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Parameter Identification of Free-Floating Robots with Flexible
Appendages and Fuel Sloshing

Wolfgang Rackl and Roberto Lampariello

Abstract— In this paper we adressed the effects of flexibilities
and liquid fuel sloshing on the on-orbit robotics-based dynamic
parameter identification. For modelling the liquid fuel sloshing
we combined the general free-floating robot dynamics with a
mechanical pendulum equivalent model. For the dynamic pa-
rameter identification we extended our identification algorithm
for rigid body systems to account for these two effects. The
flexible and sloshing modes are excited only with the manip-
ulator executing optimized trajectories. For the identification
algorithm we make use of the robotic joint position and torque
sensor data as well as of on board GNC sensor data. Numerical
simulations showed that the two effects can have significant
influence to the free-floating dynamics. Furthermore, we showed
that the extended parameter identification algorithm improves
the accuracy of the dynamic model.

I. INTRODUCTION
A. Motivation

Future on-orbit servicing (OOS) applications for free-
flying robots will involve complex tasks which require high
system performance like reliability, efficiency and safety,
either in full or shared autonomy or in tele-operation.

The majority of both servicer systems and client satellites
are equipped with flexible appendages like solar panels,
antennas or certain flexible instruments. Furthermore OOS
systems will have fuel tanks on board in order to control
attitude and orbit. During an OOS mission the servicer sys-
tem will make among other tasks fly arounds, far and close
approach maneuvers, grasping the target (a so-called client),
stabilize, repairing tasks and deorbit the whole system. These
tasks will consume fuel and will excite flexible and fuel
sloshing modes either on the servicer and/or the client. The
OO0S system must be able to cope with these conditions to
ensure the required safety and high performance. To improve
path planning and tracking capabilities as well as efficiency
in energy consumption by reducing the control effort, the
dynamic model must be known to a sufficient accuracy.

Normally, the manipulator properties stay constant in
space, but due to fuel consumption the parameters of the
satellite base will change significantly. Especially the fill
level has a clear effect to the ratio of fixed fuel mass and slosh
fuel mass. The smaller the fill level, the higher the influence
of the sloshing mass compared to the fixed fuel mass (see
[1]). For an OOS mission this means an increasing sloshing
effect towards the end of the mission.

For this reasons, a parameter identification method is in-
dispensable to obtain the inertial parameters like mass, center
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of mass and moments of inertia of all system components,
especially the satellite base and the unknown target.

In this paper, we focus on flexibilities and fuel sloshing
effects in the free-floating dynamics and the related parame-
ter identification. The Reduced Dynamics Algorithm (RDA)
method to identify the parameter of a rigid body system we
proposed in [2] was extended separately to both effects. For
the sloshing model we propose a method to combine liquid
sloshing with the general free-floating robot dynamics.

To accomplish this task we assume that the manipulator
is equipped with joint position and torque sensors and the
standard GNC (Guidance Navigation and Control) sensors
on board. Finally, numerical simulations are done do show
the feasability of the proposed method.

B. Related Work

The authors in [3] use an on-line parameter adaptation for
a handled load and a flexible manipulator arm by minimizing
the end effector positions. An alternative method to estimate
vibrations of flexible space structures is presented in [4] by
the use of range imaging sensors. In [5] a flexible space ma-
nipulator is modeled with the help of finite element methods
and an adaptive control is proposed with actively damping
out the flexible motions of the arm during maneuvering.

For modelling and identifying fuel sloshing there are
several methods proposed in the literature. In general they
use two main approaches for mechanical equivalent models:
multi mass spring-damper equivalent and the pendulum
equivalent. The authors in [1], [6], [7] use the pendulum
equivalent modelling for lateral sloshing analysis. For the
sloshing fuel mass a pendulum mass is used. To define
the equivalent pendulum length, pendulum mass, spring and
damping constants, they carried out one-DoF (degree of
freedom) lateral experiments with different fuel types with
a sensor equipped simplified fuel tank. The parameters are
identified with a MATLAB Parameter Estimation Toolbox.
One result they propose is, that the fuel viscosity and hence
the type of fuel has no effect to the pendulum length and
the slosh frequency. To model more than one modes multi
pendula models are used, e.g. in [8] and [9]. Multi mass
spring models are alternatively used in [10]-[12].

To obtain the right parameters for the pendulum equivalent
of a defined tank and fuel configuration, there are some
one-DoF experiments described in the literature, which use
simple lateral acceleration profiles to identify the unknown
parameters (e.g. [1] and [13]). But these methods need to
know the fill level of the tank and must be carried out on
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ground with extra measurement equipment like force-torque
Sensors.

II. METHOD DESCRIPTION

In this paper we focus on two disturbing dynamic effects,
which the free-floating robot control has to cope with during
a realistic OOS mission: flexible appendages and liquid fuel
sloshing. In Fig. 1 the principle parts of the focused OOS
system is sketched. The manipulator is assumed to have both
rigid joints and link.

rigid manipulator

liquid fuel tank

Fig. 1: Principle free-floating robot with flexible appendages
and liquid fuel tank with manipulator joint position 6;,
flexible joint position B, ;, 7, and wp as orientation and
angular velocity of the base satellite respectively

In this paper, we analyze both effects separately to see
their influence to the parameter identification process.

A. Flexible Appendages

1) Model Description: For modelling flexible appendages
like solar panels we assume rigid panel plates and flexible
rotational joints connecting the panel plates. The general
equation of motion for free-flying robots without any external
forces and moments is extended with solar panels connected
with rotational joints. The robotic manipulator itself is as-
sumed to have no flexible joints. For a free floating system
with n manipulator links and m flexible panel segments the
equation of motion can be expressed as
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where H, € R¢*6, H,, € R"*", Hp,,, € R°*", H,, €
R*™ H,,, € R"™*™ and H, € R™*™ are the inertia ma-
trices of the satellite base (index b), manipulator (index m),
panel (index p) and coupling inertia matrix between the
base, the manipulator and the panel segments, respectively.
The vectors ¢, € R®*! and ¢,,, € R"*! and ¢, € R™*!
are the non-linear velocity dependent term on the base, on
the manipulator and the panel segments, respectively. The
term T,, € R™*! depicts the internal joint torques of the
manipulator.

The diagonal matrix K € R™*™ contains the stiffness
parameters k; of each flexible panel joint and the diagonal
matrix D € R™*™ contains the velocity depending viscous
damping parameters d;.

The generalized coordinates for the base x; € R6*!
is composed of the })osition and orientation (Euler angles)
vector x, = [rp, 7] , Om € R™*! depicts the manipulator
joint positions and the vector 3, € R™* 1 describes the panel
joint deflection. The variables x; (since we are assuming a
free floating robot) and 3, are assumed to be not actuated
and 3, o is the initial panel deflection and is defined here
for all panel joints to

Bpo:=0 (6)

2) Excitation: For the identification of the flexible modes
of the flexible appendages we use manipulator maneuvers
to excite the modes and we assume an a priori knowledge
of the orientation of their rotational axis. For reasons of
simplification we assume all flexible joints to be parallel.
To obtain the highest impact with the highest system answer
we propose to obtain in general with a satellite angular base
acceleration parallel to the flexible joint acceleration as

wy || By (7)

The satellite translational acceleration should be both parallel
to the translational motion of the CoM of the flexible
appendage and perpendicular to the flexible joint connection
vector, e.g. solar panel surface:
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Since we are dealing with a not actuated satellite base we
have to generate such motion vector with the manipulator.

Trajectory Optimization: To obtain a trajectory fulfilling
the conditions for well-excited flexible modes, we use a B-
spline parametrization, as we proposed in [14]. The trajectory
optimization is addressed here as a nonlinear optimization
problem with constraints. The optimization problem contains
a configuration space C' of dimensions C'(0) C R", where
n is the number of robot joints to be optimized and 8 is the
vector of joint positions . The time interval for the spline is
t¢. The optimization problem can be formulated as

min T’ &)
0ty



where I as cost function and defined as the sum of the scalars
of the components of the base angular acceleration parallel
to the flexible joints:
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h
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where the summand is the reciprocal of the sum of the
mentioned component of the angular base acceleration over
a certain number of preselected points h along the trajectory.

As a simplified approach, as many manipulator joints as
possible can be configured to be parallel to the flexible joints
and only these joints move with the allowed maximum speed
and acceleration (close to dirac impulse).

3) Identification: For the free-floating robot system we
assume to be known the manipulator parameter. The param-
eters to be estimated are defined for the described system
as

« natural frequency w,

o mass, center of mass and inertia matrix of the satellite

base and the flexible appendages

o stiffness matrix K,

e damping matrix D,

As first step, we identify the natural frequency with the
use of the measured joint torque sensor signals as well as the
satellite base angular velocity signals (gyros). Note, the joint
torque sensor is assumed to be after the joint gear to measure
only the acting torque without joint friction effects. Applying
a Fast Fourier Transformation (FFT) to this signals measured
as answer after the excitation, the natural frequency can be
obtained.

The remaining parameter are identified with a nonlinear
optimization which is defined with the cost function I' as
the sum of all differences between the expected and the
measured torques as

n N
I'= § E Tij = Tij,msr
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B. Sloshing

1) Model Description: Computational Fluid Dynamic
(CFD) models nowadays come very close to the real behavior
of a liquid, but they need very high computational power and
time and are not usable for real-time control design. So the
most used method to design liquid sloshing for spacecraft
control is the equivalent mechanical model. It describes the
macroscopic mechanical characteristics very well. There are
two different equivalent mechanical models used in the litera-
ture: spring-mass equivalent model and pendulum equivalent
model. In this work, we used the pendulum analogy. In Fig. 2
the principle of the used fuel sloshing model is shown.

The model consists of two parts: one fixed mass and
one or more slosh masses connected to pendulum, spring
and damper elements. The fixed mass mg is assumed to
be non-sloshing and stationary with respect to the tank and
affects the total mass and inertia of the satellite. The second

ms

Fig. 2: Dynamic model of fuel sloshing - pendulum equiva-
lent

part represents the moving sloshing part of the fluid m.
The spring and damper elements take into account effects
caused by viscous and friction forces with the tank walls and
furthermore forces caused by diaphragm used in pressurized
fuel tanks. The pendulum arm is assumed to be massless.
The fulcrum of the pendulum is free to rotate in three
dimensions like a spherical joint. In this simplified model
it is assumed that the sloshing is only a surface wave. In
Fig. 2 a free surface is sketched without any diaphragm. The
initial pendulum deflection « is assumed to be zero without
external disturbance. One pendulum hereby represents one
sloshing mode. In our case we want to consider only the first
fundamental sloshing mode which is assumed to be dominant
in this case.

The equation of motion of the pendulum can be easily
set up and should not be repeated here. For reasons of
impact to the general free-floating robot dynamics and to
the identification process, the generated forces due to the
fuel sloshing effect are focused next.

To analyze forces caused by the fuel sloshing acting to the
satellite base body during manipulator maneuver, we extract
the free body diagram of the sloshing mass in Fig. 3. The
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Fig. 3: Free body diagram for the slosh mass

forces acting on the tank can be split up into a force due to
the acceleration of the mass, centripetal force, gravity force
and damping force. The sum related to the body diagram can
be written as
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Note, a rotational viscous damper with the coefficient c,
is included in the damping term in the equations above.
To analyze the contribution of certain force parts described
above, we assume a small angle approximation and can solve
the resulting slosh force to the satellite base as follows:

Fs,lat = ls
(15)

mskb,lat + (dlsms +

Fs,a:m'al =  MsXp,azxial

The equations above show clearly that for the same com-
ponents of the external movement X; the lateral force and
hence the lateral slosh effect is higher that the axial effect.

Due to the fact that we handle a damped oscillation
system, which we are exciting during robotic manipulation,
the problem of the natural frequency arises. The slosh mass
pendulum frequency can be obtained as [1]

jb,axial + ks
l 12
s msly

Wy, = (16)

The parameters of the pendulum equivalent like the pendu-
lum length [, the fixed fuel mass my,,, equivalent sloshing
mass myg, stiffness ks and damping dy depend strongly on
the used fuel tank (geometry, wall friction, use of diaphragm,
pressure in tank, geometric slosh damping features) and fuel
properties (total fuel mass in the tank and fuel viscosity).

To include the dynamic equivalent slosh model into the
general equation of motion for free-floating robots, the 3D-
pendulum with spring-damper elements can be modeled as an
unactuated, passive robot link. The fulcrum of the pendulum
is formulated as wrist kinematics: two serial rotational joints
without mass and zero relative distance. The degree of
freedom around the fulcrums axis is assumed to be locked
since the effect of this motion is assumed to be insignificant.
The equation can be expressed similar to (1) as

Hij + C + Kéa + D& = 7 (17)

with

H, = H, + H, s (18)

where the terms for the panel in (1) are replaced with the
terms for the pendulum.

The matrices Hy, € R6*3, H,,,; € R"*3 and H, € R3*3
are the inertia matrices of the satellite base (index b),
manipulator (index m), sloshing mass (index s) and coupling
inertia matrix between the base, the manipulator and the
sloshing mass, respectively. The fixed fuel mass is added to
the rigid satellite base body parameter and will not appear
as an extra parameter to be identified. Further following
terms are defined for the sloshing model as ¢, € R3*!,
K € R3*3 contains the sloshing spring constant k;; for
all three dimensions and D € R3*3 contains the velocity
depending sloshing damping constants d ;.

The generalized coordinate s € R3*! describes the
pendulum fulcrum deflection and is assumed to be not
actuated and defined to be a zero vector in initial condition.

2) Excitation: Since the sloshing model can be defined as
a parallel link manipulator with a concentrated mass at the
top of the link and connected via a flexible spring damper
element, the excitation can be optimized similar to case of
flexible appendages, see II-A.2

3) Identification: Similar to the identification of flexible
appendages we assume the manipulator as known. The
parameters for the sloshing model to be estimated are defined
here as

o natural frequency w,, (Hz2)

e« Mass, center of mass and inertia matrix of the satellite
base and the slosh mass mg (kg)

o Pendulum length 5 (m)

o Pendulum spring constant ks (Nm/rad)

o Pendulum damping constant d, (Nm/rad?)

For the method of identification we chose the same as for
the flexible appendages case, see II-A.3.

III. NUMERICAL SIMULATION

To investigate the performance of the described methods,
numerical simulations were conducted both for the flexible
model and the liquid sloshing model. For the simulation
we used a 7-DoF redundant manipulator mounted on a
base satellite with the total manipulator kinematics length
of I, = 3 m. As flexible appendages we defined two solar
panels consisting each of two flexible joints, resulting in a
total of 4 flexible joints. For the sloshing model, we used
one point mass with a 2 DoF joint connected to the fulcrum
of the pendulum. The parameters of the model are listed in
Tab. I

TABLE I: Simulation model parameter for the flexible and
sloshing model. The index b stands for satellite base, m for
manipulator, p for flexible appendages and s for sloshing

’ Parameter ‘ ‘ Value ‘ Unit ‘
mp 600 kg
CoMy [0.9,0.0,0.6] m
Iy diag(150, 150, 150) kgm?
lm (total) 3.0 m
my, (total) 60.0 kg
Ly, Vi=1...7 diag(0.4,0.04,0.4) m
mp; Vi=1..4 33.0 kg
I Vi=1.4 diag(15.0,11.0, 15.0) kgm?
kp:Vi=1.4 200.0 Nm/rad
dpi, Vi=1..4 2.0 Nms/rad
ms 100.0 kg
ls 0.8 m
ks Vi=1..2 20.0 Nm/rad
dsi Vi=1..2 5.0 Nms/rad




A. Flexible Appendages

We want to investigate here the influence of flexible
appendages on the accuracy of a system identification (mass,
center of mass and inertia of the satellite base) in orbit.
To achieve this, a simulation with a rigid body free-floating
robot was conducted first. With the resulting simulated sensor
data (joint positions, joint torques and base angular velocity,
here without simulated noise), a rigid body identification was
carried out to obtain an identified model. The latter contained
the uncertainties of a rigid body identification, resulting from
the identification method presented in [2]. This model was
used as a refence model for the intended investigation, by
generating a reference trajectory about which positioning
errors could be computed for successively identified models.

At first, the excitation trajectory was executed with the
full flexible model and a rigid body identification was re-
peated. To quantify the accuracy of the rigid body parameter
identification with the flexible model, the difference to the
reference trajectory (end effector position and orientation)
was computed. The results are listed in Table II (column
Rigid ID). Both the mean and the maximum difference along
this trajectory are given.

In a second step, with the same simulated sensor data
of the flexible model a parameter identification including
the flexible parameter was carried out. The simulation of
the reference trajectory with the resulting identified flexible
model was then also compared with the reference simulation.
The end effector error of this comparison is shown in the
third column of Table II. It can be seen that the flexible ap-
pendages on a satellite have measurable significant influence
on the rigid body identification, as shown in the Rigid ID
column, and the parameter identification can be improved
with an extension to the flexible model parameters (column
Flex. ID).

TABLE 1II: Error of end effector for the flexible model

| Error [mrad] || Rigid ID | Flex. ID |

mean pos_E [m] 0.0181 0.0094
max pos-E [m] 0.0210 0.0192
mean rpy_E [rad] 0.1542 0.0584
max rpy-E [rad] 0.2032 0.0921

In Fig. 4 the free motion after the commanded manipulator
trajectory is plotted. The oscillating flexible appendages
cause a base motion (bottom) which results in measurable
robot joint torques (top). In this example, joint 2 and 4 are
parallel to the flexible joint axis and show the highest torque
signals.

The natural frequency w,, was estimated out of the joint
torque and base velocity data with the Fast Fourier Trans-
formation data of the signals. The generated Power Spectral
Density (PSD) of the signals are plotted in Fig. 5.

The first two natural frequencies of the flexible free-
floating robot system can be seen in the two peaks of the
data plot A) and can be quantified with w,, ;1 = 0.23H 2 and

wn,2 = 0.68H z. The PSD of the trajectory for the rigid body
identification B) shows that it avoids the natural frequencies
of the flexible model.
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Fig. 4: Answer of the flexible model after excitation (sector).
Robot joint torques (top) and angular velocity of the satellite
base (bottom)
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Fig. 5: Power Spectral Density (PSD) of A) answer of
the flexible appendages, B) excitation trajectory for flexible
modes, C) excitation trajectory for rigid body identification

B. Sloshing

In order to analyze the behavior of the sloshing model
in relation to the parameter identification accuracy, we pro-
cessed similar to that of the flexible model case. Thus,
a simulation with an excitation trajectory to excite the
sloshing modes was conducted. From the model answer
after the excitation the natural frequency was obtained from
the simulated sensor data (joint torques and base angular
velocity). In Fig. 6 the model answer of the sloshing is
plotted. The strong damping of the liquid sloshing can be
seen clearly in the significant decrease of the sensor signals.
The analysis of the signals transformed into the PSD (A)
results in a natural frequency of the sloshing model of
wy, = 0.06H z (see Fig. 7). The excitation trajectory for the
rigid body identification shows to have the main frequencies
below this critical natural frequency (B). The influence of the
sloshing parts to the rigid body identification are documented
in Table III in the column Rigid ID. The data in column
Slosh. ID prove the improvement of the use of a sloshing
identification model.



TABLE II: Error of end effector for sloshing model

| Error [mrad] || Rigid ID [ Slosh. ID |

mean pos_E [m] 0.0367 0.0214
max pos-E [m] 0.1242 0.0924
mean rpy_E [rad] 0.2319 0.1154
max rpy_E [rad] 0.4291 0.3299

Joint Torque (Nm)

wo (rad/s)

200 250 300 350 400
Time (s)

Fig. 6: Answer of the sloshing model after excitation (sector):
Joint torques (top) and angular velocity of the satellite base
(bottom)

IV. DISCUSSION AND CONCLUSION

The results in the previous section show that flexible
appendages mounted on a free-floating satellite can have
significant influence to the general dynamics of free-floating
robots. For the parameter identification these disturbance
effects can be seen clearly. The challenge to excite flexible
modes only with the help of the manipulator are the limited
constraints of the joint motions in terms of joint velocity
and acceleration. Thus, high frequencies can not be excited
sufficient. But due to the fact that the expected manipulator
motions during an OOS mission will be in a lower frequency
range, the analysis in the range below f = 1.5Hz seems to
be sufficient.

Liquid sloshing effects are expected to be more critical
during an OOS mission due to the fact that the natural
frequencies are closer to the expected task motions.

In this paper we focused on the analysis of the general in-
fluence of flexible appendages and liquid sloshing to the free-
floating dynamics and rigid body parameter identification.
For this purpose we extended the parameter identification
to both flexible and sloshing effects. The results show in
both cases a significant influence to the dynamics and an
improvement of the identified dynamic models.
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