetooth, Inquiry Modelling 

9.2  Introduction 

Bluetooth [5] is a short-range, low-power, IEEE open standard for implementing wireless 

personal area networks. Bluetooth operates in the globally unlicensed 2.4GHz short-range 

radio frequency spectrum. Since there is a potential problem of interference from other 

devices using this frequency band, Bluetooth uses a Frequency-Hopping Spread Spectrum 

(FHSS) scheme, where devices alternate rapidly among the 79 available frequencies to 

transmit data. To set up an actual connection to exchange the necessary information between 

two Bluetooth devices, the so called inquiry process is designed to scan for other devices 

within range and thereby to discover each other. During the inquiry (discovery) process, one 

Bluetooth device (the master) enters the inquiry substate, whereas the other Bluetooth device 

(the slave) enters the inquiry scan substate. In the inquiry process the 48-bits unique MAC 

address and the internal clock-offset are exchanged in order to set up a lasting connection [5, 

3, 8]. 

Bluetooth devices are available in a number of vehicles and depict an easy way of detecting 

motions of persons and goods. Since every device is uniquely identifiable via its MAC address 

the devices can also be used to redetect vehicles over long ranges giving way to new 

applications of traffic monitoring. Since every Bluetooth device can be detected the data is 

ubiquitously available from headsets and navigational devices and also from in vehicle 

detectors such as tire pressure measurements. It is also easy to equip small devices such as 

smartphones to act as a detector making Bluetooth a universally accessible data source. 
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The German Aerospace Center (DLR) developed a traffic monitoring approach, called 

DYNAMIC [1, 7], which combines the advantages of Floating Car Data (FCD) and Floating 

Observer Data (FOD) principles. DYNAMIC is based on detections which are made by floating 

traffic observers using wireless radio-based technologies such as Bluetooth while passing 

other traffic objects (vehicles, cyclists, pedestrians). For the evaluation of the performance of 

DYNAMIC it is crucial to know how likely it is that a detectable traffic object (i.e. with 

Bluetooth device on board) within the detection range will be monitored. The major point to 

answer this question is the inquiry process which sets up the connection between Bluetooth 

devices and which can take up to several seconds. Given the possibly high speed of the 

vehicles and the relatively small detection range this poses a major problem to this detection 

mechanism. This paper focusses on a simple model for the inquiry process, describes its 

outcomings and the implementation of the process in the Bluetooth model of SUMO [2, 6] 

and compares it to real world measurements. The first section will focus on the analytical 

part, the second will describe the implementation in SUMO and the scenario used for 

evaluation and finally we will compare the theoretical and the simulative results with real 

world measurements. 

9.3  State of the Art 

In this paper we deal with the modeling of the inquiry process performance due to integrate 

the model in SUMO so that we can simulate Bluetooth detection behavior for stationary as 

well as mobile Bluetooth traffic monitoring systems. Since empirical analyses are complex and 

costly, a benchmarking implement is of particular importance. Unfortunately, researches in 

terms of evaluating Bluetooth traffic monitoring take Bluetooth performance mostly for 

granted. Therefore, they consider only frame conditions like distance between detector 

location and street, detection range and vehicle speed [10, 12]. The inquiry process and with 

it the Bluetooth technology in itself is no object of research. 

Thus, we had a closer look at related works from special field computer engineering where 

several researches deal with formal analysis or empirical approaches to model the inquiry 

process performance. For example in [4] a formal analysis using probabilistic model checking 

is developed to compute the expected time required for a master device to successfully 

receive replies from listening slave devices. On the basis of two different empirical approaches 

(first model using observation windows, second model using FHS interval times), [3] try to find 

Figure 9-1: The Bluetooth detection principle 
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out whether the number of inquirer and inquiry scanners has an effect on the discovery time. 

In [8] a detailed analysis of the interaction between Bluetooth devices in the inquiry and 

inquiry scan substates is given to analytically derive the inquiry time probability density 

function. Nevertheless, they state that precise inquiry time characterization is difficult due to 

the complex temporal and spectral interactions between two devices (for details see [8, 9, 

11]). 

Difficulties in using these models occur since that work is in the majority of cases older 

research of the time when Bluetooth was introduced as short-range communication 

technology between electronic devices. Therefore, these researches typically refer to 

Bluetooth specification version 1.1 which is important to know since the main difference in 

terms of the protocol is that, in version 1.1, the receiver only sends replies to every second 

message received. Hence, a device has to be discovered twice before it is actually considered 

to be discovered [4]. Furthermore, most researches are based on the assumption of an ideal, 

error-free environment, where messages never get lost [8]. This is, especially in our special 

field of studies, not lifelike. 

For this reason, we investigate a simple model for the inquiry process in this paper, which 

fulfils our purpose while at the same time considering the specific behavior of the Bluetooth 

inquiry process. 

9.4 Analytical Modelling of the Inquiry 

The inquiry will be modelled as a frequency scanning process which lets the detector 

determine the frequency the vehicle device is using for the communication. Since the detector 

may change the order in which it scans for every pass and the device may change its 

frequency as well and we have no a priori knowledge about the distribution we assume every 

frequency and every order is equally likely. 

The real inquiry process as described in [5] is much more complicated, it involves two trains of 
frequencies which change after every scan while the device to be detected only shows up in 
regular intervals. We will make use of these properties in our modelling later on. 

Assuming a length of the scanning interval of   then the target frequency is one point in each 

of the successive intervals. The task is now to calculate the probability that another interval of 

length   (modelling the travel time in the detection range) contains at least one of the points. 
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Figure 9-2: Model of the inquiry process with two scanning intervals of length   
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We distinguish three cases depending on the relation of travel time and scanning interval: 

1.       
2.            
3.       : The detection probability is obviously 1 

We solve case 1 and 2 by integrating over the position of the starting point of the travel 
interval in the first scanning interval and then dividing by the length of the interval. The 
integration always needs to be split into the cases where   lies completely in   and where   
can be divided into a part a in l and a part outside  : 
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The resulting function depicting the probability depending on the travel time ratio is shown in 
Figure 9-3. For   we can assume the length of the scanning interval which is about 2.56s. 

During the evaluation of the theoretical result we found a simpler exponential model to fit the 
data even better. The major drawback of the first approach is that the detection is assumed 
to be for sure if the interval is larger than   , so there is no possibility of a miss right after this 
point. To handle this case more gracefully and also get closer to the real world functions 
presented below, we assume that we have a fixed detection probability    whenever the 
detector happens to be online simultaneously with the device to be detected. We assume this 
probability to be close to 0.5, because the detector as described above may be in the wrong 
train when the device appears and so it may scan the wrong frequencies. On the other hand 
the device is long enough online that it is principle possible that (provided the train is correct) 
every frequency is detected. The number of tries for a detection is calculated by the ratio of 
the travel time   and the interval between two online events   of the device (which is about 
0.64s). We assume that there are on average     detection tries, so the simple resulting 
formula is: 

                       
 

𝑏     (9-2) 

 

A third function was taken into account when evaluating the first practical results which also 
resembles the fact that the detector might need an additional amount of time to recover after 
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each detection and thus may take a longer period before detecting all of a number of 
available devices. The function is of a similar general shape as the binomial form above, but to 
get a better fit an additional exponent was introduced. Fitting to the data resulted in: 

              .  ∗  .68     (9-3) 

 

A comparison of the three function shows the picture below 

 

9.5 The Simulation Implementation 

To evaluate our analytical results SUMO was extended by the functionality to specify whether 
a traffic object works as Bluetooth transmitter (BTsender) or Bluetooth receiver (BTreceiver). 
BTsender are all the vehicles which can be detected by the BTreceivers. In practice that means 
that these vehicles have a Bluetooth device on board. Furthermore they have no additional 
functionality. The vehicles which are defined to be BTreceivers are our Floating Traffic 
Observers which are used for traffic monitoring. Every simulated vehicle can be a BTsender or 
a BTreceiver, it can also have both properties or none tof them (i.e. being a simple traffic 
object with no additional Bluetooth features). To control the Bluetooth detection in SUMO 
global parameters like equipment rates for BTsender and/or BTreceiver or the detection range 
can be stated using the command line options. The mentioned functionalities where 
implemented for SUMO version 0.19.0. 

The implemented detection process in SUMO calculates the time the BTsender is in the 
detection range of the BTreceiver and determines the probability whether a detection took 
place purely based on this time. The first implementation also available in SUMO 0.19.0 used 
the function    above but was found to have two major drawbacks compared to real world 
data as well as analytical evaluation: The relatively slow incline at the start and later increase 
of the first derivative in the process. There is no delay to be expected in the detection of the 
first device so the new detections should become less and less in the course of the process as 
it happens with    and   . 

When choosing between    and    there is (beside the property of not being fixed to 1 after 
a certain amount of time mentioned above) an additional benefit of    related to the 
implementation. Since the simulation determines in every simulation step anew whether a 
detection took place, the probabilities should be additive, that is, it should be easy to 

Figure 9-3: Comparison of modelling functions 



9.6 The Simulation Scenario 

108 

calculate the probability that there was a detection in the joined interval         from the 
individual probabilities that there were detections either in    or   . As it turns out this can be 
easily achieved with the exponential distribution above. 

                        
 1+  

𝑏          
 1
𝑏       

  
𝑏  

                                    (9-4) 

Where the last term denotes exactly the probability of two independent throws in successive 
intervals. This combination of probabilities is not possible with the other approaches. 

9.6 The Simulation Scenario 

The underlying network for our simulation scenario is a representation of the DLR test track, 
the Ernst-Ruska-Ufer (abbreviated ERU in the figures below) in Berlin-Adlershof. It includes a 
total track length of about 4 km with one major road (1.4 km with two directions) and several 
incoming and outgoing minor roads. We simulated a whole day with the demand and the 
route chpoices being calculated directly from induction loop data for the 11.1.2011. 

There is a total demand of about 30000 vehicles including about 4% trucks and busses. In  a 
first step the scenario was calibrated to the detector data such that network effects as a 
major traffic jam in the late afternoon on the eastbound direction are correctly reflected in 
the simulation. 

The Bluetooth related parameters are the following: 

- one fixed BTreceiver in each direction (see the green spots) 

- fixed BTsender equipement rate of 30% 

- detection range 100m 

 

 

Figure 9-4: Test track scenario in the final SUMO simulation (green points denote the bluetooth detectors) 
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9.7 Comparison to Real World Measurements 

In order to derive the exponential function mentioned above, laboratory as well as field 
experiments with Bluetooth receivers and senders were conducted to measure detection rates 
as a function of inquiry times. 

In the laboratory test 1 (respectively 2) BTreceivers were stationary installed to find 1, 2, 4 or 6 
BTsender within the detection range. The BTsenders were transmitting their signal 
continuously, whereas the BTreceiver(s) were periodically restarted after 10 seconds of being 
in inquiry mode. Every time, one of the BTsenders was detected, a data set including 
timestamp, BTsender-ID and signal strength value was stored to a log file. 

Figure 9-5 illustrates the results from the laboratory test. For the varying number of 
BTreceivers and/or BTsenders the probability density is given. There you can see that more 
than 80% of all detections are realised within a time interval of 1 second (1000 milliseconds). 
For the probability density we looked at the intertimes. The intertimes are the time differences 
between a detection of a BTsender and the starting time of the inquiry mode of the 
BTreceiver respectively a previous detection time of that specific BTsender. That means the 
intertimes are exactly that times it took a BTreceiver to detect a BTsender provided it is in the 
detection range. In the laboratory test nearly 100% of all detectable devices were detected 
after 3 seconds independent of the number of BTreceivers and BTsenders. 

  

In the laboratory test almost perfect conditions were given for the BTreceiver to detect 
BTsenders. The reality looks somewhat different – besides several error sources (e.g. Bluetooth 
signal reflections or shading effects) the to be detected BTsenders are moving objects which 
makes detection less likely since the BTsenders are not permanently within detection range. 
Furthermore, the speed factor reduces the time the BTsender is within detection range 
additionally. 

To evaluate how the inquiry time process is influenced from real environment a two-hour field 
test which took place on August 20th 2013 between 6 a.m. and 8 a.m. was conducted. In 
that field test 4 BTreceiver objects (observer) in form of cars moving along the street Ernst-
Ruska-Ufer (two lanes per direction; approximately 1.4km) on the so called WISTA area in 
Berlin-Adlershof were used (see Figure 9-6). Contemporaneously, these objects were 
considered as BTsender (i.e. the traffic participants), which should be detected by the other 
observers. Within the observer cars our prototyped Bluetooth monitoring systems (called 
Bluetooth-Box, shortened “BluB”) was installed. The observers moved freely according to 

Figure 9-5: Probability density for the laboratory tests 
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their desired speed respectively to local feasibility and under consideration of the German 
Road Traffic Act (StVO). 

 

The Ernst-Ruska-Ufer is both at once, public place and our DLR test track where additionally 
traffic monitoring infrastructure is installed to observe real-time traffic situations. Therefore, 
we could benefit from reference data collected from stationary Bluetooth detectors so that 
during the two hours two different types of data were collected. On the one hand, we 
monitored the traffic via stationary Bluetooth detectors. On the other hand, a mobile 
detection was done by our four moving observer vehicles. For both data types, the same data 
sets as in the laboratory test were stored containing timestamp, BTsender-ID and signal 
strength value. 

The results of the stationary Bluetooth measurements are given in Figure 9-7. The left figure 
shows the results from the specific field test day (August 20th 2013). For higher reliability we 
permanently installed our BluBs at two points of the Ernst-Ruska-Ufer for several months so 
that we could benefit from long-term measurements. The right figure shows the results from 
the long-term measurements. It is obvious that the probability density is quite similar. Due to 
still undefined explicit error values the increase is less sharp in comparison to the laboratory 
data. Especially between 1 and 6 seconds the course of the function is smoother than that 
under laboratory conditions. Still unclear are effects where no inclination is observable within 
longer time slots (e.g. from 1500ms to 5000ms in the left figure and from 2000ms to nearly 
4000ms in the right figure). It would mean that there were no inquiry times which are that 
long. Since there are even longer time periods in the data it might have a methodical reason. 

 
Figure 9-7: Probability density for field test results on Ernst-Ruska-Ufer (left: two-hour test on August 20th 2013; 

right: permanent stationary Bluetooth detection) 

Figure 9-6: Defined field test observer routes (map source: Google): Ernst-Ruska-Ufer (upper right),  
car and cyclist routes (lower right and left) in second field test 
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The results collected from moving Bluetooth observer vehicles are illustrated in Figure 9-8. The 
course of the functions is similar to that of the stationary Bluetooth measurements for all four 
observers even if that of observer car 1 seems to be more consistent. A reason might be the 
amount of collected data which was the biggest from car 1. Interesting is that the same effect 
of time slots without inclination is observable in that case as well. It seems to occur always 
between approximately 2000ms and 7000ms. 

 
Figure 9-8: Probability density for field test results on Ernst-Ruska-Ufer  

using moving observer (cars) 

In addition to the field test on Ernst-Ruska-Ufer, several test runs with 8 moving observers 
using multimodal BTreceiver objects (i.e. cars and cyclists) were conducted on other routes on 
the WISTA area (Figure 6) to see whether the results affirm our conclusion. These additional 
field tests took even place on August 20th 2013, but from 9 a.m. to 10 a.m. and 1 p.m. to 3 
p.m. Note that in these field tests observer car 3 (red line) had some major problems in 
collecting data. Nevertheless the results from these area wide measurements show better 
accordance with the results derived from laboratory tests. 

 
Figure 9-9: Probability density for additional field test results on WISTA area  

using cars and cyclists as moving observers 

Figure 9-10 shows the results from the simulation scenario. For both simulated stationary 
Bluetooth detection units (modelling the East and West measuring bridges on the Ernst-
Ruska-Ufer), the probability density to detect vehicles with Bluetooth devices on board within 
a specific time interval (in seconds) is given. One can see that in more than 80% the equipped 
traffic objects are discovered in a time interval less than one second. The results differ 
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between the two monitoring positions. That is possibly due to the jam occurring in the 
eastern part of the scenario which leads to far more (re-)detections of waiting vehicles in 
shorter time intervals. All in all, the density probabilities look very similar especially to the 
results from the real world stationary Bluetooth measurements (see Figure 9-7, cf. curve 
‘ERU_ost’ and ‘ERU_west’ in the right figure). 

 
Figure 9-10: Probability density for simulation results (top left) compared to a summary of most important results 

from real world measurements (top right) and the theoretical results (bottom) 

What we learn from this comparison is that the probability density seems to be best fitted by 
a exponential distribution which makes sense since the number of detections based on 
Bluetooth is a sequence of   independent seen/not seen trials each of which occurs with 
probability  . This follows from the assumption that the number of vehicles equipped with 
Bluetooth devices and the number of observer vehicles within the network is small, so that 
the chances to encounter are statistically independent events. Therefore, the existences of 
those encounter respectively detection events can be described using a exponential 
distribution. 

9.8 Conclusions and Discussions 

To sum up the following results can be stated from the experiments: 

 The probability density seems to be best fitted by a exponential distribution. 

 Within 1 second more than 90% of all detections are done under laboratory condition; 
in real environment conditions at least 80%. That means most of the detectable 
BTsenders in detection range are found within the first second. 

http://en.wikipedia.org/wiki/Probability
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 In case of moving observers field test results show better accordance with laboratory 
results than the stationary Bluetooth measurements. It has to be kept in mind that 
laboratory results reflect perfection. 

 Simulation results fit the stationary Bluetooth monitoring results quite well. 

 The simulations carried out are in good agreement with the empirical data as well as 
the theoretical model. 

One weakness of our approach is that we can not detect the inquiry time directly but can only 
detect the interval between two successful inquiries, so in the case of small traffic densities 
we will need different measurements to validate our data. This will be a subject to further 
research. Additionally we need to investigate further the unusual plateau behavior in the 
dynamic cases (see Figure 9-8) where we often had no additional detections between second 
2 and second 7. 
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10.1 Abstract 

Stochastic optimization algorithms are extensively used, together with traffic simulation 

model, to facilitate traffic signal planning for different policies goals, or objectives. However, 

the algorithms often require lengthy computation because so many simulation runs are 

needed for achieving statistically significant solution during optimization. This paper presents 

such a simulation-based framework that integrates the SUMO traffic model with an 

evolutionary optimizer and external emission estimator.  It is used to evaluate optimal signal 

plans with respects not only to mobility measures but also indexes for sustainability, in terms 

of emission and fuel efficiency. Parallelization of simulation runs is implemented to reduce 

computational time during the optimization process. A case study is carried out and 

optimizes, using the simulation-based approach, signal control at a two-intersection network 

in Stockholm, where simple fixed-time logic is used to approximate real LHORVA control. The 

scenarios with and without coordination are analyzed when different policy goals in signal 

optimization are applied.  

Keywords: Traffic signal planning; signal coordination; stochastic optimization; 
parallelized traffic simulation. 

10.2  Introduction 

Urban intersection is normally signalized in order to permit conflicting traffic movements to 

proceed safely and efficiently through space. Fixed-time  (FT) control is basic and widely used 

control logic. Signal parameters in FT control are predetermined based on historical traffic 

data. The duration and order of phases are kept fixed in this logic. In practice, more advanced 

control logic has been applied such as vehicle actuated (VA) and adaptive signal control.  For 

example, LHORVA is one most widely used approach in Sweden that belongs to the VA 

control. In reality, a platoon of vehicles, released from a signalized intersection, is often not 

completely dispersed before it arrives at the next intersection. Leading as many platoons of 

vehicles as possible to meet the green wave at next intersections, signal coordination has the 

capacity to further improve performance of traffic system [2]. 
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Figure 10-1: Configuration of traffic signal coordination. 

Signal coordination is usually classified into two types: one-way and two-way coordination. 

Figure 10-1 illustrates the time-space diagrams of four coordinated intersections. The 

through-band is the strip bordered by black, indicating the length of time available for 

vehicles driving with a certain speed to proceed through a continuous series of green lights. In 

one-way coordination, through-band only exists under the situation that vehicle drive from 

master intersections towards other local intersections whereas duel-directional through-bands 

are observed in two-way coordination system. Nevertheless, it is more difficult to make 

specifications for two-way coordination than coordinating signals in one direction. 

Sometimes, only the direction with the higher flow is coordinated in practice. For example, 

the inbound directions can be coordinated in the morning while the outbound flows are 

coordinated during the evening.  

One way to improve traffic mobility and sustainability in practice is to optimize signal 

parameters. Signal optimization approach was first proposed by Webster, who introduced a 

simple analytical model for minimizing travel delay experienced by drivers [3]. With the fast 

development of computer power and traffic modeling tools, micro-simulation based 

optimization becomes a favorable solution in practice of traffic planning and manamgent. In 

the mean time, different planning strategies, in terms of policy goals, have to be considered 

by decision makers. Robertson proposed, in 1980, the concept of optimizing signal plans to 

reduce environmental impacts [4]. Recent years have seen many useful tools for calculating 

fuel consumption and emissions either at aggregate or detailed level. This provides 

opportunity to integrate traffic models with emission models to analyze environmental 

impacts according to activities of individual vehicle or fleet.  

Microscopic traffic models are applied to describe complex traffic system when individual 

vehicle activities are of interest. Such a model represents detailed driving characteristics and 

interaction amongst different objects, described by instantaneous speeds, accelerations and 

decelerations, which are essential for modeling energy use and emissions of air pollutants. 

SUMO is a discrete-time based microscopic traffic model developed by Institute of 

Transportation Systems, German Aerospace Center [5]. It is not only an open source 

microscopic simulator but also a suite of applications that facilitate preparing and performing 

traffic simulation. SUMO is also highly portable and flexible for manipulating simulation via 
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socket connection interface (TraCI). It becomes popular in research community with the 

strong interoperability features. 

 

 

 

Figure 10-2: Computational engine to optimize signal parameters. 

Emission models are developed to estimate the levels of vehicle exhaust emissions (e.g. COx, 

NOx, HC etc.) and fuel consumption. In general, Comprehensive Modal Emission Model 

(CMEM) is a power-based model developed to estimate second-by-second emissions of 

vehicles using inputs of driving cycle [8]. Previous studies show that the microscopic CMEM 

model performs superior than other detailed emission models [6]. The comparison with field 

measurements found that CMEM exhibits better capacity in capturing HC and CO trends [7]. 

Hence, CMEM is applied in this study. Detailed driving characteristics, represented by, for 

example, vehicle category, instantaneous speed and acceleration, are considered as 

independent variables to calculate tailpipe emissions and fuel consumption.  

Previous study has, for example, integrated the VISSIM traffic simulator, CMEM and a 

stochastic optimizer to optimize signal timings with respect to mobility performance and fuel 

consumption [9]. As reported, such stochastic optimization process takes a long time to 

converge to optimal solutions [10]. The computational requirement hence limits the 

application of the simulation-based optimization in traffic signal planning in practice. This 

study presents a model-based engine to generate optimal signal plans, but using SUMO as 

the traffic simulation engine. In particular, the flexibility of SUMO makes it possible to carry 

out parallel traffic simulation during signal optimization. This contributes to overcome the 

limitation of computational power in application.  
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10.3 Simulation-based signal optimization  

A software framework is developed to integrate traffic models and evaluation estimator while 

applying an evolutionary optimizer to achieve a pre-defined signal control objective. Figure 

10-2 shows that the optimization process starts with the evolutionary optimizer, randomly 

generating initial population of signal parameters. The signal plans are then sent to traffic 

simulation engine. In fact, implementation of signal control is embedded in traffic models in 

this framework. The basic idea behind is to give traffic simulator access, through an interface, 

to interact with signal controller online even when simulation is running. As SUMO is 

regarded as the simulation engine, the logic of signal control, including phase definition and 

duration definition, can be implemented using the Python language. During the simulation 

period, relevant second-by-second data for each vehicle is registered in memory. This dynamic 

vehicles information is then treated as the inputs for estimating performance indexes when 

the execution of traffic simulation is done. According to the predetermined optimization 

objective, performance indexes in mobility, emissions and energy are calculated and then 

summarized using the received vehicles information data. The estimated performance 

measures will be returned to the signal optimizer so as to generate new signal parameters for 

further optimization. The whole process is repeated until the termination criteria are finally 

met. 

In parallel to gradient-based local optimization methods, evolutionary algorithms are a group 
of global search methods based on a metaphor of natural evolution process [11]. Genetic 
algorithm (GA) is one of the most widely used evolutionary optimizer in engineering field. This 
algorithm starts from a population of feasible solutions, moving towards the global optimum, 
while successive generations adapt from previous ones with parents of less fitness being 
selectively eliminated. GA performs the standard steps in selection, crossover, and mutation. 
In practice, GA might converge towards the local optimum or even an arbitrary point rather 
than the global optimum. The likelihood of such occurrence depends on the size of the space 
being explored. Srinivas [12] demonstrated that values of crossover probability and mutation 
probability play a significant role on the size of searching space. Usually, the higher the 
mutation probability is the bigger area is covered by the search space. Therefore, adaptive 
mutation probability is often applied in order to achieve better performance in real 
application. This strategy is also implemented in our application. 

Pseudocode of the GA algorithm implemented in this study is summarized in Table 10-1. GA 
iteratively updates a population of individuals until a predefined number for evolutionary 
generations is finally reached. Fitness of each individual is estimated according to the 
performance indexes and defined integration. Thereafter, elite members (individuals with best 
fitness values) are kept directly to the new generation, preventing better organism from being 
eliminated. Binary encoding transforms signal parameters, from integer to bits string, before 
the rest of the genetic algorithm can be put to work. Relative better fitting individuals are 
selected to carry out crossover through selection. Tournament selection is applied in this 
study, involving running several competitions among a few randomly chosen individuals and 
winner of each tournament is picked out [13]. Portions of two parents from the current 
generation are combined to create two offsprings when crossover, such as uniform crossover, 
is carried out. Each part of the father’s bit string is possible (with a fixed possibility) to be 
swapped with the counterpart of the mother’s bit string [14]. Furthermore, bit-flip mutation 
operator goes through chromosome and randomly chooses bit to invert its value [15]. After 
producing new generations (crossover and mutation), chromosomes are inversely decoded 
from bit string to integer.   
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Table 1-1: GA-based evolutionary algorithm for signal plan optimization. 

// Initialization: 

n  :=  number of parents per generation;      

m  := total number of generations;  

k  := generation id; 

0P  := the initial signal parameter population (generation 0) randomly generated; 

en  := number of elitism; 

cn  := number of crossover; 

repeat  

  // Evaluate: 

  Run traffic simulation with signal parameters in population kP ; 

  Calculate fitness of each individual f ( p
k
) ; 

  Sort parents by corresponding fitness values; 

  // Elitism: 

  Select best en  parents of kP  and add to the next population 1kP  ; 

  // Binary encoding: 

  Convert parameters in the rest of kP  from integer to bit string; 

  // Tournament selection: 

  Select / 2cn  pairs of parents in kP  to conduct crossover; 

  // Uniform crossover: 

  Produce offspring and add the offspring to 1kP  ; 

  // Adaptive bit-flip mutation: 

  Calculate adaptive mutation probability based on fitness values; 

  Select members of 1kP  ;  

  Invert a bit by flipping with the mutation probability; 

  // Decoding: 

  Decode the parameters from bit string to integer; 

  // Increment: 

  k  := k  + 1; 

until k  = m ;     

return the fittest individual from P
m
;       

The following GA operator parameters are implemented in our simulation driven 
optimization: 

 The generation number is 90; 

 Population size is 20; 

 Elite number is 2; 

 The tournament pool size is 4; 

 Crossover number is 18; 

 Uniform crossover probability is 0.50; 

 The maximum mutation probability is 0.50 whereas minimum is 0.05. 
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Figure 10-3: Scalability of parallel traffic simulations in the shared memory architecture. 

10.4 Parallel traffic simulation 

During the optimization process, traffic simulation runs have to be carried out for each 

individual signal parameter in each generation. What’s more, multiple simulation runs are 

needed to make simulation-based evaluation statistically significant. For example, thirty 

simulation runs are required in order to make the t-test satisfying 95% confidence level. The 

optimization process hence becomes so expensive since the computational time increases 

dramatically when the number of parents and/or number of simulation runs increase. More 

importantly, traffic simulation consumes the majority of computational power because a large 

number of vehicles are modeled and simulated step by step. Besides, the I/O operations, 

when calling the CMEM emission software, require lots of computational resource.  

Traffic simulation, the most computationally intensive part of this application, has the 
opportunity to be executed in parallel, as a single simulation does not depend upon other 
simulation runs. The application has the capacity to allocate multiple traffic simulation runs to 
different processes in systems with multiple processors or cores (SMP) while the emission 
calculation can be also distributed to other machines [16].  

Figure 10-3 illustrates how multiple simulation runs are executed simultaneously in SMP. 

Multiple processes can operate independently but share the same memory resources. 

Specifically, one process handles with one simulation run with a particular random seed, used 

as the port id to connect TraCI server in SUMO. Corresponding performance measures are 

estimated after simulation is done for each process. The performance measures from 

simulation runs are finally summarized by a reduction operator e.g. taking average or worst 

result.  

The study implements parallel simulations with shared memory architecture, a Windows 
server with two Xeon 2.40GHz quad-core processors and 8GB memory. Simulation runs are 
split up into evenly sized chunks while every process operates on a specific chunk. Figure 10-4 
shows the speedup results from a comparative experiment study on parallel simulation, 
demonstrating how much faster parallel computation can bring over sequential simulation. 
The speedup curves grow in proportion to a logarithm of the number of processes ( ) for 
small   in all three experiments. A speedup value of more than 8 times is achieved. This turns 
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out that the computational time is largely reduced by parallelized simulation in comparison to 
the execution time of the similar stochastic optimization process done early [17]. However, 
the speedup is still limited by the number of available processing units in machine when the 
value of   increases. For example, considering the case that 25 simulation runs are carried 
out, the speedup performance meets its threshold when the number of processes is larger 
than 14. 

 

 

 

Figure 10-4: Layout of study intersections and its simulation model in SUMO. 

 

 

Figure 10-5: The phase rings for signal controls at the intersections in Stockholm. 
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    Table 10-2: Notation for the mathematical formulation in signal optimization. 

Parameters Notations 

    P  penalty function, such as average delay, average fuel consumption etc. 

  a vector of other inputs to traffic model, such as traffic demand 

  a vector of random seeds 

y  a vector of yellow times  

 r a vector of all-red times 

  a vector of green times in non-coordinated control 

  a vector of green times in one-way coordinated control 

  offset 

C  cycle length  

, js  duration of the green time for phase s at intersection j (no coordination) 

, j,s 
 minimum duration of the green time for phase s at intersection j (no coordination) 

, j,s 
 maximum duration of the green time for phase s at intersection j (no coordination) 

, js  duration of the green time for phase s at intersection j (one-way coordination, j=1 is the master 
node) 

, j,s 
 minimum duration of the green time for stage s at intersection j (one-way coordination) 

, j,s 
 maximum duration of the green time for stage s at intersection j (one-way coordination) 

, jsy  duration of yellow time for stage s at intersection j 

, jsr  duration of all-red time for stage s at intersection j 

jS  total number of stages at intersection j 

J  total number of intersections in traffic network 

10.5  Case study 

In order to demonstrate the stochastic optimization approach, this section presents a case 
study on signal planning of a pair of connected intersections in Stockholm. Since the LHORVA 
control logic applied is highly complex for optimization, FT control is used to approximate real 
signal timing in our study. Layout of these two intersections and corresponding simulation 
model in SUMO are illustrated in figure 10-4. In the figure, Hornsgatan is the connected 
arterial street between the studied intersections. Ringvägen is the road located left while the 
right side street is named as Rosenlundsgatan. The distance between the two intersection is 
around 270 meters. In addition, the Hornsgatan – Ringvägen intersection is defined as the 
master intersection in signal coordination system.  

Real signal timing and phase sequence were observed, and then approximated by a FT control 
as a baseline case (see figure 10-5). The green times for Hornsgatan – Ringvägen intersection 
is approximated as 32, 18 and 15 seconds while green times for Hornsgatan – 
Rosenlundsgatan intersection is 56 and 14 seconds.  The amber time is 3 seconds equally for 
both intersections. All-red times for clearance of vehicles between two stages are set equally 
as 2 seconds. Signals in the observed baseline case are coordinated, though not optimized, 
since the cycle lengths are identical for both intersections, and the offset is around 19 
seconds. 

When the framework is applied for signal optimization, all simulations are based on 60 

minutes of traffic simulations, with additional 15 minutes for initial vehicle loading. 

Optimization process follows the GA-based evolutionary computation while different policy 

goals can be set in advance. Once the simulation-based optimization is completed, the best 

signal plan is evaluated through 30 randomly seeded SUMO simulations. Average statistics of 

all related performance measures are computed for comparison purpose. 
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Figure 10-6: Optimization results of average delay. 

10.5.1 Optimization problems 

When signal plans for two intersections are not coordinated, the lengths of green phases are 
the variables to optimize.  The amber times and all-red times are kept constants. The 
stochastic optimization problem can be simply represented by  

 
min ( , , )P  


  y r  (2) 

                                          s.t.  , , , , ,s j s j s j       

 

The notation is explained Table 10-2. In the case of coordination, two main requirements 

have to be met. The first one is that all traffic signals have to operate with the same cycle 

length. The other one is that the offset parameters, representing the beginning of green time 

relative to master intersection, should be identified in advance. In practice, the offset is often 

assigned to an ideal value (e.g. 25 seconds in our case) calculated by the distance between 

adjacent intersections divide by the average desired speed [18]. The optimization problem is 

therefore formulated by  
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where green times at the master (   ) and slave nodes (    ) are all bounded; the cycle 
length is determined by the green time of different phases whereas the green time of 
different phases in the slave node is distributed based on the same cycle length.  
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Table 10-3: Results of optimal signal plans without coordination. 

Objectives Performances measures   

  Avg. delay  Avg. Fuel Avg. CO Avg. HC Avg. NOx 

 (sec/vehicle) (g/km) (g/km) (g/km) (g/km) 

Baseline 29.425 90.868 4.257 0.143 0.205 

Avg. delay 26.370 88.483 4.185 0.141 0.203 

Avg. fuel 27.737 87.675 4.048 0.136 0.195 

Table 10-3: Results of optimal signal plans with one-way coordination (offset 25 seconds). 

Objectives 
Performances measures 

  

  Avg. delay  Avg. Fuel Avg. CO Avg. HC Avg. NOx 

 (sec/vehicle) (g/km) (g/km) (g/km) (g/km) 

Baseline 29.425 90.868 4.257 0.143 0.205 

Avg. delay 25.651 88.216 4.253 0.143 0.204 

Avg. fuel 27.135 86.627 4.034 0.136 0.195 

10.5.2 Analysis of computational results 

Figure 10-6 demonstrates how the best fitness value and average of fitness value evolve 
during a stochastic optimization process. Similar trend of convergence is also observed for the 
best fitness in other optimization runs. Table 10-2 summarizes performances measures for 
optimal signal plans when two intersections are not coordinated. The objectives in average 
travel delay and fuel economy are considered respectively. Performance indexes in travel 
delay, fuel economy, and emission factors are compared for optimal signal settings with 
different goals. The optimal signal plans show significant improvement over the baseline case 
with respects to all performance indexes. When comparing the performance results 
corresponding to optimal fuel economy and minimum average travel delay, average fuel 
consumption is about 1% higher when average delay is the objective. However, when 
average fuel consumption is regarded as an objective, average travel delay is about 5% longer 
than when it is minimized. The emission factors (g/km) are obviously reduced when fuel 
economy is optimized in comparison to the case of minimum travel delay. While it is relatively 
more difficult to improve fuel economy, the trade-off exists between travel delay and indexes 
for fuel and emissions. This indicates that goals of improving traffic system from both two 
perspectives at the same time are difficult to achieve. 

The second scenario in the case study considers one-way signal coordination between the 

two intersections. Similarly, results for minimum travel delay and optimal fuel economy are 

analyzed.  In dependent of whether travel delay or fuel economy is minimized, signal plan 

with coordination (offset 25 seconds) outperforms, though slightly, the case without 

coordination concerning both mobility and sustainability indexes. For example, a gain of 2.7% 

reduction in average travel delay can be achieved by coordination. The fuel efficiency 

improvement is about 1.2%.  

Table 10-4 shows the impacts of coordination offset on optimal signal plans. When travel 

delay is set as objective, smaller offset will lead to reduced travel delay, but higher average 

fuel consumption. The same trend is observed for the case when fuel economy is minimized. 

This indicates that the tradeoff between average travel delay and fuel economy exists for, not 

only local signal settings but also coordination parameters.  
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Table 10-4: Impacts of offset on signal optimization. 

Performances measures Objectives      

 Avg. delay    Avg. fuel   

 20 sec 25 sec  30 sec   20 sec  25 sec  30 sec  

Avg. delay (sec/vehicle) 25.091 25.651 25.830  26.477 27.135 27.307 

Avg. fuel (g/km) 87.937 88.216 87.559  86.357 86.627 85.987 

10.6 Conclusions 

While SUMO becomes more and more accepted in the community of transport scientists, this 
study integrates it in a computational framework for optimal traffic signal planning. 
Parallelized traffic simulation is implemented to assess signal parameters, therefore 
accelerating the optimization process driven by genetic algorithm.  The methodology is 
applied to evaluate signal control in a two-intersection network in Stockholm. The FT control 
strategies, with and without coordination, are analyzed for objectives of travel delay and fuel 
economy. The final conclusions are: 

 Optimal signal plans for different goals outperform the baseline case with respect to 

performance indexes in mobility and sustainability; 

 One-way coordination brings benefits in reduction of travel delay and fuel saving, though 

the gain is small for the case of FT control;   

 Trade-off between average travel delay and fuel economy, also emissions, are apparent in 

the analysis not only for parameter settings at single intersection but also coordination 

between nodes; 

 Parallelized SUMO simulation accelerates the stochastic signal optimization dramatically 

with symmetrical multi-processor computing (SMP). For this application, other high-

performance computing technologies, such as graphics processing unit (GPU) computing, 

can be applied in the future. 
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11.1 Abstract 

The contribution analyses, evaluates and improves the open-source “DFROUTER” tool 

contained as part of the SUMO traffic microsimulation suite. DFROUTER uses traffic volume 

detector values to calculate complete routes for vehicles through  simulation networks. This 

approach is designed for highway corridors. The study analyzes DFROUTER’s current 

functionality and compares it with other similar approaches. The tool is also tested for 

different network types and data availability. Suggestions for the improvement of DFROUTER 

are made and tested to calculate routes more accurately. In addition, future areas for research 

are identified, such as flow computation in urban areas with two-lane ways. 

Keywords: DFROUTER, route/demand generation, detector data, SUMO, inductive loop, OD 

matrix. 

11.2 Introduction 

Traffic congestion is a big problem challenging transport planners and traffic engineers 

worldwide. A wide range of measures are implemented to tackle this problem, in particular 

Intelligent Transport Systems utilizing state-of-the-art technologies and updated information 

for traffic control and management. Once the traffic data is collected, controls can be used in 

order to regulate traffic flow, for instance traffic rerouting, speed harmonization or incident 

warning, etc. These methods are designed to improve the safety, security, quality and 

efficiency of the transport systems as well as ensure a more optimal use of natural resources. 

Traffic demand estimation is the key input for transportation system operation, design, 

analysis and planning [1]. Origin-destination matrices contain information about the spatial 

and temporal distribution of activities in different traffic zones in an area. Various methods 

have been developed for generating traffic demand like household survey, roadside 

interviews, license plate recognition and returnable-post card interviews [2]. However they are 

all expensive and obtaining the data is cumbersome [3]. Another method uses traffic counts 

to estimate the OD matrix given its great economic advantages. This data often comes from 
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inductive loop detectors, installed on the road surface to collect information such as vehicle 

type, volume, speed, and occupancy. In addition to establishing the traffic demand, the goal 

is to derive travel routes and an OD matrix estimation from detector data. 

OD matrix estimation methods based on traffic counts have been developed over the last 30 

years. There are two types of OD matrix estimation: the static method assumes OD flows are 

constant over time for determining an average OD demand for long-time transport planning 

and design purposes; whereas the dynamic method considers OD flows with time variation 

for short-term strategic traffic control and management [4]. It could be said that dynamic 

methods are an extension of static methods considering the time varying dimension. 

Furthermore, due to congestion effects, the OD matrix estimation can use proportional 

assignment (uncongested) or equilibrium assignment (congested), resulting in four basic cases 

of OD estimation [1].  

We analyse and evaluate the “DFROUTER” tool contained as part of the SUMO traffic micro-

simulation suite. DFROUTER uses detector values to calculate complete routes for vehicles 

through (primarily motorway/ corridor) simulation networks [5]. This tool also generates a 

demand for the traffic simulation in which each detector (inductive loop) location is 

considered as an observation point. Detectors are classified as either “source” (origin), “sink” 

(destination) or “between” (mere observation point between source and sink). The overall 

goal is that after running the simulation, similar values should be observed at the detection 

points in the simulation compared to the detector data used to generate the traffic demand 

and routing for the simulation. To this end, DFROUTER generates validation detectors for the 

SUMO simulation. Of course, a subsequent calibration of the driving behaviour model also 

plays a role in ensuring a good match between simulation and reality, this issue being 

particularly relevant in congested situations. 

This paper provides a detailed (and until now, absent) description of the tool and compares it 
with other similar approaches that do not necessarily place restrictions on the network type. 
Special attention is given to the accuracy, performance, convergence and usability of the tool 
with diverse network sizes and forms. The flow probabilities are the decisive indicator for 
comparison. 

In contrast to urban road networks where one origin-destination pair could involve several 

different routes in between; an OD pair in a highway corridor consisting of an on- and off-

ramp has only one possible route. This less complicated characteristic facilitates the estimation 

of vehicle routes and traffic demand based on detector data. DFROUTER focuses mainly on 

highway networks. 

11.3 Literature review 

11.3.1 OD matrix estimation 

Specifically for highways, the problem of determining an OD matrix from traffic counts can be 
formulated as follows: 

    ij i j

i

b Q O        (1) 
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    1ij

j

b         (2) 

Where: bij = proportion of trip from i to j; Qi = on-ramp counts (origin flows); Oj = off-ramp 
counts (destination flows).  

Considering a sample highway section that illustrates the OD matrix estimation problem, Qi 
and Oj can be seen in Figure 11-1. 

 

 

 

 

 

Figure 11-1: Sample highway segment 

Some possible OD matrices could be: 

Table 11-1: Possible OD matrices 

 D1 D2 Sum   D1 D2 Sum   D1 D2 Sum 

O1 8 4 12  O1 10 2 12  O1 6 6 12 

O2 2 2 4  O2 0 4 4  O2 4 0 4 

Sum 10 6 16  Sum 10 6 16  Sum 10 6 16 

As seen in Table 11-1, several results could satisfy the requirements due to the under-
specification problem: there are fewer equations than variables. The problem does not have a 
unique solution.  

This trip demand estimation problem is therefore resolved by efficiently combining traffic 
count based data and all other available information [6]. There are huge number of OD matrix 
estimation techniques and the most popular static methods could be named as Information 
minimization (IM) and entropy maximization (EM) [2], Maximum likelihood (ML) [6], 
Generalized Least Squared (GLS) [3], Bayesian Inference approach [7], etc. Regarding dynamic 
methods, there are Cross-correlation matrices, Constrained optimization, Recursive 
estimation, Kalman filtering [8], Recursive least square [9], a Neural-network approach [10], 
and Combined estimators [11], etc. 

11.3.2 DFROUTER 

The DFROUTER routing module has been used since version 0.9.5 of the SUMO-package [12]. 
This is the tool designed specifically for highway scenarios based on the idea that most 
highways are well equipped with inductive loops, measuring each of the highways’ entering 
and leaving flows. From this information regarding vehicle types, flows and speeds, 
DFROUTER is able to rebuild vehicle amounts and routes. DFROUTER was initially set-up as a 
minor tool (script) used within a larger system for generating routes for calibration purposes. 
The calibration was done by adding/removing vehicles to/from the simulation at the 
measurement points so as to match the real counts. Several relevant projects are the 
Weltjugendtag 2005 / 2006 World Cup in the city of Cologne or the VABENE project in 
Munich, etc.  

“This approach is quite successful when applied to highway scenarios where the road 
network does not contain rings  and  the  highway  entries  and  exits  are  completely 

O1 

O2 

D2 

D1 

12 
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covered  by  detectors.  It  fails  on  inner-city  networks  with rings and if the coverage with 
inductive loops is low” [13].  

DFROUTER works by following several steps, being mainly: 

1) Computing detector types 
2) Computing routes  
3) Computing flows  
4) Saving flows and other values 

The study mainly focuses on analyzing the computing flows step to understand its mechanism 
in delivering travel demand. The algorithm has not been documented before.  

11.4 Methodology 

The research methods focus on three key areas: 

1) A more formal description of DFROUTER 
2) How does the algorithm compare to similar approaches? 
3) How could the algorithm be improved in order to estimate routes more accurately? 

Analyzing DFROUTER 

In order to analyze the algorithm, several abstract highway networks and simulated data sets 

ranging from simple to complex will be used. The four factors to be considered are network 

type, number of detectors, vehicle flows and routes. These elements will be altered to test the 

generated results based on the idea that the algorithm works well in simple cases but may 

have problems for the more complicated ones. 

Beginning with 2 on- and off-ramps, the initial network is then developed to more 

complicated scenarios with extra ramps and lanes as well. The number of entrances and exits 

(origins and destinations) are also changed so as to test the number of routes generated. 

Basically there is one main highway line connected to several on- and off-ramps installed with 

detectors.  

With regard to detectors, each type of detector will be omitted in order to test route and 

demand generation in case of a lack of detectors, from sink to in-between and source 

detector.  The number of flows and routes used as input are also varied.  

DFROUTER will generate routes/demand based on the same network as the SUMO run; 

therefore routes and vehicle flows are the main indicators when evaluating the tool. In 

general, the flows/routes/detectors generated by DFROUTER (2) must be identical to the initial 

input for SUMO simulation (1) as they are derived from one origin. The general framework for 

analyzing DFROUTER is shown in Figure 11-2. 

Comparison with different approaches 

Similar approaches are described and compared with DFROUTER algorithm. In order to do 

that, the same networks will be created for route estimation with different approaches that 
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do not necessarily place restrictions on the network type. The main indicator for performing 

comparisons is route probability.  

Improvement of the algorithm 

In this step, changes to the algorithm will be proposed and implemented. The adjustment is 
expected to produce better results compared to the current DFROUTER. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11-2. Framework to analyze DFROUTER tool 

11.5 Results 

This part describes results from the testing of abstract highway corridors, comparison with 

similar approaches as well as ideas for algorithm improvement. 

11.5.1 Scenario testing  

Three abstract highway corridors are selected for examination, ranging from very simple to 

complicated. 

SUMO simulation 

DFROUTER 

Detector 
output 

Flows/Routes/Detectors (2) 

Flows/Routes/Detectors (1) 

 

Network 
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Figure 11-3: CASE 1 – 2 origins, 2 destinations 

 

Figure11-4: CASE 2 – 2 origins, 3 destinations 

 

Figure 11-5: CASE 3 – 3 origins, 3 destinations 

Observing the output generated from DFROUTER in the 3 cases when compared to initial 
input has indicated that: 

- The algorithm works well whenever the network is fully covered with detectors and 
generates routes comprising all OD pairs. The algorithm could not detect that some routes 
were absent; e.g. in one scenario of CASE 2 there were only 4 routes but DFROUTER 
created 6 routes, which consist of all possible connections. 

- Missing of in-between detectors in 3 cases does not cause a big estimation problem as 
long as the source and sink detectors are present. This shows that the in-between 
detectors do not play an important role in the probability estimation procedure. 

- Basically the estimated probabilities are identical to flow proportions at destinations, 
therefore sink detectors are the decisive elements in flow computation. 
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Additional analysis of DFROUTER’s C++ code has shown the main steps of the algorithm 
performing OD matrix estimation are: 

- Step 1: For all routes starting from source or between detectors to sink detectors  
determining split edges (the legs go out of a junction) having detectors on them. 

- Step 2: Calculating the proportion of flow on split edges using detector data  each split 
edge contains a different probability, the others have probability = 1.0 as default. 

- Step 3: For routes starting from source detectors  calculating destination distribution by 
multiplying all flow probabilities on all edges constructing that route. 

From this, pros and cons of the algorithm could be described as follows: 

Pros: the algorithm is simple for route calculation that uses only data from detectors laid on 
split edges by taking the destination proportion as route probability. If all sink detectors are 
supplied, the flows should be replicated correctly. Testing results in a highway corridor have 
shown that the algorithm therefore requires basically only source and sink detector data to 
generate relative route distribution without considering in-between detector data before the 
edge splitting. The in-between detectors which lie on split edges play an important role in 
determining split probability. Therefore another kind of in-between detector (not on split 
edges) could be missing, which does not affect the calculation procedure. This algorithm 
works perfectly in a limited condition when there is only one origin and the network is fully 
covered by detectors. However this is a rather rare case as only one inflow or origin is 
uncommon in reality.  

Cons: this simple algorithm could not work successfully in the case of missing detectors, 
especially detector data on split edges (in-between or sink detector) as it is not able to guess 
the missing data. It does not work if not all ”ends“ are covered with detectors. There are 
actually existing cases in which missing data can be generated from the available ones, for 
example the absent flow from only one detector could be deduced by subtraction of all 
inflows to all outflows. In this case the probability of missing flow would not be 
overestimated to 1.0 as default. 

In fact, many OD matrices can be produced from one set of traffic counts in this case as it is 
an under-specified problem, meaning the number of OD variables is greater than the number 
of independent constraints. Additional information like a priority matrix or a specific route 
assignment is required to compute routes more appropriately. 

11.5.2 Comparison with similar approaches 

DFROUTER generates route/demand data based merely on proportions of flows on split 
edges. The destination distribution is an average result of different timeOffset calculations 
using a default interval of 60 seconds. Congestion effects and travel time between origin and 
destination are also not considered. This method is most likely to work for the static OD 
estimation method mentioned above (a workaround would be to run DFROUTER multiple 
times with data split into intervals for which routes are desired, e.g. 15 or 60 minutes); 
however the algorithm considers only constraints between link flows (sum of all link 
proportions equal to 1.0 in case of full detector coverage) but not any optimization function 
(e.g minimization differences between estimated and observed link flows).  

In order to compare DFROUTER algorithm with similar approaches, the same highway corridor 
is examined and outflow probabilities are compared. The test case in Figure 11-6 comprises 
detector data and highway network CASE 2 (Figure 11-4) as shown in Table 11-2. 
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Table 11-2: Detector data on Test case 

Item Value 

Section length 100, 50, 50, 50 

On-ramp counts 280, 180 

Off-ramp counts 70, 120, 270 

Mainline counts 
280, 460, 390, 

270 

The DFROUTER algorithm calculates flow probability for each of the split edges by examining 
the outflows of each junction considering off-ramp counts and mainline counts, e.g 70/460, 
390/460, 120/390, 270/390 (equal to 0.15, 0.85, 0.31 and 0.69 respectively). 

 

Figure 11-6. Test case configuration 

The destination distribution can be obtained by multiplying the available probabilities on each 
route departing from a source detector as shown in Table 11-3. 

Table 11-3:  The DFROUTER OD matrix 

O\D D1  D2 D3 

O1  
=1.0 * 0.15 

=0.15 

=1.0 * 0.85 * 0.31 

=0.26 

=1.0 * 0.85 * 0.69 

=0.59 

O2  
=1.0 * 0.15 

=0.15 

=1.0 * 0.85 * 0.31 

=0.26 

=1.0 * 0.85 * 0.69 

=0.59 

This OD matrix estimation method can be compared to similar approaches, which generate 
traffic demand without taking into account an optimization function, such as the equally split 
OD matrix, proportional OD matrix, iterative method, the gravity model and turning 
percentages. 

1) The Equally Split OD matrix 

This is the simplest method for seed generation. As the name suggests, an equal proportion is 
assigned to all destinations. In the Test case (Figure 11-6) with 3 destinations, the method 
concludes that D1, D2 and D3 are equally likely for trips from origin O1 and O2, so the 
proportion will be 1/3 (33.3%). 

Table 11-4: The equally split OD matrix 

O/D D1  D2  D3  

O1 1/3 1/3 1/3 

O2  1/3 1/3 1/3 

0.85 

0.15 0.31 

O1 
0.69 1.0 

D1 

D3 

D2 O2 
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2) Proportional OD matrix 

This is the common and oldest method to estimate an OD matrix [14]. It is based on the 
concept that the attraction of any destination is the function of the number of trips that end 
at that destination. In other words, higher attraction is at a destination having higher flow 
proportion and vice versa. The origin flow will hence be distributed according to destination 
flows.  

Considering the Test case (Figure 11-6) with destination flows collected at D1, D2, D3 are 70, 
120, 270 veh respectively, the proportional OD matrix can be computed manually as follows, 
which is identical to DFROUTER calculation. 

Table 11-5:  The proportional OD matrix 

O/D D1  D2 D3 

O1  
=70/(270+120+70) 

=0.15 

=120/(270+120+70) 

=0.26 

=270/(270+120+70) 

=0.59 

O2  
=70/(270+120+70) 

=0.15 

=120/(270+120+70) 

=0.26 

=270/(270+120+70) 

=0.59 

 

3) Iterative method 

This is considered a hybrid proportional assignment technique that balances both inflows and 
outflows [14], adopted from Wills and May (1981) based on an iterative fitting algorithm. The 
algorithm computes each OD cell iteratively until convergence is reached. The algorithm steps 
are given below. 

Step 0   Set k = 0 

 Tij
(0)= 1  for all possible interchanges 

   0 for all impossible interchanges 

Step 1 Set  
'

2 1 (2 )

ij(2 )

ij

k ki
ij k

j

O
T T

T





  for all i, j                                     (3) 

        Where O’i is the observed volume at point i adjusted for all known demands from i. 

Step 2 Set    
'

2 2 (2 )

ij(2 )

ij

k ki
ij k

j

D
T T

T





for all i,j                   (4) 

        Where D’i is the observed exit volume at point j adjusted for all known trips that end at j. 

Step 3 If  Tij
(2k+2) - Tij

(2k)  <  for all i, j then STOP 

  Else set k = k + 1 and go to Step 1 

Using these algorithm steps to compute the OD matrix for the test case (Figure 11-6) yields 
the results shown in Table 11-6. The algorithm produced a converged output after 2 
iterations. 
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Table 11-6: The iterative OD matrix estimate 

O/D D1 D2 D3 

O1 0.15 0.26 0.59 

O2 0.15 0.26 0.59 

The final iterative OD matrix estimation, however, contains the same values as that of the 
proportional OD matrix estimation. This could be because the method computes OD elements 
iteratively but does not consider any constraint such as distance or travel time as a deterrence 
function. The following gravity model will take these parameters into account. 

4) The Gravity model 

The gravity model is one of the oldest trip distribution methods widely used in macroscopic 
modelling. This model is also extended to estimate the trip proportion between ramps, in 
which the impedance function is the main parameter of this model, which was proposed by 
Nancy Nihan[15]. It is related to the concept that the probability of very long and very short 
trips is low on the freeway. The model is based on the Gamma distribution as follows: 

        (5) 

Where Fij is the travel propensity factor between ramp i and j; α = shape factor  3.0 for the 
highway; β = size parameter = α/avg. trip length; dij = distance between pair (i, j);  avg. trip 
length = (1/T) * ∑(Link length) * (Link volume); T = sum of all trips generated 

The cell entries in the OD matrix are defined as 

          (6) 

Where Tij = trip interchange between pair (i,j); bj = balance factor from iterations; Oi = 
production at i; Dj = attraction at j 

Subject to the constraint: ∑i Tij = Dj 

In the implementation of the algorithm, the balancing factor was ignored for the first 
iteration. The average trip length from the geometry = 
(100*280+50*460+50*390+50*270)/(280+180) = 183. Then parameter β = 3/183 = 0.016. 
Using these parameters and the distance matrix, the OD matrix results are calculated 
accordingly. 

Table 11-7: The Gravity model OD matrix 

O/D D1 D2 D3 

O1 0.4312 0.3371 0.2317 

O2 0.2222 0.3909 0.3869 

The resulting OD matrix is different from both that of the proportional method and 
DFROUTER as it is only the first iteration in the case of ignoring balance factor bj. 
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5)  The Turning Percentage 

This is the most intuitive method of estimating an OD matrix for a freeway section, which is 
based on turning percentages. Similar to the equally split and proportional OD estimate, it is 
assumed that turning percentages at any given off-ramp are independent of the trip origin 
[14]. Therefore the OD matrix is derived by tracking the turning percentages in each section. 
Using the example corridor Test case (Figure 11-6), there are 4 sections, each between on-
ramp and off-ramp, with turning percentages as follows: 0, 15.2, 30.8 and 100 (0, 70/460, 
120/390, 270/270 respectively). The resulting OD matrix is shown in Table 11-8. 

Table 11-8: Turning percentage OD matrix 

O/D D1 D2 D3 

O1 

= 1-0.15-0.26 

= 0.59 

= 0.31*(1-0.15) 

= 0.26 0.15 

O2 

= 1-0.15-0.26 

= 0.59 

= 0.31*(1-0.15) 

= 0.26 0.15 

In summary  

The equally split OD matrix method did not generate a plausible result.  

Due to the missing balance factor bj, the gravity model has not been examined thoroughly 
and produced rather incomplete output in the first iterative calculation. However the accuracy 
of the estimation procedure depends heavily on the treatment of external stations [15], as it is 
related to the distance between different OD pairs. This approach is not suitable for 
application to DFROUTER, as the tool generates routes arbitrarily depending on network 
topology. Therefore the route lengths are variant. 

Similar OD matrices were achieved from various approaches: DFROUTER, proportional OD 
matrix, iterative method and turning percentage. The comparison results also indicate that 
DFROUTER is working most similarly to the turning percentage approach as it takes each flow 
proportion at each split edge into consideration. 

Concerning the iterative method, it does not take distance, time or any deterrence parameter 
into account, but only performs iteration based on the number of origin and destination 
counts. The results therefore are proportional to these counts.  

Furthermore, DFROUTER and the proportional OD matrix also have similar working 
mechanisms. Considering a tree graph as follows including 1 origin and 7 destinations where 
a, b, c, d, e, f are the relative detector data on edges. 

               

Figure 11-7: A tree graph 
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Then the flow probability at each destination, e.g D4, is computed as: 

- DFROUTER: 
b c d e f f

pro
a b c d e a

       

- Proportional OD matrix: 

1 1

n n

j i

j j

f f f
pro

a
D O

 

  

 
 

From above, it could be said that for the case of one origin, DFROUTER and the proportional 
OD matrix are basically the same in their approach. The proportional OD matrix works more 
simply than DFROUTER as it does not take into account in-between detectors or split edges; 
only the data at sink detectors are required for calculation. There is another computer model 
named SYNOD having been developed to synthesize the required OD matrix based on 
proportional OD matrix approach. This simple proportionality scheme on the other hand is 
considered as a crude approximation that has the problem of over-predicting the number of 
very short and very long trips with 20-30% level of error as in[15].  

Due to the drawback of these methods, they are often used to generate a starting solution 
(seed or target, a priori matrix) for the OD estimation problem to solve the minimization 
function of difference between estimated and observed link flows or OD matrix [14]. 

11.5.3 Suggestions for DFROUTER improvement 

From the analysis of DFROUTER, especially its pros and cons, there are several improvements 
to the algorithm that could be considered: 

 

- Guessing missing data based on existing detector flows. This could be done by considering 
the relationship between all inflows and outflows at a certain junction. 

- Improving DFROUTER’s operation for the case of highway rings or a fully covered urban 
intersection. 

The most promising improvement is to guess the missing data on one of 2 (or several) split 
edges. By doing this, DFROUTER can perform well in case of not all “ends” being covered 
with detectors and the overestimation problem of the current DFROUTER that assigns 
probability = 1,0 as default for missing detector data can be eliminated. 

1) Calculating missing data 

At this moment the current algorithm only takes the split edges which have a detector on 
them into the calculating list and omits the ones without a detector. This problem could be 
solved by the following proposed algorithm:  

Step 1: Calculate the flow value on each edge of the highway network using backward or 
forward recursion .  

Step 2: For all routes starting from source or between detectors to sink detectors  
determining split edges after a junction. 

Step 3: Calculating flow proportion of split edges based on computed flow  each split 
edge contains different probability. 

Step 4: For only routes starting from source detectors  calculating destination 
distribution by multiplying all flow probabilities on all edges constructing that route. 
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Of all steps above, the first step is the most challenging as there are many scenarios to 
consider. Edge e is the one that needs have a value computes. Forward recursion will be 
performed when there is no detector before e and backward recursion works in the opposite 
way. 

Table 11-9: Cases to consider in the recursion algorithm 

 Recursion forward Recursion backward 

1 

   

    

e = afterE 

   

    

e = beforeE 

2 

   

    

 

e = afterE – x 

   

    

 

e = beforeE - x 

3 

   

    

e = ∑afterE 

      

        

e = ∑beforeE 

If the algorithm could not figure out the value after a certain number of recursions,  its 
probability will be returned to 1.0.  

2) Application in an abstract network 

A hypothetical highway network was developed so as to test the improved algorithm, 
therefore it should contain all cases as required in Table 11-9.There are only 7 detetors at the 
location of L1, L9, R1, R2, R5, R66, R7 and the rest are missing, including some in-between 
and sink detectors. The input probabilities will be used to compare with DFROUTER’s output. 

 

 

     

Figure 11-8: Abstract network with missing detectors 

In order to calculate flow at a certain edge, the recursion function will be used, be it forward 
or backward. For instance, R3 will be computed as follows: 
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Figure 11-9: Example of calculating R3 

Calculated results and their comparisons are shown below regarding both probabilities at 
destinations (all “ends”) and the original input as well. The differences are evident and 
significant as the original DFROUTER does not consider missing data at destinations. The 
probabilities generated by the improved DFROUTER are approximate to the destination 
probabilities and also more accurate compared to that of the original DFROUTER. 

Table 11-10: Comparison of the destination probabilities of the original and the improved algorithm 

Trip 
Des-

counts 

Des- 

Pro 

Probability Relative error 

DFROUTER 
Improved 

DFROUTER 
DFROUTER 

Improved 
DFROUTER 

From L1/R1/R2 to R3 900 0.24 1 0.23 3.22 -0.03 

From L1/R1/R2 to R66 500 0.13 0.14 0.13 0.06 -0.01 

From L1/R1/R2 to R7 1100 0.29 0.69 0.28 1.38 -0.03 

From L1/R1/R2 to R8 700 0.18 0.69 0.20 2.75 0.09 

From L1/R1/R2 to R7_1 300 0.08 0.69 0.09 7.74 0.14 

From L1/R1/R2 to R8_1 300 0.08 0.69 0.06 7.74 -0.24 

3) Application in a larger network 

The improved algorithm was tested successfully in the case of an abstract network in Figure 
11-8 which generates exactly the same results as the corridor covered fully with detectors. In 
this step, a larger network containing 3 main interchanges in Nuremberg was converted from 
OpenStreetMap data.  

Each interchange is equipped with different numbers of detectors: 

- Interchange 1: fully covered with detectors and there are 5 routes as an input to SUMO 

- Interchange 2: only detectors in main corridor, only 1 route toward interchange 1 

- Interchange 3: only detectors in main corridor, only 1 route toward interchange 1 

R3=L3-L4 

L3=L2+R2 

L2=L1+R1 R
2 

L4=R4+L5 

R4=R5 L5=R6+L6 

R6=R66 L6=L7-R5 

R
5 

L7=L8=L
9 

L
1 

R1 
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Figure 11-10: Nuremberg highway network 

Table 11-11: Comparison of DFROUTER and improved DFROUTER results with input probabilities 

No Trip Colour 
Input 

probabi-
lity 

Probability Relative error 

DFROUTER 
Improved 

DFROUTER 
DFROUTER 

Improved 
DFROUTER 

1 From 1 to 1 left Yellow 0.16 0.16 0.16 0.00 0.00 

2 From 1 to 2 straight1 Yellow 0.13 0.06 0.18 -0.54 0.38 

3 From 1 to 2 right Yellow 0.09 0.22 0.04 1.44 -0.56 

4 From 1 to 3 Yellow 0.63 0.24 0.62 -0.62 -0.02 

5 From 1 to 2 straight2 Yellow 1 0.28 0.82 -0.72 -0.18 

6 From 2 to 1 Blue 1 1 1 0.00 0.00 

7 From 3 to 1 Pink 1 0.4 0.86 -0.60 -0.14 

 

For this complicated scenario, it takes around 5 minutes for the tool to run and perform 
recursion (on a laptop with an 2GHz CPU and 4.00GB of RAM). The flow probabilities 
produced by the improved DFROUTER are different from those computed by the original 
DFROUTER as shown in the Table 11-11. More reliable and accurate results from the 
improved DFROUTER are achieved as expected. 

  

int. 1 

int. 2 

int. 3 

1 

3 

2 

4 

5 6 

7 
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11.6 Conclusion 

The study has been conducted to analyze the DFROUTER tool within the SUMO suite by 
examining several typical highway corridors as well as investigating the nature of DFROUTER, 
especially demand generation. The algorithm has been also compared with other similar 
approaches based on the same abstract highway corridor resulting in more understanding of 
its relationship to these relevant algorithms. The study has also focused on proposing an 
improved algorithm, which generates traffic demand/flow probabilities more accurately. The 
study sought to answer these questions:  

1) How can DFROUTER be formally described? 

2) What are the differences to other approaches? 

3) How could the algorithm be improved in order to estimate routes/demand more 

accurately?  

The literature review has indicated two main groups of OD estimation: static and dynamic, 
which have been developed over the last 30 years. These methods are fundamentally 
different from the DFROUTER algorithm, as they require an additional a-priori OD matrix, are 
more complicated in calculation, need more time to compute and are mostly applied to small 
areas. Therefore they are not going to compare with DFROUTER in that they do not 
necessarily place restrictions on the network type. DFROUTER’s approach of dividing incoming 
flow proportionally to off-ramp counts makes it simple and fast to calculate respective flows. 
Similar approaches also lead to similar results when examining a testing highway corridor.  

The improved algorithm has been applied successfully to a large highway network and 
produced reliable results using recursion to guess missing data. Each edge after a junction will 
contain a certain traffic count and relative probability. The method of multiplying individual 
probabilities is left unchanged. The problem of missing detectors at destinations as well as the 
problem of rings that occur in highway networks is solved partly. More testing in practical 
highway scenarios should be performed to complete the improved algorithm. 

The improved algorithm, however, is applied only to highway corridors (one way street). 
Future research is needed to extend the demand calculation for urban areas where route 
computation is complicated as each edge contains two ways, resulting in ambiguities while 
performing recursions over the network. 
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12.1 Abstract 

SUMO (Simulation of Urban Mobility) has become one of the preferred open-source 
platforms for researchers to perform microscopic road traffic simulation. Thanks to the 
TraCI API (Traffic Control Interface), SUMO offers a high level of flexibility, allowing 
controlling the objects of the SUMO simulation through a TCP-IP client that can be 
developed in any programming language, or even offered as a service. Two important 
implementations of the TraCI interface have been released till now, namely TraCI-Python 
and TraCI4J (TraCI for Java). On the other hand Matlab is a software tool with a 
programming language with a broad user’s community of researchers. Matlab is used in 
many tasks on simulation, control, optimization and it is a preferred tool for rapid 
prototyping. Both tools share strengths that are desirable for  the development of 
control strategies for traffic. The desired of combining  both strengths motivated the 
interest to develop a TraCI implementation for Matlab. In this article, the re-engineering 
process of the TraCI-Python API used as a basis for the creation of TraCI4Matlab (TraCI 
for Matlab) is described. 

Keywords: SUMO, TraCI, Matlab, Traffic Simulation, Reverse Engineering, Re-
engineering. 

12.2 Introduction 

SUMO is a set of tools to create and execute microscopic road traffic simulation scenarios[1]. 

These tools are grouped in three categories:  

 Mapping tools. For creating the “map” (network), where the simulation will be 

performed, comprised by intersections, streets, traffic light definitions, polygons that 

represent buildings and other structures, and a variety of sensors for output delivery. 

The network can be created from scratch or imported from a wide range of sources; 

 Demand modeling tools. For creating vehicle demands from several sources or even 

randomly, allowing to define vehicle types according to their physical characteristics 

and specify entry times, origins and destinations;  

 Simulation tools. The sumo application itself that receives the network, the demand 

and some optional information as inputs to execute the simulation and output results 
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in XML format, a feature that demonstrates the high integration capacity of the 

simulator.  

SUMO includes an external interface: TraCI (Traffic Control Interface), that simplifies the 

retrieval and modification of the SUMO objects, through an application protocol built on top 

of the TCP-IP stack, allowing applications like vehicular communications, dynamic routing and 

traffic light control algorithms[2].  

The SUMO community has developed two remarkable TraCI clients: one made in Python by 
the SUMO developers, which we will call TraCI-Python; and TraCI4J, made in Java by 
researchers from Politecnico di Torino (Italy)[3]. 

Very often MATLAB has been used as a control and simulation platform by the control 

community. Since our research is oriented to dynamic traffic control, the need for a 

simulation environment across the two platforms came up, in order to take advantage of the 

control and optimization tools of MATLAB and the simulation capabilities of SUMO.  

The open-source nature of the SUMO suite brings many advantages, including: (i)  a high 

degree of flexibility, allowing  to tailor the software to the specific context in which it will be 

used;(ii) no need to pay for the software; and (iii) educational advantages e.g.learning about 

algorithms and software engineering. These advantages make the open-source tools ideal for 

researchers and academics. However, open-source software also brings some disadvantages, 

perhaps the most known are the slow learning curve and, sometimes, lack of documentation 

or support [4]. Although SUMO has a complete reference for users and developers,  

documentation related to high level software architecture and design artifacts, and the 

dynamic behavior of the system, in terms of UML diagrams, is not available for the 

community. Here, reverse engineering plays an important role by allowing to identify the 

software components and understand how they collaborate to fulfill the required 

functionality. Reverse engineering is also an important step for re-engineering, which is "the 

examination and alteration of a subject system to reconstitute it in a new form and the 

subsequent implementation of the new form" [5].Note that this process results to save costs 

by taking advantage of an available open-source implementation, compared to the case in 

which requirements are accomplished through the whole software engineering cycle. 

Furthermore, as stated by Ewer et. al., re-engineering has many advantages over a direct code 

translation either by hand or using semi-automated tools [6].  

In this article, we describe the re-engineering process applied to the TraCI-Python API used to 

re-implement TraCI for Matlab (TraCI4Matlab). 

This article is organized as follows: Section 12.3 makes a general explanation of  the re-

engineering process. Section 12.4 describes the reverse engineering sub-process of the TraCI-

Python implementation and shows the extracted architectural and component models and 

descriptions. Section 12.5 describes the forward engineering sub-process resulting from the 

adaptation of the models obtained in the previous section to the constraints imposed by the 

Matlab language. Section 12.6 shows the results and discussion. Finally, section 12.7 shows 

the conclusions. 
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12.3 The re-engineering process 

Unlike the traditional forward engineering process, in which the source code software project 
is developed starting from abstract representations based on the requirements of the 
stakeholders, the  re-engineering process starts from the source code of an existing software 
to analyze it and extract representations in higher levels of abstraction (reverse-engineering), 
which can be modified (re-structuring) to make a new implementation that satisfies a new set 
of requirements (forward engineering). The re-engineering process is illustrated in figure 12-1. 

Re-engineering is part of the software's lifecycle maintenance phase.Re-engineering improves 
the software to adapt it to the increasingly changing environment and to satisfy new 
requirements. Thus, software maintenance is one of the most important phases of the 
software lifecycle. It has been estimated that represents around 70% of the total software 
lifecycle cost[7]. In the case of the TraCI-Python API, the new requirement consists on 
adapting it to Matlab while trying to maintain the same syntax. 

 

Figure 12-1: The re-engineering process 

As stated by Chikofsky and Cross[5], frequently, software maintainers are not its developers. 
Therefore, the subject software should be initially understood through reverse engineering 
process to modify it properly. Furthermore, Demeyer et. al. [8] argued that a specific reason to 
use re-engineering was to "extract the design as a first step to a new implementation". They 
also defined a catalog of re-engineering patterns, grouped in clusters according to the re-
engineering cycle. These design patterns are understood as best practices to address common 
problems found in a re-engineering process. Some of these patterns will be related to the 
activities carried out in the re-engineering process of TraCI-Python. 

In the following section, the reverse-engineering sub-process of the TraCI-Python API is 
described. 

12.4 Reverse-engineering the TraCI-Python implementation 

The reengineering process in this project resorted to using some patterns described by 

Demeyer et. al. in [8], particularly there were used: 

 Chat with the maintainers. According to Demeyer et. al. the intent of this pattern is to 
"Learn about the historical and political context of your project through discussions 
with the people maintaining the system". Since the interaction with the SUMO team 
through the mailing list system was important to install and use the simulator, the 
Chat with the maintainers intent was redefined more generally to "Learn about the 
context and the technical aspects of your project through discussions with the people 
maintaining the system." 
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 Read all the code, whose intent is to "Assess the state of a software system by means 
of a brief, but intensive code review". It's important to note that, in this case, the 
focus was on understanding the structure of the TraCI-Python API, not on its quality.  

Step through the execution, whose intent is to "understand how objects in the system 

collaborate by stepping through examples in a debugger". Two open-source tools were used 

to apply this pattern: Winpdb [9], which is a Python debugger, and StarUML [10], which is a 

program to draw UML diagrams. The first step to understand the TraCI-Python 

implementation was the debugging of the TraCI4Traffic Lights tutorial, provided with the 

SUMO installation, to find that TraCI-Python comprises three main components: The TraCI 

package, the modules representing the SUMO objects (edge, junction, lane and so on) and 

the TraCI constants definition. At this point, it's important to note that Python modules create 

namespaces, which can be represented, in terms of UML, as packages. Furthermore, as stated 

in [11]: "The import statement creates a new namespace and executes all the statements in 

the associated .py file within that namespace". In the case of packages, the __init__.py 

module is executed. Therefore, one can access the variables, classes and methods defined in 

Python modules through the dot operator once they're imported. Figure 12-2 shows two 

UML package diagrams, in which the namespaces created by the TraCI-Python modules are 

represented as packages. It also illustrates how are they deployed and the dependence 

relationships among them. Note, that the abstract package sumo_object was defined to 

generalize the modules representing the SUMO objects. Moreover, it was found that the 

sumo objects share some methods and attributes in common. 

In the following subsections, the components of the TraCI-Python API are described. 

12.4.1 The TraCI package 

This is the top-level package. It contains the modules corresponding to the SUMO objects plus 
five public functions and others with, at most, package visibility. Through these functions, the 
functionalities of the TraCI package could be extracted, being: Initialize and close the 
connection to the SUMO server as well as switching among connections, allowing several 
SUMO instances to be controlled by the same client; perform a simulation step; populate the 
subscription results of each module; construct and send the outgoing messages according to 
the TraCI protocol; and read the responses from the SUMO server and check them for errors 
throwing the corresponding exceptions. In terms of UML, this package can be diagramed 
using the utility stereotype class, as showed in figure 12-3. 

 

(a) 

 

(b) 

Figure 12-2: The TraCI-Python API components: (a) deployment, (b) Dependency relationships. 
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Figure 12-3: The TraCI package. 

 

Figure 12-4: UML sequence diagram for the get process in the TraCI-Python API. 

12.4.2 Packages corresponding to the SUMO objects 

These modules can be briefly summarized through the so called getters and setters. The get 
and set processes follow a sequence of functions in the TraCI components that collaborate by 
appending the proper command, requested attribute, and desired value (in the set case) from 
the TraCI constants to build the outgoing get/set message according to the TraCI protocol. 
Here, the get_wrapper and set_wrapper abstract methods are defined to represent the set of 
public methods designed for the end user in such a way that he/she only needs to provide the 
ID of the SUMO object of interest and the desired attribute value (in the set case). Finally, the 
sumo_object packages include another four wrapper functions related to the TraCI 
subscriptions: two for subscribing to the desired object and variable, and other two for 
retrieving the subscription results. Figure12-4 shows an UML sequence diagram, which is an 
example of the above process, in this case, the get process. Note how the different 
components collaborate: the end user calls the get wrapper which calls the universal getter of 

traci

<<utility>>

-RESULTS: Dict

-modules: Dict

-connections: Dict

~message: Message

-recvExact(): Storage

~sendExact(): Storage raises FatalTraciError

~beginMessage(cmdID: Int, varID: Int, objID: String, length: Int)

~sendReadOneStringCmd(cmdID: Int, varID: Int, objID: String)

~sendIntCmd(cmdID: Int, varID: Int, objID: String, value: Int)

~sendDoubleCmd(cmdID: Int, varID: Int, objID: String, value: Double)

~sendByteCmd(cmdID: Int, varID: Int, objID: String, value: Byte)

~sendStringCmd(cmdID: Int, varID: Int, objID: String, value: String)

~checkResult(cmdID: Int, varID: Int, objID: String): Storage raises FatalTraciError

-readSubscription(result: Storage) raises FatalTraciError

~subscribe(cmdID: Int, begin: Int, end: Int, objID: String, varIDs: Vector) raises FatalTraciError

~subscribeContext(cmdID: Int, begin: Int, end: Int, objID: String, domain: Int, dist: Double, varIDs: Vector) raises FatalTraciError

+init(port: Int, numRetries: Int, host: String, label: String): Int, String

+simulationStep(step: Int): Vector

+getVersion(): Int, String raises FatalTraciError

+close()

+switch(label: String)
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the sumo_object module, which in turn calls the proper TraCI function to build the outgoing 
message, read the response from the SUMO server and check it for errors. Figure 12-5 shows 
the class diagram corresponding to the abstract class sumo_object. It is worth to notice, that 
this abstract class was not physically implemented, but serves as a way to explain the 
packages corresponding to the SUMO objects and their attributes and methods in common. 
Additionally, the simulation module is the only one that does not contain the getIDList 
method. 

 

Figure 12-5: Abstract package sumo_object which represents the packages corresponding to the SUMO objects. 

12.4.3 TraCI constants 

This is a module containing the command, variable-type and data-type codes as constant 
attributes from the TraCI protocol specification. The other TraCI-Python modules use these 
constants as parameters for their functions. For example, referring to figure 12-4, the 
parameters varID and cmdID are taken from the TraCI constants module.   

12.5 The forward engineering subprocess 

The Matlab language specification has some limitations that makes the reverse-engineered 
design of TraCI-Python to be re-factored. The most important, is that Matlab imposes only 
one function definition per m-file, at most, including nested functions; the same holds for 
class definitions. Moreover, the Matlab's import statement allows adding only package-based 
functions and classes to the current import list.  

From figure 12-3, it can be seen that TraCI-Python's namespaces have variables with the 
following properties: 

1. They are not associated with a specific object instance 
2. They can be imported 
3. Their values can be changed by methods in other namespaces. 
 
Hence, to achieve the same behavior in Matlab, three options were considered: 

 Implement TraCI-Python's namespaces as classes with static members: This solution 
was discarded because, although Matlab allows to define constant attributes in a class, 
the same cannot be done for static ones, i.e. those that do not need the class to be 
instantiated and whose values can be changed[12]. Note that this option conflicts with 
properties 1 and 3. 

 Execute m-files that load the required variables into the workspace: This solution 
would require the Matlab's package functions to access those variables. In the Matlab 
documentation, it has been stated that the best practice is to pass the variables as 

sumo_object

<<utility>>

-RETURN_VALUE_FUNC: Dict
~subscriptionResults: SubscriptionResults

-getUniversal(varID: Int, objectID)
+getIDList(): String
+subscribe(objectID: String, varIDs: List, begin: Int, end: Int)
+getSubscriptionResults(objectID: String)
+subscribeContext(objectID: String, domain: Int, dist: Double, varIDs: List, begin: Int, end: Int)
+getContestSubscriptionResults(objectID: String)
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arguments[13]. In this way, not only the workspace would be filled with variables that 
should be transparent to the user, but he/she would need to pass those variables as 
arguments, which results impractical. Another strategy listed in the Matlab 
documentation, is the use of persistent variables in a function. However, persistent 
variables can be changed only by the function that defined them, which conflicts with 
property 3. Finally, one could evaluate a given expression in another workspace, but it 
has limited flexibility in the sense that it doesn't allow the variable to contain indexes. 
For these reasons, this solution was discarded.  

 Finally, the use of global variables was chosen because it can deal with properties 1 
and 3. Global variables are defined in the methods that require them and can be 
accessed by any other method. 

There were some special cases in which there was no need to use global variables. For 
example, It was found that some attributes were used only by one function. Therefore, those 
attributes were defined inside the functions that use them. Another case is related to the 
RETURN_VALUE_FUNC attribute of the sumo_object packages, which is a constant. Then, a 
corresponding new class with only constant attributes was defined. Finally, it was found that 
the modules attribute of the TraCI package only was used in two methods of the same 
package: readSubscription and simulationStep. The modules attribute is a dictionary that 
associates responses from the SUMO server to the corresponding sumo_object module, 
allowing to detect errors and populate the TraCI subscription results. In the readSubscription 
method, the modules attribute is used to populate the TraCI subscription results based on the 
response of the SUMO server. For this reason, a new dictionary called subscriptionResults was 
defined inside the readSubscription method. On the other hand, the modules attribute is used 
in the simulationStepmodule only to reset its values,i.e. the subscription results of each 
sumo_object module. Note that, in this case, it is not neccesary to define a map. Therefore, a 
new array called modules was defined in the readSubscription method.  

Figure 12-6 shows the re-structured architecture for the implementation of TraCI4Matlab, 
including the the addition of the new package of constants RETURN_VALUE_FUNC. 

 

(a) 

 

(b) 

Figure 12-6: The TraCI4Matlab API components: (a) Deployment, (b) Dependency relationships. 

Figure 12-7 shows the global variables used in the TraCI4Matlab implementation. Note that 
there are 14 global instances of the class SubscriptionResults, namely 
edgeSubscriptionResults, guiSubscriptionResults and so on (including the areal detector 
introduced in the version 7 of TraCI). If no subscription was made to a particular sumo object, 
Matlab sets the corresponding global variable to a null object by default. Recall that the rest 
of the attributes associated to namespaces are defined in the methods that use them, e.g. the 
RESULTS and modules atributes of the TraCI package. 
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Figure 12-7: The global variables used in TraCI4Matlab. 

 

The re-engineering patterns associated with the forward engineering process are explained, 
as follows: 

 Testing patterns. The testing cluster materialized through the application of the "Grow 
your tests base incrementally" pattern. Once some components of TraCI4Maltab were 
developed, the corresponding test were performed. The implementation of 
TraCI4Matlab started with the getVersion and the init methods, which were the first 
tested methods. 

 Involve the users. Regular meetings were carried out with the stakeholders to check 
that the satisfactory completion of the requirements. 

 Migrate systems incrementally. Some components and functionalities were initially 
implemented and tested to perform demonstrations in the meetings. Then, according 
to the conclusions of those meetings, further components and functionalities were 
tested and implemented until the final product was finished. 
 

12.6 Results and discussion 

TraCI4Matlab was released on 24th December of 2013 under the BSD license. It is free 
software and is available for the community at Matlab Central[14], or as part of the SUMO 
contributed tools since SUMO 0.20.0.    

Currently, TraCI4Matlab is being used in the project "Modelamiento y Control de tráfico 
urbano en la ciudad de Medellín: MOYCOT" (Modelling and Control of Urban Traffic in the 
City of Medellin-Colombia). One of the objectives of the MOYCOT project is to design a MPC 
(Model Predictive Control) traffic lights control system for the urban traffic network of the city 
of Medellín. Some parameters needed by this system include the length of the queues in 
vehicles on each signalized lane and the traffic flow in the edge. Thanks to TraCI4Matlab, 
preliminary results were obtained in a scenario consisting of a single intersection, showed in 
figure 12-8.  

Using induction loops and lane area detectors, the number of vehicles entering the north-
south as well as the length of the queues (jam length in TraCI) on each lane in vehicles were 
obtained, as shown in figure 12-9. 

SubscriptionResults

-results: Dict
-contextResults: Dict
-valueFunc: Dict

<<create>>+SubscriptionResults(valueFunc: Function)
-parse(varID: Int, data) raises FatalTraciError
+reset()
+add(refID: String, varID: Int, data)
+get(refID: String): Dict
+addContext(refID: String, domain: Int, objID: String, varID: Int, data)
+getContext(refID: String): Dict

GlobalVariables
<<utility>>

+message
+connections

14



12 TraCI4MAtlab: Re-engineering the Python implementation of the TraCI interface 

153 

 

 

Figure 12-8: The single intersection scenario used in the MOYCOT project to obtain parameters needed for MPC 
traffic lights controller. 

 

  

(a) (b) 

  

12.7 Conclusions 

In this paper, the re-engineering process of the TraCI-Python API used to develop a Matlab 
implementation was presented. Static and dynamic models related to the architectural and 
component design were obtained. The authors consider that those models can be used to 
implement TraCI in any object-oriented programming language. 

One of the requirements formulated for TraCI4Matlab was to preserve the same syntax of 
TraCI-Python. Although it could be accomplished through the approach described in the 
forward engineering process, performance implications were not considered, in fact, there 
were no requirements related to performance. As a result, it was found that the TraCI4Matlab 
performance was much lower than the TraCI-Python's. Following the do, do better, and do 
fast software re-engineering sequence[8], the authors propose to include as requirements for 
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future versions of TraCI4Matlab, improvements in code reuse and to detect the components 
that cause the low performance, exploring different solutions to optimize it. 

Another issue that has to be addressed is related to the case in which the user launches the 
sumo server in GUI mode. In TraCI-Pyhton, when the connection is established and the user 
closes the SUMO GUI, without closing the connection from the client,the client detects that 
the connection was closed from the server and an exception is thrown. In the case of 
TraCI4Matlab, Matlab cannot differentiate if the connection was closed or the user paused 
the simulation from the SUMO GUI, which can cause two undesired behaviors:  

 If the socket was created with a fixed timeout, then when the user pauses the 
simulation from the GUI for a time longer than the timeout, TraCI4Matlab will throw 
an erroneous "Connection closed by  SUMO" exception. 

 If the socket was created with a timeout of infinity, then when the user closes the 
simulation from the GUI, TraCI4Matlab will enter in an infinite listening state. 

Finally, the design obtained through reverse engineering sugests some private methods and 
some others with package visibility. For private methods, Matlab has developed the concept 
of "private functions". Unfortunately, Matlab has not defined, to date, a similar approach for 
the case of methods with package visibility.  
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13.1 Abstract 

ITS Austria West is a long-term Austrian project in which, among other tasks, real-time traffic 

data is continuously generated and made public. The traffic monitoring application integrates 

sensor data coming in real time from various data sources. Our system relies heavily on the 

open source package SUMO to generate and maintain the road network and to simulate the 

traffic in order to obtain estimates for traffic values on roads that are not covered by sensors. 

Due to inaccuracies in the demand model, a series of calibration steps are executed. The 

resulting demand model achieves an acceptable level of stability and conformity with the 

reality. A traffic simulation runs with this demand model in parallel with the traffic monitoring 

software and is continuously adjusted in order to comply with the current traffic situation, as 

reported by sensors.  

Keywords: traffic monitoring, traffic simulation. 

13.2  Introduction 

In the frame of the project “ITS Austria West” we developed a system that monitors the 

traffic on Upper Austrian roads. The system integrates real-time sensor data with traffic 

simulation results in order to generate snapshots of the traffic situation. The road 

infrastructure of Upper Austria is modelled by a trimmed road network; this is used by the 

traffic simulation as well, together with a calibrated demand model for an average working 

day.  

There are two categories of real-time data: floating car data (FCD) from sensors installed in 

roaming cars, and vehicle detection loops (VDL) installed at static position on a fixed number 

of roads. FCD are used to estimate the current average velocities on corresponding roads; 

VDL are basically vehicle counters that also provide velocity information. 

Since real-time data do not cover all roads, a traffic simulation can be used to fill the gaps. 

Every few minutes, the results of the simulation are compared with the real-time data. 

Whenever flagrant discrepancies are observed between the simulated traffic and the real-time 

data, adjustments are computed and injected back into the simulation. Simulation results and 

real-time data are eventually aggregated into a snapshot of the traffic situation, which is 

subsequently published.  
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The simulation needs an accurate demand model for providing results that closely resemble 

the real-time development of traffic conditions. Since the original demand model, provided by 

the Upper Austrian authorities, does not correspond anymore to the reality, it needs to be 

improved. We perform a series of calibration steps so that, as much as possible, dramatic 

discrepancies between the reality and the simulation are removed. 

In this paper, we give an overview of our system, with emphasis on aspects related to the use 

of SUMO concepts and components. In the section 13.3 we describe the system architecture, 

at a high level of abstraction. In section 13.4 we show how the static data, fundamental to all 

sub-systems, is generated. Section 13.5 contains the calibration process, executed as a 

preliminary step. In section 13.6 we explain how the static and real-time sensor data are 

processed and integrated. Section 0 describes TOMS, the main component of our system. 

Finally, our last section contains some conclusions and a few words regarding future work. 

13.3  System Overview 

Figure 13-1 contains the system architecture of ITS Austria West.  

 

- In the preprocessing phase, a road network file, as well as a routes file, are 

generated from the static incoming data (GIP – Graph Integration Platform, the 

main, most comprehensive database of Austrian roads; VLSA – traffic lights 

description file; the demand model – a file with all origin-destination relations). The 

generated files follow the SUMO formats. 

- The calibration step is meant to balance the trips, so that eventually a routes file is 

computed, with which a traffic simulator (e.g. SUMO) produces a good 

approximation of the traffic situation. With the initial, unprocessed demand model, 

SUMO needs more than five days to simulate all trips – which in fact cover no more 

than one working day.   
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Figure 13-1: Architecture of ITS Austria West 
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- The Traffic Online Monitoring System (TOMS) periodically collects real-time data 

(FCD and VDL) and aggregates them with simulation (SUMO, MATSim) results, in 

order to generate snapshots of the traffic situation.  

- Currently, TOMS sends its output to VAO (“Verkehrsauskunft Östereich”, the 

Austrian traffic information system) and to a WMS (Web Mapping Service) layer 

that can be accessed by various applications. A nice, user-friendly, HTML5-based 

web page, as well as an app for Android and IPad integrate these WMS layer.  

13.4 Preprocessing Static Data 

In this phase, the internal data collections used by all components of ITS Austria West are 
generated from external data. 

13.4.1 The Road Network  

From the GIP database, information concerning relevant road segments is extracted and 

filtered, based on specific criteria:  

- Geographically: The system monitors only roads from a rectangular area which 

encloses Upper Austria (Fig. 13-2). 

- Functionally: Only roads with a certain level of significance are taken. The relevant 

significance levels vary according to road position (e.g., in urban or rural areas). Fig. 

13-3  contains the roads in Linz city centre. 

The extracted road segments are used to generate two files, containing “nodes” and 

“edges”, in SUMO-specific XML format. These two files are given as input to the program 

NETCONVERT, the component of SUMO which generates a road network file. The network 

can be generated in either SUMO or MATSim format.  

 

  

Figure 13-2: The whole road network                        Figure 13-3: Part of an urban area (Linz). 



13.5 Calibrating the Demand Model 

160 

Additional lists are used to refine and improve the road network, with traffic light signal 

systems (VLSA) and manual changes or corrections. 

13.4.2 The Routes File 

The currently available demand model was generated in 2008 by the department „Gesamt-

verkehrsplanung und öffentlicher Verkehr“ of the Upper Austrian government. It reflects all 

traffic in Upper Austria for a working day and is given as a source-destination matrix with the 

summary of trips, for which the source and destinations are districts. We generated a set of 

routes, distributed over a day, in a three-steps process: 

1. We produce  trips with clear origin-destination streets and start times. 

2. For each origin-destination pair, we compute the best route. Routing algorithms (e.g. 

Dijkstra) can be employed, or tools already provided by traffic simulation software 

(SUMO makes a routing program available: DUAROUTER). 

3. We try to balance the routes (see the next section for a detailed description), by  

- sending vehicles on alternative routes, to avoid congestions on critical road 

segments; 

- shifting vehicles temporally, 

in order to reach a demand model with which the simulated traffic does not differ too 
much from the reality. 

For the first step, time-variation curves are computed from historical sensor data, to be used 
as approximation basis for distributing the trips during a day. We differentiate the origin-
destination relations, and thus the time-variation curves, by the locations of sensors. There are 
essentially three different relations:  urban-to-urban, rural-to-rural, and urban-to-rural; their 
time-variation curves are quite dissimilar.  

In the near future, a more precise trips file will be made available by the Upper Austrian 
government, in which the trips will already be given with their start time and origin-
destination streets. 

The routes are calculated in step 2 with a fast Dijkstra algorithm, parallelized so that, for each 
source, the shortest paths to all destinations are computed in a separate thread. The 
computation of all routes (around a million) on a 3.7 GHz computer with four cores with 
hyperthreading takes under two minutes. 

13.5 Calibrating the Demand Model 

The calibration process takes a road network and a routes file as input, both in SUMO format, 

and runs SUMO repeatedly with increasing end times, starting at 6:00AM and ending at 

8:00PM. For each end time, a limited number of SUMO runs are allowed. If the number of 

vehicles arriving too late is relatively small (e.g. below 1000), the process starts working with 

the next end time (the end times advance is one hour). 
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In order to assess whether a vehicle arrives too late (or too early), we need estimated times of 

arrival (ETA). Currently we compute these times, for each vehicle, considering the average 

speed per edge and an estimated time for traversing crossroads. The alternative is to let 

SUMO compute these times for us: It should run with a simplified demand model, with 

exactly one trip for each individual route. These unique trips should be distributed temporally 

so that traffic jams or delays are improbable. 

During the calibration process, the simulation output is obtained via the dumping mechanism 

implemented in SUMO. Since SUMO normally produces such a dump every second, we had to 

modify it so that the periodicity can be given as a parameter in the SUMO configuration file. 

Every two minutes a SUMO dump is analyzed, and all vehicles currently running are checked 

against their expected arrival times. 

- If a vehicle is found on the road after its ETA, it will be considered as delayed. If the 

delay is considerable (the minimum acceptable delay is parameterizable; currently 

we work with 5 minutes), the vehicle will need to be shifted (it will depart earlier) 

or sent on an alternative route. The decision is taken at random, with a ratio 

shift/reroute given as a parameter to the calibration process.  

- A vehicle that has arrived too early will be shifted forward, so that in the calibrated 

routes file it will depart later.  

The alternative routes are generated with a modified Dijkstra algorithm that tries to generate 

a new route between any give source and destination. The new route must be significantly 

different (for example, 50% of its length or 10 minutes drive time should differ from each of 

those already computed) and not too long (e.g., maximal 10 minutes longer than the optimal 

route). Also, the difference between the new route and any of the old routes must be a 

contiguous set of road segments.  

 After SUMO ends, a new routes file is generated, in which the vehicles that arrived too late 

or too early have either modified departure times or different alternative routes. This new 

routes file is given as input to SUMO at the next step. 

The goal of the calibration process is to reach a stable offline traffic situation, where there are 

no catastrophic traffic jams and overly delayed vehicles. In our experience, SUMO runs with 

the initial routes file for more than five days (simulation time), in order to have all vehicles 

reach their destinations. Also, the rush hours are simulated by SUMO below real-time, and 

since a lot of road segments are filled with unmoving vehicles, huge queues of new vehicles 

wait to be inserted into the simulation.  

The calibrated route files obtained so far produced very satisfactory results: The simulation 

was more fluid, and the traffic jams – inevitable during the rush hours – did not become 

persistent. 
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13.6 Integration of Real-Time Data 

13.6.1 Vehicle detection loops 

The vehicle detection loops (VDL) are automatically geocoded in the preprocessing step, so 

that their location (edge, position on edge, direction) is precisely identified in the network.  

In the online system, the latest measurements from VDLs are aggregated and used to 

compute average traffic velocities on their corresponding road segments. These 

measurements also provide the number of passed vehicles, information which is used for the 

online calibration of the simulation: If the observed traffic is heavier (or lighter) than the 

simulated traffic, new vehicles are inserted into the simulation, with randomly chosen routes 

(or are removed from the simulation). 

Figure 13-4 shows the positions of vehicle counters installed on Upper Austrian roads (white 

markers denote vehicle counters from which no data has been received in the last 15 

minutes). 

 
Figure 13-4: Locations of vehicle counters (Upper Austria) 

13.6.2 Floating car data 

Floating car data (FCD) come from various providers in intervals between 1 and 30 seconds. 
The measurements contain position information in geographic units, which is used to match 
the readings against the edges (road segments) of the road network. 

In order to derive an accurate view of the traffic from FCD, it is not sufficient to determine the 
most probable road segments where readings were taken. Indeed, we received a lot of false 
positives, i.e., measurements with very slow speed values, which were not due  to real 
problems in traffic but rather to waiting at a traffic light or slowing down and stopping for 
picking up a passenger (some of the sensors are installed on taxi cabs).  
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We designed a method for interpreting FCD where vehicles’ trajectories are computed and 
analyzed with respect to time and velocity. This is not an easy task; we have to tackle the 
following problems: 

- For a normally running car, measurements coming with a 30 seconds interval 

between them can be located on quite distant, non-adjacent road segments in the 

network. The missing road segments need to be guessed. 

- The geographical coordinates can give a position that is far from any street (recall 

that the route network is an inherently incomplete sub-graph of the whole Upper 

Austrian road network). There may be more than one road segment equally distant 

from this point. 

In order to validate the data of the last few minutes, a modified Dijkstra algorithm is 
employed. From a number of specific attributes (number of measurements, distance from the 
measurement to the road segment, direction, etc.) a value is computed, which is subtracted 
from the so-called weight of a road segment (usually its length, or drive time), a concept used 
by the Dijkstra algorithm: The shortest path is a sequence of road segments with minimal sum 
of weights. Consequently, the road segments containing (in the same direction, or closer to) 
measurements are preferentially chosen by the Dijkstra algorithm, so that the most probable 
route (i.e., trajectory) is eventually generated. 

On this trajectory, a plausible matching of measurements to road segments can be 
performed. The travel time can be then used to update velocities on all road segments 
contained in the trajectory (including those not matched to any measurement).  

13.6.3 Roadwords and roadblocks 

The roadworks information is obtained via the Traffic Message Channel (TMC) published by 
VAO. This is a real-time data link, where different providers are bundled to a single 
connection.  

13.7 TOMS 

The main task of the Traffic Online Monitoring System TOMS is to generate periodically an 
online snapshot of the traffic situation of Upper Austria.  

In order to achieve this, TOMS: 

- Loads the static data and instantiates internal data structures which are 

fundamental for all processing steps; 

- Starts a simulation loop, if a traffic simulation is running: TOMS collects its output 

and extracts traffic values for all roads with simulated vehicles; calibrates the 

simulation, inserting adjustments computed from the real-time data; 

- Starts a real-time data loop: TOMS collects and processes real-time data; overrides 

the default or simulated velocities on monitored road segments; generates an LOS 

(Level of Service) output. 

 In Figure 13-5 we show a diagram of this process.  
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The scenario builder is responsible for the dialog with the traffic simulation applications: It 
prepares scenarios – the input for simulations; it starts simulations, communicates with them 
and adjusts them as needed. 

The main requirement that must be met by the simulation is that it runs faster than real-time. 
Our initial attempts at integrating SUMO showed that, with the uncalibrated demand model, 
the rush hours cannot be simulated faster than real-time. We described our efforts to 
parallelize SUMO in our paper [2].  

Usually, a simulation runs in 5-minute steps. At the end of each step, the results are collected 
(e.g. as a SUMO dump) and sent to the scenario builder. These results, containing the status 
of every vehicle in the simulated network, are compared to the latest available real-time data, 
and adjustment decisions are taken (vehicles are added or removed, etc.). The adjustments 
are sent to the simulation, to be integrated for the next simulation step.  

We use TraCI, the online control interface integrated in SUMO, to control the simulation and 
calibrate it according to the latest information received from sensors. The messages that 
TOMS currently sends to SUMO via TraCI are: 

1.  “Add New Route”: A new route is defined, its ID and edges constitute the body of 
the message. 

2. “Add Vehicle”: A new vehicle is introduced into the simulation. The message contains 
the ID of the new vehicle and the ID of its route. 

3.  “Remove Vehicle”: A vehicle is removed from the simulation. The vehicle ID is given in 
the message. 

4. “Simulate To”: SUMO is announced that it has to run until a given time (contained in 
the message) is reached. 

A detailed description of our use of TraCI is contained in our paper [2]. 

We have to mention that it is possible to further calibrate the simulation with the average 
velocity on monitored road segments (and on roads with floating car data). For normal traffic 
situations, our experiments were unsatisfactory, leading to simulated traffic far slower than 
the real traffic. We reserve this calibration method for cases where the traffic is stopped due 
to events on the roads (e.g. accidents). 

Real-time data

Network and

vehicle routes

Simulation

TOMS

Traffic values

calibration

WMS

every minute

every 5 minutes

Figure 133-5 The two main loops in which TOMS collects traffic information.  
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13.8 Conclusions and Future Work 

In this paper, we gave an overview of the traffic online monitoring system developed in the 
project “ITS Austria West”. Based on soon-to-be public collections of road data, the system 
integrates real-time information received from various types of sensors to generate periodic 
snapshots of the traffic situation. Traffic simulation applications can be used to generate 
plausible traffic information on streets not covered by sensors. The output of our system is 
used by the Austrian traffic information system VAO, which provides services for multimodal 
routing. 

The system is configured to monitor the traffic on Upper Austrian roads, but can be 
effortlessly set up for any other regional scenario. 

The project is by no means finalized. Here are some directions in which we shall concentrate 
our efforts: 

1. Currently only SUMO was used in our simulation scenarios. We intend to integrate 
MATSim as well, both in the offline calibration and in TOMS.  

2. We are working on integrating the mesoscopic version of SUMO, provided by DLR 
for testing purposes. The calibration, which takes several weeks with the 
microscopic simulation, should be accomplished in reasonable time. 

3. Our demand model is distributed along the day with historical data from vehicle 
detection loops. The time-variation curves obtained from these historical data do 
not accurately reflect the daily development of the traffic, and thus our demand 
model does not properly reflect the reality. We are looking forward to a new 
origin-destination matrix with hour-based distribution of trips, soon to be made 
available by the Upper Austrian government. 

4. As a means to validating our traffic snapshots, streams from a set of video cameras 
are visually inspected and checked against the traffic situation exported by TOMS. 
However, most of the currently available video cameras are positioned in rather 
irrelevant locations, with little or no traffic, or where traffic jams are not probable.  

We plan to contact other providers of visual traffic information, either with static or 
airborne cameras.  

5. An important point on our agenda is replaying the traffic development in the last 
week, in addition to the online generation of traffic snapshots. It shall thus be 
possible to check our results against videos or images older than a day. 
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14.1 Abstract 

This paper presents a tool chain with which various geo data from the free available geo data 

base OpenStreetMap (OSM) can be used as input for modelling a railway line to be used in a 

railway driver’s cab simulation. Based on the Vires simulation software VirtualTestDrive and 

the so called SimWorld data base that has been developed by the Automotive department of 

the DLR Institute of Transportation Systems, this tool chain enables the fusion of 

heterogeneous data from different data sources. Further, it is analysed, which data are 

implicitly or explicitly described in the OSM data base. It is shown that elementary 

components of a railway simulation landscape including the railway track network as well as 

environment information can be extracted from these open data. 

Keywords: OpenStreetMap, Railway, Simulation. 

14.2  Motivation 

The Railway Simulation Environment for Train Drivers and Operators (RailSET®) at the DLR 
Institute of Transportation Systems in Braunschweig is a laboratory for analysing the train 
driver’s role in railway operation with a special focus on human factors (cf. [5]). Technically, 
the RailSET® is a realistic model of the train driver’s cab, where the movement of the vehicle 
is simulated by the moving track and landscape in the front and side window view as can be 
seen in Figure 14-1. 

This driver’s cab simulation requires a realistic virtual 3-dimensional model of the railway line 
including the track alignment and the railway signalling components, e.g. signals, balises and 
magnets, which are relevant for operation on the track. Further, the surrounding landscape in 
terms of houses, trees, bridges, tunnels and stations plays an important role in making the 
driver’s cab simulation as realistic as possible. 

Currently, the simulation in the laboratory RailSET® is based on the simulation software tool 
Zusi (cp. [2]). Zusi contains integrated interfaces for modelling own tracks and scenarios. 
However, this process is very time-consuming, error-prone and it does not consider the 
combination with existing, real geo data, e.g. digital terrain models or other public available 
geo data bases and digital maps.  
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Figure 14-1: The train driver’s cab simulation laboratory RailSET®. 

The aim of the neo-geography project OpenStreetMaps (OSM) founded in 2004 is to create a 
free geo data base, from which digital maps for various topic-specific applications, e.g. also 
simulations, can be generated. Based on “volunteered geographic information” (cp. [3]) these 
digital maps may suffer from various drawbacks including an unknown position accuracy and 
data inconsistencies (cp. [4]). However, the OSM data base with currently more than 3.8 
billion recorded positions stored in 2.3 billion nodes and 223.5 million ways also provides a 
big potential for creating new and enriching existing digital maps (cf. [12]). 

This paper presents a tool chain with which these OSM geo data can be used as input for 
modelling a railway line to be used in the railway driver’s cab simulation RailSET® to solve the 
problems of a manual content creation process. The following chapter describes the approach 
in detail: At first, the role of OSM geo data for generating digital railway maps in analysed. 
Secondly, the SimWorld tool chain for fusing heterogeneous spatial data from different data 
sources is presented. The adaption of the tool chain for the purpose described in this 
contribution closes the chapter. Section 14.4 gives an overview about the current state of 
implementation and the last section 14.5 provides a conclusion sketching future 
development. 

14.3 Approach 

14.3.1 Using OpenStreetMap geo data 

In a previous paper we presented an approach how a railway network can be extracted from 
the OSM data by means of introduced topic-specific attributes for describing the railway 
infrastructure in terms of topology, geometry, topography and accuracy (cf. [13]). We show in 
[15] that by using simple geometry algorithms, the required railway track network topology 
and geometry information can be generated directly from the existing OSM data base.  
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The extracted railway track network description is then imported into the RailDriVE® data 
base, which acts as central geo data storage for various railway applications, e.g. map-based 
positioning and track network visualisation. Additionally to the interface for importing from 
OSM, the data base contains also railway specific geo data, which have been gathered during 
measurement campaigns with the Railway Driving and Validation Environment (RailDriVE®) 
laboratory vehicle. In contrast to other data sources including OSM, these recorded positions 
are very accurate. The data base itself is implemented as a file-based SQLite data base and the 
aforementioned railway applications access the data by specified accessor and mutator 
methods. The data model follows the OSM structure driven by the concept “the simplest 
thing that could possibly work” (cp. [18]) defining only three basic datatypes: nodes, ways 
and relations. It is further possible to export the functional railway track description from the 
data base into the standardized railway data exchange format railML®. 

RailML® is a data exchange format based on the Extensible Markup Language (XML) 
focussing on railway applications (cp. [7]). At the same time, railML.org is an open source 
initiative working constantly at the development of this data exchange format for railway 
applications, which currently exists in version 2.2. The XML schema files and corresponding 
documentation can be downloaded for free from the organisation’s website [16]. From the 
three existing railML® sub-schemas, infrastructure, timetable and rollingstock (cf. [17]), only 
the first one is used for the geo data export from the RailDriVE® data base. 

The resulting tool chain for converting spatial data of the railway track network from OSM to 
railML® is depicted in Figure 14-2. 

 

Figure 14-2: The tool chain for using spatial data of the railway track network as stored in the OSM data base for 
various railway applications. 
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The presented tool chain can be used to extract a topologic railway track network from the 
OSM data base and export it into the standardized data interface for railway applications 
railML®. However, this functional description of the railway infrastructure is not sufficient for 
a 3-dimensional simulation of a railway line. Required components like a digital terrain model 
or landscape model cannot be described using railML® and they are only partly and implicitly 
given in the OSM data. Therefore, it is analysed in the following how the spatial data available 
in the RailDriVE® data base can be used for the driver’s cab simulation application in the 
RailSET® laboratory. 

14.3.2 The SimWorld tool chain 

In the Automotive department of the Institute of Transportation Systems driving simulators 
are established tools for the development work.The only difference between the RailSET® 
and the Automotive driving simulators is the typ of the driven vehicle. The necessary software 
and hardware components are similar. Even the manual set up of virtual environments for 
Automotive driving simulators is time consuming and error-prone. That’s why DLR came up 
with the idea to use remote sensing data for autonomous generation of these virtual 
environments (cp. [20]). The project SimWorld developed a first prototype of a tool chain to 
generate motoways and rural roads but the project also showed that only using remote 
sensing data isn’t really working. In a second stage the project SimWorldURBAN improved the 
tool chain by introducing established third party modules and also various data sources (cp. 
[19]) for being able to generate urban envronments, too. E.g. for generating the 3-dimensinal 
model of the roads Vires RoadDesigner is used, the city model is generated by Esri’s 
CityEngine and the merging of all generated 3-dimensional models is done with the help of a 
improved TrianGraphic’s Trian3D Builder. 

The generation of the roads is an essential part for a driving simulator in Automotive domain 
and includes different sources from cadastral data though to surveying (cp. [1]). OSM data is 
in this case not very suitable because only logical information and only few layout data are 
available. For creating the surrounding at least the city model is important to re-create a city 
realistically. For SimWorldURBAN a rule based approach is used (cf. [19]) to have the possibility 
for an easy update of the city model. Parameters for tuning the content creation are also 
gathered with the help of heterogeneous data. In a Bachelor thesis done in 2013 in the 
context of the SimWorldURBAN project an approach is presented, how OSM data can be used to 
create a LOD1 (Level of Detail) model of the buildings (cf. [21]). In combination with the 
software tool CityEngine from Esri, it is possible to partly automatically generate a textured 
and modelled LOD2 city model. Despite all the available data within the OSM data base a lot 
of cleaning work has to be done and additional data like layouts are necessary. That’s 
representative for many details that are essential for a realistic virtual environment in a driving 
simulator. The following figure shows an early version of a composed environment. 
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Figure 14-3: automatically generated and composed driving simulator environment 

The tool chain approach extents the SimWorld data base of the previous project. The heart of 
this data base is the description of the road and the environment in a each standardized way. 
For the road description OpenDRIVE® is used. OpenDRIVE® is an open XML based format for 
describing the network logic and the road layout. railML® as described above can be seen as 
an analogue description format. The benefit of using open and established description 
formats is the possibility to use the stored data not only for driving simulators but also for 
large-scale traffic simulations. [6] describes a coupling between SUMO and a typical driving 
simulator like Vires VirtualTestDrive. Common basis is the usage of the very same road 
network defined in OpenDRIVE® format. Additional to that, SUMO can also import Shapefile 
data for improving the visualisation that is also stored in the SimWorld data based and 
generated by the tool chain before. 

14.3.3 Adapting the tool chain for railway applications 

By changing the RailSET® driver’s cab simulation software environment from Zusi to Vires 
VirtualTestDrive, the basis for adapting the SimWorld tool chain enabling the usage of 
fusioned heterogeneous geo data from various sources for describing the transport network 
and the landscape is provided. In parallel to the Vires Road Designer the Vires Track Editor is a 
central component of the tool chain as it converts the functional description of the railway 
track network into a 3-dimensional model of the line, which can be visualized by the Vires 
simulation tools. As described above, the SimWorld data base is able to process 
heterogeneous geo data from various sources, e.g. digital terrain models, city models and 
track descriptions. By using the Trian3D Builder software tool the 3-dimensional track model 
can be fused with these data forming a complete 3-dimensional model of the landscape. The 
3-dimensional model of the road is in a way replaced by the model of the railway line, all 
other generated parts remaining the same and the overall composing isn’t touched. The 
resulting tool chain is depicted in the following figure. 
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Figure 14-4: Structure of the tool chain for simulation-based landscape generation in the RailSET® 

14.4 Implementation 

The described tool chain connecting the RailDriVE® geo data base with the driver’s cab 
simulation RailSET® and in parallel connecting railway and automotive spatial data processing 
is currently being implemented. For both, the RailDriVE® and the SimWorld data bases, the 
public available data base of OpenStreetMap can be seen as a huge data source providing 
various input for the road/rail network description and the model of the surrounding 
landscape. 

The generation of a topological railway track network from the OSM data base has already 
been described in section 14.3.1. Figure 14-5 depicts an example of this processing applied 
for the railway line from Braunschweig to Gifhorn. The result in form of a topologically 
correct and with further tags enhanced railway infrastructure model is imported into the 
RailDriVE® data base. 

At the same time, OSM data can be also used for determining a digital terrain model: In 
general, the OSM nodes do not contain a fixed parameter describing their vertical position 
and only 2% of all the nodes have the tag “ele”, which is defined as the elevation of a point 
in reference to the WGS84 coordinate system (cf. [10], [8]). However, in [9] and [11] a 
method for integrating global elevation data that has been collected during the Shuttle Radar 
Topography Mission (SRTM) with the OSM data base and thus gather information about the 
altitude of the landscape is described. The work presented in this paper uses the digital terrain 
model that has been obtained from the ordnance survey institution. 

As already described in section 14.3.2 it is further possible to extract information about the 
height of buildings from the OSM data base. The data is used as input for the creation of the 
3-dimensional LOD1 model of the buildings being a central part of the landscape in urban 
environments (cf. [21]). 
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Figure 14-5: Generating railway track network from OSM: The first picture shows the rendered OSM geo data 
for the railway line between Braunschweig and Gifhorn (left). The geo data for this area are then extracted from 
the OSM data base and visualized in JOSM (middle). After processing the OSM-4-Railways tool chain, the 
corrected and enhanced railway line infrastructure remains (right) [14]. 

14.5 Conclusion 

This paper desribed a tool chain with which various geo data from the free available geo data 
base OpenStreetMap can be used as input for modelling a railway line to be used in a railway 
driver’s cab simulation. Further, this paper gave a short overview about the different options 
of using OSM data as input for the described railway simulation landscape creation tool chain 
focusing especially on the generation of the track network information. It has been sketched 
how, based on the Vires simulation software VirtualTestDrive and the so called SimWorld data 
base, the presented tool chain enables the fusion of heterogeneous data from different data 
sources. 

In the next step, the performance of the railway simulation landscape creation tool chain shall 
be validated by comparing its result with a “conventionally” modelled railway line. Since the 
company Vires generated a simulation of the railway line from Braunschweig to Gifhorn 
crossing an area for which the DLR Institute of Transportation Systems already owns a lot of 
different spatial data sets, the validation will be applied for this track. It is expected that the 
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available geo data including OSM provides a basic set of information required to build a 3-
dimensional simulation landscape. The results of this study will be presented in a follow-up 
publication. 
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15.1 Abstract 

In this paper, we show the development process of a new proposed feature for 

OpenStreetMap (OSM) traffic light tags. We introduce the needs for such kind of information 

in OSM and define requirements for our simulation needs. After comparing different traffic 

light tagging ideas and matching them to our requirements we come to the conclusion to 

extend the current classic way of tagging with OSM relations, which define turn restrictions 

and traffic light information. As a proof of concept a plugin for the popular OSM editor JOSM 

is shown as well as a conversion implementation of a complex intersection from OSM to 

SUMO is presented. 

Keywords: OpenStreetMap, Traffic Signals, Traffic Simulation 

15.2  Introduction 

The use of OpenStreetMap (OSM) (1)  data in traffic simulation environments is very common 
nowadays (2), (3) , (4). No other traffic network data sources offer such high quality data in 
urban areas for free without difficult licensing restrictions. Nevertheless, there are still some 
areas in OpenStreetMap, which could be improved to make traffic simulations out of 
OpenStreetMap data even better. 

Traffic lights and lane information are OSM features which are still underrepresented even in 
areas, which already have been mapped in great detail. Reasons for this are mostly ease of 
use or need for this specialized information. Even simple information such as the number of 
lanes of a road are still used sparsely. 

In this paper, we show how we extended the current OpenStreetMap traffic signal model 
with more detailed traffic signal data, how to convert this new information to a valid SUMO 
simulation scenario and how to use the traffic signal information in our Vehicle-2-X 
Simulation environment. 
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15.3 Extending the OSM Format 

Traffic Lights in OpenStreetMap are usually modeled using only one node per intersection, 

regardless of the number of actual traffic lights, number of lanes at that intersection or 

intersection geometry (see Figure 15-, Figure 15-). 

Today, there exists no concept in OpenStreetMap, which can be used to represent detailed 

traffic light information. There are proposed features that try to model more advanced signals 

information at intersections7 with focus on optimized information for navigation systems, but 

these cannot be used to include signal information nor are they optimized for simulation 

purposes. 

To enhance the traffic light model in OSM, we collected different requirements that a new 
solution might address and added a weighting from one to ten (ten being most important) to 
each requirement (in parentheses): 

1. All possible (physical) assignments between lanes and traffic lights can be captured 

(10) 

2. There are no adjustments needed for simple one-lane intersections (8) 

3. Signal phases and timing information can be defined per traffic light head (5) 

4. Map visualization is possible (2) 

5. Mapping of intersections can be done efficient with existing tools (7) 

6. Technical evaluation of intersections, lanes and traffic lights is possible (i.e. no 

undefined states, unique interpretation possibilities) (7) 

7. Downwards compatibility, i.e. intersection geometry information remains untouched, 

existing tools should still work with the extended attributes (10) 

                                            

7 https://wiki.openstreetmap.org/wiki/Proposed_features/Set_of_Traffic_Signals 

Figure 15-2 Complex Traffic Light Controlled 

Intersection 

Figure 15-1 Satellite View of Complex Intersection 
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To find a suitable solution, we analyzed different traffic light (TL) tagging ideas. 

The classic traffic light tagging as it is used currently, contains one traffic light tag per 
intersection. Turn restrictions usually belong to whole ways. 

The lane traffic light tagging uses a visual way of traffic light tagging. Each lane is modeled 
individually, traffic lights and turn restrictions are applied directly to the lanes. 

Star traffic light tagging is an abstract way to model lanes logical. The intersection node as 
used in the classic traffic light tagging stays the same, but roads are splitted into individual 
lanes. 

The area traffic light tagging models the whole intersection as one OSM-area, where each 
lane connects to the intersection. 

 

Tagging Type Pros Cons 

Classic TL 
Tagging 

 Simple geometry  Phases and timing not 
possible 

 No lane-specific TL-
Tagging 

Lane TL Tagging  Traffic Light tags per lane 

 Turn restrictions per lane 

 Complex geometry 

 High mapping costs 

 Uses huge amount of data 

Star TL Tagging  Logic modeling of lanes 

 TL and Turn restrictions per 
lane 

 Downwards compatible 

 Medium mapping costs 

 Visual representation != 
logic representation 

Area TL Tagging  Individual lanes 

 

 Incompatible with current 
routing engines 

 Improper usage of areas to 
model intersection-
connections 

By comparing each requirement with the various traffic light modeling methods, we came to 

the following requirements matrix (see Table 15-): 

Table 15-1 Comparison of different Traffic Light Tagging Methods 

Figure 15-3 Classic, Lane, Star and Area Traffic Light Tagging 
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Requirements 

 (1) (2) (3) (4) (5) (6) (7) 

Load 10 8 5 2 7 7 10 

Classic 0 10 0 7 10 10 10 

Lane 10 10 0 10 0 5 10 

Star 10 10 0 3 5 5 10 

Area 0 10 0 3 5 0 0 

       

One can see that the alternative tagging methods don’t do better than the classic tagging 
method at least with regard to the defined requirements. Therefore we came to the 
conclusion to introduce an extension of the current relation-model by adding a "traffic 
signal" relation, which enables lane precise traffic signal modeling (right, left, straight or 
combinations of all directions). This offers a high flexibility but also keeps the classic tagging 
system. 

Table 15- shows the necessary extensions. By using the common concept of referencing 

already existing attributes (lanes) and extending them with new options (from, via, to) existing 

information can easily be reused. Phase and timing information is described in a similar way 

to SUMOs way of representing traffic signal information (| - separated values for phases and 

timings). 

We also show the usage of our easy-to-use plugin for the popular Java OpenStreetMap editor 

(JOSM), which supports the user in creating new or updating existing traffic light information 

in his/her area (see Figure 15-). 

 

Table 15-2 Requirements Matrix for Different Tagging Alternatives 

Figure 15-4 JOSM Traffic Signal Editor Plugin 
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Attribute 

 

Description 

type type description of the relation (traffic_signals) 

ref:lanes:from mapping of input lanes 

ref:lanes:via mapping of via lanes 

ref:lanes:to mapping of outgoing lanes 

phases description of the traffic signal phases 

timing description of traffic signal timings 

 

15.4 Conversion of OSM Files 

To convert standard OSM data to our simulator specific formats, we already use a tool called 
VSimRTI scenario-convert to import OSM data and export to different formats, e.g. SUMO 
*.nod.xml, *.edg.xml and *.tll.xml files. We extended this tool to make use of the additional 
traffic light information and export the relevant files to a SUMO and VSimRTI compatible 
format. 

In this paper, we show the conversion process from the raw OSM file to the SUMO traffic 
network. Some OSM features can be translated direct to the corresponding parts in the 
SUMO files (see Figure 15-) , while in other parts a more complex transition is needed (e.g. 
intersection lane modeling) 

     

A screenshot of the conversion can be seen in Figure 15-. In this example, the intersection in 
Figure 15-3 was extended with the advanced traffic signal information, which was gathered 
by measuring the traffic signal phases. Then, the OSM file was parsed using VSimRTI scenario-
convert and SUMO netconvert created the SUMO files. 

The SUMO tool netconvert offers also an osm conversion feature to import OpenStreetMap 
files directly and write SUMO compatible files, including traffic light guessing and intersection 
joining. Unfortunately, this method didn’t work due to the intersection complexity. With 
further effort on modeling the intersections, better results are expected. 

Table 15-3 Fields of the new traffic_signal relation 

Figure 15-5 OSM Traffic Signal Extension and Corresponding Tags and Values in SUMO 
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15.5 Simulation 

We use the generated traffic network and traffic light programs in our V2X simulations using 
the Vehicle-2-X Simulation Runtime Infrastructure (VSimRTI) (5). 

VSimRTI is developed by Fraunhofer FOKUS is a framework for simulation of Vehicle-2-X 
scenarios by coupling different simulators (e.g., traffic simulator, network simulator, 
application simulator...). The framework is based on the High Level Architecture (6) which 
offers mechanisms to connect and synchronize different simulators using a common runtime 
infrastructure. 

 

SUMO is mainly used as traffic simulator in VSimRTI, whereas communication and 
applications for vehicles are simulated on other simulators. Information about traffic lights is 
simulated in SUMO, but can be altered from an application running on a vehicle. 

15.6 Conclusion 

The presented extension of the classic traffic light definition in OpenStreetMap offers a lot of 
advantages for traffic simulations. By adding relations with information of phases, timing and 
turn restrictions, even complex intersections can be modeled comparatively easy using only 
OpenStreetMap. Furthermore, this information can also be used easily in traffic simulation 
tools such as SUMO. Lane based turn restrictions or even lane numbering alone being one 
crucial information for routing engines, this feature can also help to spread OpenStreetMap 
data even more. 

15.7 Outlook 

Although the presented methods allow for tagging complex intersections and advanced 
traffic light definitions, the proposed features currently only include static traffic light 
information. Further traffic signaling mechanisms, e.g. induction loops or camera controlled 

Figure 15-6 SUMO Traffic Simulation with junction connections shown 
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traffic lights, public transportation prioritized traffic lights or green wave settings or 
daily/weekday setups are not handled by the presented feature. Adding these or offer 
possibilities to include some kind of online requests for the current status might add some 
valuable information to next generation routing applications. 
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16.1 Abstract 

The increasing number of vehicles and mobile users has led to a huge increase in the 

development of Advanced Driver Assistance Systems (ADAS). In this paper we propose a 

multi-agent-based driving simulator which integrates a test-bed that allows ADAS developers 

to compress testing time and carry out tests in a controlled environment while using a low-

cost setup. We use the SUMO microscopic simulator and a serious-game-based driving 

simulator which has geodata provided from standard open sources. This simulator connects 

to an Android device and sends data such as the current GPS coordinates and transportation 

network data. One important feature of this application is that it allows ADAS validation 

without the need of field testing. Also important is the suitability of our architecture to serve 

as an appropriate means to conduct behaviour elicitation through peer-designed agents, as 

well as to collect performance measures related to drivers’ interaction with ADAS solutions. 

Keywords: Mobile ADAS, Driving Simulators, Serious Games, SUMO. 

16.2 Introduction 

The technological advances on both the mobile and transportation industries are remarkable. 

This has made the development of ADAS an interesting topic [1]. However, even though most 

high-end cars nowadays ship with built-in embedded systems, most of the older cars do not 

have such devices. This brings about an interesting research oportunity, which is to develop 

and test ADAS that run on low-cost devices, such as an Android tablet or smartphone.  

The main goal of this paper is to describe the methodology of our MultiAgent System (MAS) 
based driving simulator, integrating SUMO microscopic simulator with driving simulators. We 
also intend to describe our implementation of a test-bed to easily develop ADAS using the 
system, simulating their use in a low-cost and controlled environment. 

There are several benefits to testing an ADAS in a simulated environment rather than on a 
real scenario. As the tests are not conducted in a real physical location, they are not subjected 
to travel times, traffic or other adverse conditions which could render them mute. This, as 
well as being able to deploy the simulator in low-cost computers, and therefore reaching 
more test subjects, leads to time compression of the tests. Noticeably, cost reduction is 



16.3 Background & Related Work 

186 

another significant benefit as the eletrical cost of running a simulator is dismissive when 
compared to fuel costs of real world testing. Besides preventing the safety risks inherent to 
driving, simulation allows us to control the test environment and manipulate it according the 
specificities of the ADAS being tested. 

The objective of our work was to develop the MAS and include a test-bed that was easy to 
implement and replicate in low-cost environments. We aimed to combine SUMO microscopic 
simulator with IC-DEEP, which is a driving simulator developed at LIACC [2], with the 
GeoStream framework developed at SI&CG, as well as to enhance them with logs of 
simulated GPS positions in a mobile device. To achieve so, a mobile application/service was 
developed in order to receive this communication from the simulator and override the default 
GPS sensor of the device. We wanted to make it easy to extend the comunication between 
the simulator and a mobile device, providing the latter with more information such as the 
current speed limit, semaphoric information, or other data from the network. 

This work aims to contribute with a novel multi-faceted methodology to simulate and 
research multiple human factors in Intelligent Transportation Systems (ITS) and, particularly, 
with a novel approach to test ADAS that will enable developers to validate and test their 
applications more easily and efficiently while reducing costs. 

In the following sections we describe the development and results of our implementation. In 
section 3 we introduce some related state-of-the-art works on the subject of ITS, focusing on 
simulation, on the integration of different scope simulators and also on the topic of serious 
games. We then decribe our approach, architecture and development details. Finally we 
present our preliminary verification as well as their analysis in section 5. We finish this paper 
with a set of conclusions and interesting future work. 

16.3 Background & Related Work 

The Artificial Transportation Systems  (ATS) [3], [4] concept has been one of the main research 

topics in the IEEE ITS Society [5]. A typical approach to ATS modeling and developement is the 

MAS methapor. Another potentially concomitant approach is the HLA concept. The concept is 

based on the idea of distributed simulation, so as to meet the requirements of all usages and 

users rather than of a single simulation model and analysis perspective [6]. 

In [7], authors propose to integrate a driving simulator and a traffic microsimulator, in an 

attempt to tackle the mutual-dependence between the driver's behavior and traffic 

conditions. 

Combining SUMO microscopic traffic simulation [8], using MAS capabilities, with other 

simulators has also been researched [9]. Authors in [6] have studied a HLA-based approach to 

simulate electric vehicles in Simulink and SUMO. Driver-centric simulation has been 

researched by authors in [10], where they have developed a simulation tool that provides 

feedback back to the network based on the driver's behaviour.  

Driving simulators are no doubt an important tool when researching ATS, specially so when 
studying the influence of human factors in driving faults [2]. These faults often occur in direct 
consequence of performing secondary tasks while driving [11]. In [12] authors introduce a 
game-engine-based for modeling and computing platform for ATS. They describe the artificial 
population both in their macroscopic and microscopic aspects. 
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Regarding driving simulators with ADAS testing capabilities, authors in [13] propose a 
reconfigurable driving simulator with several components to accomodate different ADAS 
testing or training. A framework for ADAS assessment and benchmarking has been 
developed by [14], with configurable scenarios and 3D scenes and multiple sensors input. 

Authors in [15] developed a Full Speed Range Adaptive Cruise Control with their platform for 
ADAS prototyping and evaluation, SiVIC. The platform is capable of reproducing vehicle and 
sensor behaviors in a realistic fashion, according to the configured environment in the 
simulator. The developed platform also simulates noised and imperfect data. 

A system comprising a large scale driving simulator, built in a 360 deg full dome with 3D 
scenes from real city area has been developed by [16]. The system contains a multitude of 
features such as real-time hardware-in-the-loop, wireless communication devices and bio 
signal analysis and is used to develop and test ADAS as well as Advanced Safety Vehicle, ITS 
infrastructure and others. 

16.4 Methodological Approach 

The proposed system architecture is as described in Figure 16-1. The main module of the 

system is the SUMO simulator, which is responsible for the network's multi-agent microscopic 

simulation, and has multiple driving agents. This module provides an overview of the whole 

MAS and can be manipulated directly.  

The SUMO module also acts as a “central server”, providing all the essential information for 

both IC-DEEP and the High Fidelity Simulator. This information consists of the network 

infrastructure and the agents in the system, whereas terrain morphology and road or building 

geometry are provided by the GeoStream framework. 

Both of the driving simulators have a local representation of the whole MAS and are capable 

of controlling any driving agent. The simulators are also able to connect to an Android device 

and pass along all the information deemed necessary, such as the GPS coordinates of the 

current driving agent being controlled. The Android device is running a service that receives 

the incoming connections from the simulator and also the ADAS being tested. The dotted 

area in Figure 16-1 corresponds to the developed components as of the writing of this paper. 

 

 

Figure 16-1:  Overview of the system’s architecture 
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16.4.1 Simulators & GeoStream Framework 

The proposed system architecture has two simulators; however, as of the writing of this 

paper, only the IC-DEEP simulator has been enhanced and integrated into the framework. The 

latter is implemented in Unity3D and has the GeoStream framework embedded directly. The 

GeoStream framework connects with OpenStreetMaps, Google Geolocation API, Google 

Altitude API and other data providers in order to fetch the required geographical information 

of a given location and remodel it in a fashion which can be interpreted by all the simulators 

in a coeherent and consistent way. This is specially important to the SUMO microscopic 

simulator as the raw network data imported from OpenStreetMaps, typically, generates 

unrealistic ways and intersections. The information generated by GeoStream framework is 

then parsed into both simulators to generate a 3D scene that is representative of the chosen 

test location. 

16.4.2 Mobile Device 

The Android service sets the current GPS location using MockLocation API to override the 

default location provider. All applications running on the mobile device that use or perceive 

the current location will also be affected by the running service. 

The new GPS coordinates are sent from the simulator every second; however, this value is a 

parameter of the simulator and so can be adjusted to the specific needs of each scenario. The 

developed service can be run as a standalone application, and thus testing the ADAS mobile 

applications independently, as shown in the left side of Figure 16-2. There is also the option 

to use the service as a library in any Android application, as long as it matches API level 19, as 

shown in the right side of Figure 16-2. 

 

 

16.4.3 Interaction of Driving Simulators and Android 

A typical interaction between the simulators and the mobile devices is shown in Figure 166-3. 
The modules are connected via TCP-IP sockets due to implementation simplicity. The 
communication messages are formatted in JSON and therefore the message contents can be 
easily changed to add different kind of data.  

The basic message template contains two compulsory fields, which are latitude and longitude. 
Other optional fields are the current speed, the GPS accuracy, the message timestamp or even 
the speed limit from the current location. A specific instantiation of this interaction is 
discussed in the next section. 

 

Figure 16-2: Standalone mobile application (left) and mobile application with included library (right) 
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The coupling of SUMO microscopic simulator with the driving simulators, namely with IC-
Deep, uses the same methodology as implemented and described elsewhere [17]. However, 
this raises some issues regarding the communication channel, as the SUMO TraCI protocol 
uses sockets and currently does not support more than one active socket. This is obviously a 
bottleneck when controlling multiple driving agents and a possible SUMO extension to 
support parallelism in terms of communication is in study. 

16.5 Preliminary Verification 

The preliminary verification to assess the proof of concept and also the efficiency of the 
developed architecture focused on the modules in the dotted area of Figure 16-1, the 
remainder of the system will be developed later on, as mentioned in the next chapter. We 
have divided the verification into two independent tests. Both of the tests were performed in 
the same geographical location, which was Porto's downtown, on Avenida dos Aliados, as 
seen in Figure 16-4. 

 

Figure 16-4: Generated 3D Scene ortographic view 

Figure 166-3: Typical interaction between IC-DEEP simulator and an ADAS 
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In the first experiment we test the simulator accuracy to represent real-world scenarios using 
the GeoStream framework. The other test aims to emulate the GPS signal on the mobile 
device. 

16.5.1 Simulator Accuracy 

To test the simulator accuracy we have collected multiple GPS trace logs while driving a real 
car in the selected geographical location. We have then overlayered a visual representation of 
the obtained traces on the simulator and on Google Earth both, the results can be seen in 
Figure 166-5. The results show that the generated 3D scene is highly representative of the 
real world location. In one of the trace logs we have noticed an error and highlighted it in 
Figure 166-5, this error happens due to the data being collected as raw, untreated GPS, 
where the road matching algorithm [18] has not been applied. This is also an interesting 
result, as the error can been seen in both the simulator and Google Earth alike. 

 

Apart from testing the fidelity of the simulation with GPS trace logs, it is also noticeable that 
the ortographic view of the generated 3D scene very much resembles the satellite image of 
the same location, as it can be seen in Figure 16-6. 

 

Figure 166-5: GPS traces on the simulator (left) and Google Earth (right) 
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Figure 16-6: Satellite image of Av. dos Aliados 

16.5.2 Mobile Device ADAS 

To test the communication and emulation in the mobile device the setup consisted of a basic 
usage scenario, using a simple ADAS that shows the user his current and average speed, the 
total kilometers traveled, and, most importantly, warns him when he exceeds the speed limit 
of the current location as shown in Figure 166-7.  

The interaction between the simulator and the mobile application followed that of Figure 
166-3. To run the simulation the mobile application must be started and the device's IP 
address, which is shown in the application initial screen, must be entered in the simulator 
configuration screen. After this the simulation can start and the simulator internally updates 
the geographical coordinates as the driver traverses the network. These coordinates are 
passed on to the mobile device as described above, every second and via a JSON formatted 
message over a TCP-IP socket. 

 

 

In this particular simulation the information sent to the mobile device consists of the current 
GPS coordinates and the speed limit of the current location. The heading of the vehicle is 
calculated internally by the mobile application using a simple algorithm that computes the 

Figure 166-7: Developed ADAS 
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bearing with the last two known locations and thus, even though this can be done easily, 
there is no need to pass on an orientation variable from the simulator. 

The main goal of this experimentation was to understand whether or not the mobile device 
simulated GPS position and calculated speed matched those of the simulator. We have used 
the driving simulator and Google Maps application to compare the marked position while 
driving. To compare the driving speed we have used the developed ADAS.  

Even though the results from the simulator and the mobile device were not recorded, any 
inaccuracies were not noticed when testing. The only possible minor differences would be 
due to the fact that the Google Location API on the Android device automatically adjusts the 
current position to the nearest road, which is, as mentioned above, a technique called road 
matching. 

16.6 Conclusion 

In this paper we presented a multi-faceted MAS-based driving simulator methodology. The 
presented framework can be used to simulate and test multiple aspects in human factors in 
ITS, generally. Among others we identify some that we consider more expressive of the 
system's spread, such as supporting a Serious Game [19] to test driving behaviours and 
ergonomics, simulating driver's idiosyncrasies effects on the ATS with peer-designed agents, 
and also prototyping and validating Advanced Driver Assistance Systems. 

The preliminary verification has illustrated the system efficiency and usability, as well as its 
ability to accurately represent real-world scenarios without the need of extensive 3D modeling 
or expensive hardware setups. This ability allows researchers to conduct studies regarding 
singularities of the different geographical locations. 

As a great advantage over other systems we point out the fact that our system is always up to 
date in terms of real-world mapping, and also that there is no need to waste any time 
creating a scene when the sole purpose is to test an ADAS or do any other kind of simulation.  

In addition to implementing the remaining components of the proposed methodology, there 
is an ambitious workload of further developments. We would like to point out some that we 
consider prioritary and more challenging. We believe it would be interesting to support batch 
simulations, in order to collect significant data and extract more elaborate conclusions. There 
are also improvements specific to driving simulators that we envisage, such as more detailed 
scenarios and improved physics. 

It would also be interesting to develop cache servers that could store the responses from 
external services, and thus improve loading times. Another interesting enhancement would be 
to allow multiple agents to connect to multiple ADAS, simulating distributed ADAS 
applications while extending SUMO capabilities. There are also refinements to be done in the 
GeoStream framework, specially regarding road generation and also importing models and 
textures for different buildings. 
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17.1 Abstract 

The open tools SUMO and Python and the open database OpenstreetMap (OSM) are 
used to analyze urban cycling infrastructure. Endomondo is a well known database to 
upload GPC traces for particular purposes, as for example cycling for work/study 
purposes. SUMO has been used to convert OSM  to a road network while different 
Python modules helped to match Endomondo GPS traces to network edges and to 
reconstruct the routes. This means that the attribute-rich OpenstreetMap database can 
now be combined with routes generated from GPS traces. One possible application is to 
calibrate trip time model or route choice models for cyclists. This work describes a road 
matching procedure, and shows road matching results from traces created during an 
Endomondo contest in Bologna. Successively the identified routes are used to calibrate 
different trip-time models. 

Keywords: SUMO, Python, OpenStreetMap, Endomondo, GPS, road-matching, SUMOPy, 
bikeways, trip time models, route choice models. 

17.2  Introduction 

The use of open software and open data for transport modeling in general and bikeway 

planning in particular has attracted considerable research interests in recent years. There has 

been a constant evolution in the use and analyses of geo-referenced data: in 1995 demand 

models for cycling have been calibrated with geo-referenced topological characteristics and 

stated preference surveys [1, 2] whereas a similar work has been performed by combining 

data from Geographic Information Systems (GIS) with web-based questionnaires [3]. But only 

the recent diffusion of smart phones has brought the data collection to an unprecedented 

quality level: on the one hand, citizens started to record their commuter trips with the GPS 

functionality of their cell phones and to upload the traces on central databases like 

Endomondo. On the other hand, the community helped to expand and refine the geo-

referenced maps on OpenStreetMap.  The combination of transport supply (the road 

network) and transport demand (the bike trips) are very valuable information for transport 

planners and for the traffic management because it allows analyzing how the network is used 

and why. This means there is a real necessity to reconstruct the routes recorded by smart 

phones on geo-referenced maps and to conduct analyses using specific road attributes.  

So called map-matching algorithms have been developed to identify the road segments based 

on imprecise GPS data. In an early attempt, Dalumpines and Scott have proposed an 

algorithm where GPS data is only used to identify the location of start and end location of the 
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trip, while a shortest path algorithm applied to the road network has been used to connect 

origin and destination with a feasible route [4]. This map matcher has been used to extract 

basic statistics on cycling behavior in Austin, Texas, such as  location (heat maps), the type of 

used roads as well as average speeds [5]. A road matching algorithm developed by  Marchal 

et. al.[6] is based on maximizing the likelihood that a route is identical to the real route from 

where the GPS trace has been sampled. The latter approach takes into account all GPS points 

measured from the start to the end of the trip. Such map-matched GPS traces have been 

used to calibrate route choice models of cyclists [7, 8].    In the present work, the geo-

referenced world-wide road network of OpenStreetMap [9] has been used to identify the 

routes of volunteer cyclists who registered their GPS traces by means of cell phones on 

Endomondo [10] (or any other system that provides GPS traces). Once the single road edges 

of the route are recognized,  it is possible to analyze the road attributes associated with the 

edges of the road or bikeway chosen by the cyclists. Such route-attributes can be retrieved 

again through OpenStreetMap data or other resources. In the present work, the 

OpenStreetMap bikeway attributes within the concerned study area have been enriched by 

cycling specific characteristics. By retrieving the edge characteristics form the matched routes, 

one can extract myriads of information  on the infrastructure usage and the cyclist’s behavior. 

It is not only possible to assess how often and where cyclists use bikeways or roads; the GPS 

traces provide also timing information with each transmitted geo-referenced point. This 

allows estimating the duration of the cyclists on each edge of the route and comparing it 

against the attributes of the road or bikeway. Based on this information, a travel time model 

has been calibrated which contains various bikeway attributes. Such analyses can help the city 

to verify whether the present bikeway network is effectively used and where improvements 

are most needed.  

The software framework used for the present analyses is centered around various tools of 

SUMO [11,13] and Python [13].  In brief, SUMO has been used to generate a transport 

network from the open database OpenStreetMap and to identify the routes that fit best the 

GSM traces. For this map matching process also the python modules pyproj and shapely [16] 

have been involved. The numerical analyses and model calibration has made extensive use of 

the Scipy [15] and Numpy [14] package. The main focus of this work is on the map matching 

algorithm as proposed in Sec. 17.3.  In Sec 17.4. the map-matching has been applied  to 

Endomondo traces collected during a competition in Bologna. Thereafter the routes have 

been used to calibrate trip time models in Sec. 17.5. Section 17.6 is a critical review of the 

result obtained and makes suggestions for future improvements. 

17.3  The road matching  

Each GPS trace is a sequence of GPS points, recorded by the cell phone of a cyclist during her 

tour. Each point consists of a tuple with longitude, latitude and time information. The task of 

map matching is to identify the sequence of edges of a given road network, that corresponds 

most likely to the road links chosen by the cyclist who recorded the trace. The precision of a 

cell-phone is approximately +/- 20m with one GPS point every 5-10s. This is sufficient to 

associate an edge on pure proximity bases. However, the severe problems occur in urban 

areas with a dense street grid (e.g junction distances less than 20m) and a decreased GPS 

accuracy due to shadowing. This means, proximity alone is no longer an option, instead one 
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must guess the most likely sequence of joined edges that explain the cyclist’s route.   The 

algorithm used for the present work, can be divided into two steps:  

1.) assignment of weights to all edges of the network: around each edge, a buffer of ca. 

30m is created (polygon approximation). Then the number of GPS points within each edge 

buffer is detected, which is the computationally most expensive part. If one GPS point j can 

be found in mj edge buffers then its weight contribution to each of those buffer is 1/ mj. 

Finally the weight wa of edge a is given by 





aPj

a

j

a cL
m

w
1

      (1) 

where La is the length of edge a and the point set Pa contains all GPS points that are within 

edge buffer a. The small constant c=0.01 for ordinary road edges and c=0.005 for bikeways. 

The idea behind is that the minimum total route costs will be the routes whose buffers 

contain the maximum of GPS point. In the absents of a GPS points, the route should follow 

the shortest path. For this reason the length of the edge contributes as a small penalty, biased 

towards bikeways. 

2.) Shortest path routing: all edge buffers that contain the first GPS point constitute the 

set of source edges; and all edge buffers that contain the last GPS point constitute the set of 

sink points. Next, the shortest path (or the path that minimizes the edge weights) is calculated 

for each pair of source/sink edges. The matched route is finally the one that scores the lowest 

total edge weight of all possible routes. 

Figure 17-1 shows an example of a matched route on a road network in a particularly 
challenging situation with uni-directional and bi-directional bikeways. Note that the road 
matching algorithm identified correctly the route on the bikeway, despite the significant drift 
of the GPS points with respect to the road  coordinates. In Figure 17-1, two GPS points are 
even outside the 30m edge buffer. 
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(a) 

 

(b) 

Figure 17-1: Exemplification of the map matching algorithm. (a) Road network in blue and bikeways in green (on 
the left part bidirectional, on the right part split to two unidirectional) . The GPS points are the yellow dots, 
representing a bicycle movement from left to right. (b) Same street network, but with 30m wide buffers around 
edge in blue – buffers are partially overlapping (darker blue). The yellow line with circles represents again the 
recorded GPS points, whereas the bold yellow line indicates the identified road and bikeway edges. Note that 
the matched route crosses the road in the middle as to use the bikeway in the correct direction. 

Once the route edges are identified, it is possible to estimate the time interval  at  spent on 

each edge -- but only for the edges which contain GPS points in their buffer. The adopted 
strategy is the following: the time instance when a new edge is entered corresponds to the 
time of the first GPS point outside the previous buffer. The exit time of the edge is the time of 
the last GPS point in the same edge’s buffer.   

 

17.4  Road matching of Endomondo traces in Bologna 

GPS traces collected from bike-commuters during several month in the metropolitan area of 

Bologna have been matched on the SUMO network imported from OSM. The network and 

the recorded GPS points are shown in Figure 17-2. These are 9478 GPS traces, covering the 

entire road network.  

Crossing road here 

Bidirectional bikeway 

Unidirectional bikeways 

GPS points 

Matched route 

2 GPS points outside any buffer 
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(a) 

 

(b) 

Figure 17-2: (a) Road network (blue) and bikeway network (green) of central Bologna. (b) All GPS points (each is 
a black dot) of Endomondo mapped on the above road network. Note that the GPS points concentrate on the 
roads and appear as plain black. 

 

The technical details of the road matching procedure are the following:  

1.) Conversion of one-way roads into bidirectional roads in OSM format. This has been 

necessary to track down cyclists who went in the opposite direction of one way 

streets. In some cases a  two way street has been modeled as one way road, due to 

errors in the Openstreet database.  
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2.) The SUMO network file has been generated by netconvert. One important option 

has been to merge node within a radius of 15m to simplify many complex 

junctions. 

3.) Creation of edge buffer polygons: The SUMOPy tool parsed the network for edges. 

The edge buffers have been created with function of module shapely.  

4.) Splitting of GPS traces: The road-matching algorithms can fail if the cyclists make 

circular tours. For this reason it is necessary to split traces into possibly straight 

pieces in a pre-processing step. This simple algorithm has been used to avoid 

circular traces: if the sequence of GPS points contains a point that is half the 

maximum distance from the initial point, then the trace is split in two traces at the 

point of the maximum distance of the original trace.  

5.) Trace by trace matching: The GPS points of each trace have been projected with 

functions of the python module pyproj. The association of GPS points with edge 

buffers has been again performed by module functions of shapely. For each trace 

all, network edge weights have been calculated by applying the procedure as 

outlined above. The routing has been  performed using a modified function from 

the Dijkstra python module from the SUMO toolbox. 

The entire map matching is now available as a python plug-in of SUMOPy. The statistics of 

the matched results are shown in Table 17-1: 

Table 17-1: Basic statistics of the matching process with the Endomondo trace set. 

Total unidirectional road network length 660.61 km 

Unidirectional bike network length 72.67 km 

Number of routes detected  5979 

Number of routes containing at least one bikeway edge 3556 

Number of identified edges 88135 

Number of identified bikeway edges 17301 

Total distance travelled on all identified routes 15009.08 km 

Length of all edges with identified time intervals 10064.11 km 

Average speed on edges with identified time intervals  13.74 km/h 

Distance travelled on roads without bikeway 7185.64 km 

Average speed on roads without bikeway 13.5 km/h 

Distance travelled on roads with bikeway 2878.47 km 

Average speed on bikeways 14.35 km/h 

 

Some remarks are in place: the proposed map matching algorithm will always find a route as 

long as the start and end edges are. Approximately 63% of all the provided traces have been 

matched to road edges. Most of the unmatched traces were simply outside the considered 

road network.  

If during the trip some of the edges have no GPS points in their buffer, then the Diejkstra 

algorithms will bridge the missing pieces with the shortest path, no matter how many edges 
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are not covered by GPS points. However, this can also become a source of misinterpretation. 

In fact, biggest routing errors occur when edges which are connected in reality, but 

represented disconnected in the OSM database. If a GPS trace runs over such disconnected 

edges, then the router tries to find the shortest connected alternative route.  This false 

alternative is often much longer than the real route and contains edges that are not part of 

the trip. The total length of all routes is 15000km, but only 2/3 of the distance is made of 

edges with GPS points in the respective buffer (which allows also identifying time intervals). 

This means 1/3 of the distance has been bridged by shortest path routing. However, it has not 

been attempted to quantify the occasions when false routing took place due to a 

disconnected network.     

Regarding the statistics, the average velocities are realistic city-velocities for experienced bike 

commuters. The speed difference between bikeway and normal road are not significant. 

Approximately 30% of the cycled distance has been on bike ways. On the other hand only 

just above 10% of all roads are bikeways.  

17.5 Link time model calibrations 

With link time models, one tries to estimate the time necessary to cross a network link (or 

edge) based on link attributes such as for example the length La or the type of successive 

intersection.  In this work, different models have been calibrated with the aim to investigate 

the calibration quality, and to find out which link attributes can be included in the model. The 

various model parameters have been estimated by minimizing the quadratic error between 

the estimated model time at̂  and the measured time at , which has been determined from the 

above described road matching process. 

As a first approach the simplest model is estimated, which is nothing but the average velocity, 
hence   

aa Lt ˆ       (2) 

where La has been the link length and the single parameter v/1 is the inverse average 
speed.  

The previously identified routes and intervals of the Endomondo competition have been used 
to calculate this average velocity. It is interesting to have a closer look how good the average 
velocity estimates the link times. For this purpose, a further data cleaning has been necessary 
to prevent unrealistic values to distort results. As the GPS points have a limited time- and 
space resolution, all edges below 20m and time intervals below 20s have been excluded from 
the calibrations. Furthermore, edges with edge speeds over 40km/h and below 1m/s have also 
been excluded. 

The resulting average speed is hkmv /1.15 , which is slightly faster than the overall average 
(see previous section), mainly because short links have been eliminated. Short links are often 
at intersection with particularly long waiting times. In addition, acceleration/deceleration 
maneuvers are dominant and lower the average speed. Figure 17-3 shows the estimated 

times at̂  versus the measured times at for each link. Easily recognizable are some horizontal 

point-patterns. Each horizontal pattern corresponds to an edge with a certain estimated time  
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at̂  (which is constant because proportional to its length). But for the same edge, there is a 

large range of measured times at , presumably produced by different cyclists crossing the 

specific link. These large horizontal time intervals  reveal the problem that absolute travel 
times depend strongly on the physical condition and driving style of the cyclist.   

 

Figure 17-3: Estimated times  at̂ versus measured times at  using the average velocity, see from Eq. (2). 

 

In order to account for the cyclist’s driving style, her free-flow speed has been used to 
normalize the model as follows: 

F

a
a

V

L
t ˆ  .     (3) 

The free-flow speed FV has been determined by taking the maximum encountered speed in 

each GPS trace, assuming that the trace has been recorded by the same person. Surely this is 
not always the maximum speed of a cyclist, but the best possible indicator retrievable from 
the available GPS traces. 

The calibration resulted in an optimal parameter 38.1 . In other words, the average bicycle 

speed equals 0.72 times the free flow speed. Figure 17-4 shows the results with the speed 
normalized model. The clear cut upper bound represents the edge-times for which free-flow 
conditions have been detected. Note that the calibration quality improved, with a coefficient 
of determination rising from R2=0.56 (basic model) to R2=0.66. 
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Figure 17-4: Estimated times  at̂ versus measured times at  using the normalized speed model from Eq. (3). 

  

In an attempt to further improve the time estimation, different more sophisticated models 
have been calibrated, taking into account the type of intersection that follows the edge. As 
an example, the following three parameter model has been considered: 

  

aa

F

a
a MN

V

L
t 21
ˆ    .     (4) 

where Na is the number of conflicting road legs of the successive junction and Ma equals one 

if the junction is controlled by a traffic light, otherwise zero; either Na or Ma is zero. 

However, for this model the coefficient of determination could not be improved with respect 
to the previous model from Eq.(2). Also other link attributes, such as lane width or physical 
obstacles (which have been available for a limited zone) did not further improve the 
calibration quality. 
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17.6 Conclusions 

A map matching algorithm has been developed, capable of a detailed analyses of the road 
network usage as it allows combining the road attributes provided by OpenStreetMap with 
the geo-referenced traces generated from GPS data. Data and all tools such as Sumo and 
Python are open. 

The map matching algorithm has been tested with GPS traces collected during an 
Endomondo cycle-to-work competition in Bologna and approximately 15000km km of routes 
could be identified. Furthermore the timing information in the GPS traces have been used to 
calibrate link time models for cyclists.  

Concerning the road-matching process, various error sources have been encountered. The by 
far biggest error source is due to false routing at network nodes where the edges in the 
OpenStreetMap network are not connected, even though they are connected in reality. The 
consequence is that the route matching algorithm must create a route around the 
disconnected edge. Another problem is that cyclists often drive through pedestrian zones or 
parks which are either not modeled in Openstreet or have not been imported by netconvert 
(net gets too heavy when importing all footpaths)- Also in this case the route matching will 
try to find the shortest route around the un-modeled area.  Approximately 30% of the 
identified routes are routed and not covered by GPS point. But the amount of false routing 
could not been quantified.  

A by-product of the route matching algorithm are the entry- and exit times of route-edges. 
These times have been used in an attempt to calibrate trip time models for cyclists. Also in the 
determination of the  entry- and exit times are uncertainties due to the special errors of the 
GPS points and the low temporal resolution.  Another source of error is the cyclists herself, 
not being aware of participating in an experiment, she may have slowed down or stopped 
during the trip without stopping the GPS recordings. By eliminating points with unrealistic 
speeds, some of such events may have been eliminated but certainly not all. In addition, the 
physical capabilities of cyclists differ significantly. In order to compensate the effect of driving 
styles, the free flow speed has been used to normalize the travel time estimate in the model. 
But the estimation of the free-flow speed as the maximum speed in a trace is yet another 
source of errors.  

It has been estimated that the average speed of the cyclist participating in the Endomondo 
competition is 0.72 times her free flow speed. The attempt to calibrate models including 
more edge attributes failed, probably due to the sum of all previously mentioned error 
sources. 

Therefore, it is not recommended to use the timing information of the Endomondo data for 
calibrating more sophisticated models. The calibration of path choice models using directly 
edge attributes is more feasible with the Endomondo data. 

Dedicated tests with trace recordings on a well selected set of routes are necessary to obtain 
less noisy data. There are also GPS devices available with higher precision and better time 
resolution than normal smart phones. Another prerequisite for good results is to verify, and if 
necessary edit, the OpenstreetMap network within the study area. 

Another concern is the speed of the road matching algorithm for large networks, as all edge 
weights must be determined for all edges and for each trace. But it should be possible to pre-
eliminate insignificant edges. Or significant edges for a trace could be preselected by a k-
shortest path algorithm between first and last trace point.     
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