EU-Projects on Automation of Road Transport and the iMobility Forum: Joint Systems Perspective

Johann Kelsch

Institute of Transportation Systems German Aerospace Center

Knowledge for Tomorrow

Overview

- Motivation for Joint Driver-Automation System Design
- Joint System components addressed in **EU-Projects and iMobility Forum**
- **Application examples** for highly automated road transport systems

picture source: http://office.microsoft.com

Motivation for Joint System Design

- Raising number of different ADAS used in parallel
- Raising complexity of particular ADAS used in parallel

Toward Joint Human-Machine Systems Design

Diagram concept: Denis Javaux

Joint Driver-Automation System: Elements

- Simplified human perception-action model
- Machine as a cognitive agent*
- Human and machine interacts with each other
- Human and machine **compete** for vehicle control (shared control)
- Arbitration using
 - self-organization
 - role, task, control allocation

(*) Hollnagel & Woods, 1983

Joint Driver-Automation System: Elements

Human Factors Subgroup

- Supported by EU commission & ERTICO (Brussels)
- DLR, TRL, ITS LEEDS, ICCS, IFSTTAR, UNIROMA, VEDECOM, TU EINDHOVEN, UNI CHALMERS, TU DELFT, EUCAR, VALEO, HIT
- Human Factors in Highly Automated Road Transport
- Automation effects on driver & other traffic participants (e.g. VRUs)
- HF related Joint System design issues
 - System distribution vs. system integration (e.g. connectivity effects)
 - **Controllability** (e.g. automation level transitions)
 - **Observability** (e.g. joint HMI concepts)
 - Usability
- HF related roadmaps & recommendations for the EU commission

Joint Driver-Automation System: Taxonomy

- Human Factors is about human related system problems
- Human Factors is about human related system solutions as well
- Interaction Design
 - uses Human Factors knowledge
 - technical requirements meet Human Factors

Generic **problem** + generic **solution** = **Design Pattern**

Joint Driver-Automation System: Design Patterns

(*) Parasuraman et al. 2000, (**) Hoc 2001, (***) EU-Project D3CoS D3-03

Automation Levels* and transitions

- Problem of correct humanmachine control distribution
- Quantitative solution
- How much automation is there?
- Cooperation Modes**
 - Problem of correct humanmachine task allocation
 - Qualitative solution
 - Who does what and how?
 - Both perspectives are **compatible** to each other***

Joint Driver-Automation System in EU-Projects

- Joint System
- Automation Levels
- Transitions...

Highly automated vehicles for intelligent transport

D3-03

D3CoS

Reference Designs and Design Patterns for Cooperation & DCoS State Inference and Adaptation

Inform/Warn/Intervene strategies

- Joint HMI Concepts
- Arbitration...

Deliverable D61.1 Final Report

- Design patterns for cooperation
- Cooperation modes
- Methods & Tools... -

Accident avoidance by active intervention for Intelligent Vehicles

Deliverable D3.2 | IWI Strategies | Executive

Summary

Joint Driver-Automation System Design Aspects

Join System Controllability: Decoupling Concept

- Joint System performance in conditions
 - no automation
 - steering intervention (coupled)
 - steering intervention (decoupled)
 - true vs. false decoupling
- **FASCar II** from the German Aerospace center (DLR)
- equipped with steer-by-wire system
- Possibility to **decouple** the driver from vehicle control
- Obstacle covering half the lane
- Unfolds in 0.8 sec.

Controllability: Steering intervention (decoupled)

Controllability: Driver Decoupling Concept

'true' decoupling

- Lateral deviation (30 km/h) in 'false' decoupling was significantly higher than in other conditions \rightarrow BAD
- decoupling was significantly higher than in other conditions \rightarrow GOOD

Lateral deviation (50 km/h) in 'true'

- 'True' decoupling seemed to be well controllable for the driver
- 'False' decoupling seemed to be badly controllable for the driver Interactive

Joint System Observability: HMI Concepts

Joint System Observability: Cooperative Lane Change

Joint System Usability: Cooperative Lane Change Assist

- Well accepted system design
- Easy to understand

Our research focus in...

- Designing a Joint System
- Ambient display
 - visual, haptic & acoustic stimuli
- Idea:
 - Transporting information by using peripheral vision
 - Supporting / inhibiting drivers' actions by using affective design
- Aim: Improving performance in
 - primary driving tasks
 - automation mode transitions
 - in normal & emergency situations

Automated Driving Applications and Technologies for Intelligent Vehicles

Conclusion

- Developing ADAS and vehicle automation, systems become complex
- Closely integrated Joint System Design is needed
- EU-Projects are addressing Joint System components, methods & tools
- Exemplary solutions show the possible developments in the future
- DLR develops Joint Systems enriched with affective HMI

References

- EU-D3CoS Community (2012): Reference Designs and Design Patterns for Cooperation & DCoS State Inference and Adaptation. D3-03 Deliverable for EU-D3CoS
- EU-InteractIVe Community (2012): IWI Strategies. Deliverable D3.2 for EU-Project "InteractIVe", 31.07.2012
- Flemisch F.; Kelsch J.; Löper C.; Schieben A.; Schindler J. (2008): *Automation spectrum, inner/outer compatibility and other potentially useful human factors concepts for assistance and automation.* De Wart, D. (Ed). Human Factors for Assistance and Automation, Shaker Publishing
- Hoc, J. M. (2001): *Towards a cognitive approach to human-machine cooperation in dynamic situations*. International Journal of Human-Computer Studies, 54, S. 509-540
- Hollnagel, E.; Woods, D. D. (1982): *Cognitive Systems Engineering: New wine in new bottles.* International Journal of Human-Computer Studies, Volume 51, Nr. 2, Aug. 1999, S. 339-356
- Kelsch, J., Heesen M., Hesse T., Baumann M. (2012): Using human-compatible re-ference values in design of cooperative dynamic human-machine systems. EAM 2012, 11-12.09.2012, Braunschweig, Germany
- Kelsch, J.; Temme, G.; Schindler, J. (2013): Arbitration based framework for design of holistic multimodal human-machine interaction. Contributions to AAET 2013, 6.-7. Feb. 2013, Braunschweig, Germany, ISBN 9783937655291
- Schieben, A.; Flemisch, F.; (2008): Who is in control? Exploration of transitions of control between driver and an eLane vehicle automation. In: VDI-Berichte 2048. VDI Verlag. Wolfsburg, ISBN 9783180920481, S. 455-469
- Heesen, M.; Dziennus, M.; Hesse, T.; Schieben, A.; Brunken, C.; Löper, C.; Kelsch, J.; Baumann, M (2014): Interaction design of automatic steering for collision avoidance: challenges and potentials of driver decoupling. IET Intelligent Transport Systems. In press

Thank You

johann.kelsch@dlr.de

