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Abstract. This work deals with the passive tracking of the pose of a
close-range 3-D modeling device using its own high-rate images in real-
time, concurrently with customary 3-D modeling of the scene by laser
triangulation. Our former works in Refs. [1,2] successfully implemented
visual pose tracking. Accuracy being a central requirement to 3-D mo-
deling, however, here we note that accuracy can be further increased
using a graph-based nonlinear optimization of the tracked pose by mini-
mization of reprojection errors. Loop closures e.g. when having scanned
all around the objects provide the opportunity to increase pose tracking
and 3-D modeling accuracy. The sparse optimization is in the form of
a hybrid, keyframe-based bundle adjustment algorithm on stereo key-
frames, yielding rapid optimization of the whole trajectory and object
mesh model within a second. The optimization is supported by the use
of appearance-based SURF descriptors together with a bank of parallel
three-point-perspective pose solvers.

1 Introduction

Close-range 3-D modeling is a field that, in our view, is going to rapidly spread
in novel areas like human-computer interaction and robotics due to the advent
of cheaper and lighter range sensors. It is believed that it is through the explicit
formation of 3-D models that a considerable number of the remaining challenges
of visual perception will be eventually solved. This is, of course, subject to the
performance, cost, and flexibility of application of the 3-D modeling device.

It is often impossible to acquire a complete 3-D model in a single measurement
step owing to e.g. object self-occlusion, object size, or limited field of view; this is
especially true in close-range. Multiple views (or multiple sensors) are regularly
deployed in order to fuse their range images into a registered 3-D model. The
prevalent approach is to measure the pose of the sensors while acquiring data,
which allows for online registration of data in absolute coordinates. A range
of pose tracking systems, robotic manipulators, turntables, or electromagnetic
devices are commonly deployed for this purpose. These options are inconvenient
for three reasons: First, they limit the mobility of the user; second, they require
accurate calibration and synchronization w.r.t. the range sensor; and third, they
are (by far) the largest and most expensive part of the 3-D modeling system.
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In Refs. [1,2] we presented the first hand-held 3-D modeling device for close-
range applications that localizes itself passively from its own images in realtime,
at a high data rate. In Ref. [1] pose tracking was optionally supported by an
on-board IMU for more efficient feature tracking. In Ref. [2] we present an alter-
native tracking method that, inspired by the Active Matching paradigm, achieves
remarkable tracking resilience without the need for inertial readings.

3-D modeling by browsing an object is largely an exploratory act where loop
closing events are rare. Hence real-time pose tracking largely relies on dead
reckoning, which is inconvenient as it invariably accumulates drifts. The ultimate
goal of 3-D modeling is, however, the complete reconstruction of objects e.g. by
scanning all around the object. This event involves (at least) one loop closure
that provides the opportunity to greatly increase present and past pose tracking
accuracy so that the final 3-D model will excel in accuracy irrespective of prior
motion drifts. It is worth noting that visual odometry is still perfectly useful
during the browsing period; first, in order to provide live image augmentation
and live meshing results; second, in order to support rapid, local loop closing.

In this work we use the DLR 3D-Modeler platform, which is a low-cost, hand-
held device for geometric and radiometric reconstruction of close-range objects in
realtime. It excels in accuracy compared with e.g. depth sensors based on coded
infrared light [3]. In detail, we extend our prior approach presented in Ref. [1],
aiming at more accurate pose tracking by graph-based nonlinear optimization of
the tracked pose by minimization of residual reprojection errors. We opt for a
hybrid, keyframe-based bundle adjustment (kBA) algorithm on stereo keyframes,
because kBA is allegedly the most accurate and efficient option to tackle this
problem in the face of a higher number of features and keyframes [4].

2 State of the Art

A straightforward option to register range images is based on their geometry.
Depending on the acquired scene, however, this option may be precluded if the
surfaces do not show salient 3-D regions, or in the case of 1-D range data e.g.
when using slit scanners. A widespread alternative for depth image registration
in realtime is to externally track the pose of the modeling device so that range
data can be directly represented in a common reference frame, in realtime and
irrespective of the range data quality. In Ref. [1] the authors listed the dominant
commercial 3-D modeling systems, which either use inconvenient external refer-
ence systems, or opt for visual pose tracking relying on active illumination and
adhesive markers on the scene. They also listed research work on passive visual
tracking, which did not, however, run in realtime.

Dense methods (either based on GPGPU or on RGB-D hardware) are presently
the preferred choice for inexpensive 3-D modeling. We believe, however, that it is
still convenient to follow the method presented in Ref. [1] because first, slit scan-
ners still provide higher accuracy [3], second, its lower hardware and energy re-
quirements (a GPU is not needed), and third, feature-based pose tracking methods
provide a higher degree of viewpoint invariance than dense methods.
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3 The DLR 3D-Modeler
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The DLR 3D-Modeler is a multi-
purpose platform for geometric and
visual perception. It combines comple-
mentary sensors in a compact, generic
way. It is low weight and features on-
board computation, a FireWire con-
nector, generic mechanical interfaces,
and an extensive software suite. Cur-
rent applications comprise 3-D mode-
ling, visual tracking and servoing, ex-
ploration, path planning, and object

recognition e.g. as the perception head Fig. 1. The DLR 3D-Modeler
of the humanoid robot Justin.

iy

FireWire
connection

Laser-Range Scanner

4 Visual Pose Tracking at the DLR 3D-Modeler

In the original work in Ref. [1] we provide pose tracking estimations in realtime
out of monocular tracking of salient features in the context of an extended KLT
feature tracker; the features have been accurately reconstructed in 3-D by one-
time stereo vision. The major challenge in this context is tracking features in
close-range; unlike in the case of far-range tracking, close-range feature track-
ing is affected by translation to a similar extent as by rotation—especially in
the case of a hand-guided device prone to jerky motion. A novel method was
proposed that leverages the rotational readings of an IMU for improved estima-
tion of the displacement of features in between frames. After that in Ref. [2] we
presented an alternative method that did without IMU readings by casting the
KLT feature tracker unto the Active Matching (AM) paradigm, achieving robust
feature tracking at an even higher motion bandwidth. Relative pose estimation
is based on an efficient, robustified V-GPS algorithm [5]. In this work we con-
tribute a novel graph-based optimization procedure as well as appearance-based
relocalization and loop-closing to eventually boost accuracy.

4.1 Local, Keyframe-Based Bundle Adjustment

It is a peculiarity of 3-D modeling that new areas are continuously being explored
and loop-closing events are rare. In this section we focus on optimal motion
estimation without closing large loops, i.e., by dead reckoning; in Sect. 4.3 we
shall present a more complete optimization in the event of a final loop closure
e.g. after scanning all around an object.

While robust V-GPS provides a robust, fast motion estimation from monocu-
lar footage by dead reckoning in realtime, it is still advisable to perform optimal
motion and structure estimation by minimization of reprojection errors at han-
dover stereo keyframes to further increase accuracy. Following e.g. Refs. [6,4]
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Fig. 2. Data concerned in local, hybrld BA on feature set #1i

we opt for an efficient BA optimization disregarding image frames in between
selected keyframes (i.e., kBA). Since in our approach all 3-D features are being
measured locally, i.e., on a unique static reference frame defined at keyframes,
the global optimization of the covered dead reckoning motion can be decom-
posed into independent sub-optimizations exclusively concerning one reference
frame along with its feature set. In detail, the information required for every
sub-optimization is confined to the stereo (left and right) keyframe ,Z° U ,Z°
that initialized the ith feature set by stereo triangulation, along with the final,
left monocular image (Z° that both, tracks the ith feature set last, and coincides
with the left frame ;7% of the next keyframe (from which the following feature
set #i+1 will be initialized), cf. Fig. 2. This frugal, hybrid keyframe selection pol-
icy does deliver high accuracy as both, initial and last tracking vantage points,
are being considered for every feature, maximizing their projected parallax. In
addition, the inclusion of stereo images serves to anchor global scale. The novel
formulation minimizes the sum of squared reprojection residuals as follows:

M;
2 =argmin > (|, — i (@)|[2 + [lering, — i (T 1)1
g, — e, (T 1) ) (1)

where the optimized (,) parameters £2° include the 3-D coordinates
1l =1k, 15, 125] T, VpeNT, i < M; of the ith set of M; features w.r.t. the left ca-
mera at keyframe ¢, and the inter-keyframe transformation 1ini of the left camera
frame between keyframes #i¢ and #i+1. The residual is composed of estimated
(") reprojections 1rh, = [1if, 10} T=proj(1&}) and ;i =[.a, 0] =proj(;T"1&%)
onto the left and the right frames at the initial keyframe of feature set #z
respectively, as well as their last, final feature projections ¢, [fup 0 ]T

proj(s; T 1Z;) at the left frame (remember that (Z* £ = I*H). These estimations
are being subtracted from the actual measurements 1m , rfn; and f’ﬁ'L; to form

the residual reprojection errors. The transformation ,T" stems from the epipolar
geometry of the stereo camera by camera calibration. Note that the projection
function proj() does not include lens distortion; for efficiency reasons, we opt
for minimizing undistorted reprojection errors, undistorting actual projections

beforehand.
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Note that global scale could also be anchored even if the projections rm; had
not been included in the residual function, but considered ground truth instead.
However, we stress that the nature of the 3-D features :c; does not stem from
selected, ground truth projections into an image (e.g. rrh;) in the context of
stereo vision, but from their rigid body geometry alone. In this way, by releasing
all three key projections the optimal 3-D solution will be solely constrained by
the rigid body assumption together with perspective geometry. In addition, it is
well known that full BA turns out to be faster than any attempts to eliminate
e.g. the structure parameters [7].

The hybrid optimization utilizes the nonlinear least squares optimization func-
tion dlevmar der() [8], which implements the Levenberg-Marquardt method. We
are providing analytic Jacobians for improved performance. Even though they
are always sparse, the small size of the system of equations renders sparse meth-
ods unnecessary. It is worth noting that minimal representations are used for
unknown rotations, specifically differential perturbations of Euler angles. In ad-
dition, the residual function has been robustified in case of outliers.
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* White boxes correspond to zero elements; gray or black boxes to non-zero ones.
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By way of illustration, we go into detail about the calculation of the black
Jacobian element above:
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[ and vy are part of the intrinsic parameters of the left camera, and Ai’liﬂ
represents the estimated rigid body perturbation on the left camera pose at
keyframe i+1.

This method yields sub-millimetric corrections w.r.t. V-GPS on 3-D feature
locations m; and the relative pose 1ini for every keyframe or feature set. Milli-
metric differences may arise on eventual loop closures after many keyframes, e.g.
when scanning all around an object. On balance, it turns out that this method
does not substantially improve the already accurate dead reckoning motion es-
timation by V-GPS. On the other hand, its computational cost is still low (2 to

5ms)—roughly twice as long as V-GPS.

4.2 Appearance-Based Relocalization

Whenever

1. saccadic motion precludes sequential tracking,

2. the user browses outside a proximate scene, or

3. the cameras return to an area used before (loop closing),
pose tracking accuracy gets too low for consistent KLT tracking to be warranted
anymore—even in its AM variant. Due to the richness of visual data, cameras
are ideally suited for recognizing similarity; appearance-based relocalization can
help to resume scanning on the original reference frame.

There exist a number of operators, called descriptors, that concern about
the visual appearance of features in order to be distinctive and invariant to
their viewpoint pose. We choose the performant SURF features in its original
implementation, on stereo images. By using stereo images, the 3-D position of
SURF features w.r.t. the camera 15T """ can be triangulated at the same frame
during stereo initialization of the KLT feature set, where we obtained jop T """
By doing so, whenever 3 or more SURF features and consequently o T """ are
found again, powI **" can be roughly estimated as follows:

o~ 1
KLT SURF SURF KLT
nowT - nowT (leftT ) leftT . (5)

This estimation is far less accurate than sequential pose tracking using V-GPS,
compromising seamless transition to KLT tracking. We opt for using interleaved,
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monocular three point perspective (P3P) pose estimation on KLT features for in-
creased accuracy. Finally, regular KLT tracking takes on sequential pose tracking
on the original reference frame—mnot without prior scaling and affine distortion
of the features’ templates according to the current relative pose.

4.3 Global, Hybrid Bundle Adjustment on Loop Closures

Loop closure events occur whenever former scene features that have not been
recently tracked are being revisited. These events present the opportunity to
greatly increase present and past pose tracking accuracy.

We distinguish between two types of loop closures: local loop closures can
still take advantage of metric information for improved performance, whereas
global, large-scale loop closure ought to be independent of motion estimation
precisely because its main objective is to correct inaccurate motion estimation
in the first place. Global, large-scale loop closing may instead concern itself with
the projected appearance of features, which are still discriminative in the face
of unknown localization, see Sect. 4.2.

Whatever the nature of the loop closure, it is indicated to subsequently opti-
mize structure and motion estimations in the light of the discrepancies between
expected and actually matched loop-closing features. In the absence of loop clo-
sures, current measurements (projections) only depend on their initial stereo
keyframe and on the current relative pose w.r.t. that frame. In the event of loop
closure, however, current projections also depend on the camera motion history,
i.e., on all relative transformations and stereo feature triangulations even since
the creation of the newly regained features, see Fig. 3.

v Object KLT features

v/ — —
R
SURF features fZ
Motion
Lys-
Wi \ "

Loop
closure! | N W // ;.
B i e

Na N+l
fI = II N+l C | L, 2
rI L~ -1Rr & ]I

Fig. 3. Skeleton of stereo keyframes 1..N when browsing around an object. During
monocular tracking of feature set # N, feature set #1 can be retrieved at images LYIN'H.
Depending on the distance traveled, loop closing occurs either by monocular tracking
of KLT features or with the help of stereo SURF features.

As a consequence, the optimal solution by nonlinear optimization consisting
in the minimization of squared reprojection residuals presents higher complexity
than the local optimization in Eq. (1).
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Now:

N/ M;
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where the parameters to be optimized £2, =[£2%.. 2%] include all history of 3-D
features between the older feature set #j being found again, and the last tracked
feature set #N (i.e., N —j+1 feature sets in total), as well as the N —j rela-
tive, inter-keyframe transformations between their respectives keyframes and the
final local pose 1NTfN where the loop was closed (included in £2%). In total, this
amounts to Z ;(3:M;+6) parameters, compared to 3-M;+6 in Eq. (1). Note
that, due to the non convexity of the regular BA problem, we are optimizing over
(differential perturbations of) non-privileged, relative transformations in order
to avoid local minima [9]. Consequently, feature locations and camera motions
are both locally Euclidean, but globally topological. The global Euclidean rep-
resentation remains as a separate task, left aside e.g. for the realtime meshing
application to consistently visualize it in realtime, perhaps augmenting it with
the live image stream.

The residual in Eq. (6) is composed of the accumulation of residuals Am; in
Eq. (1), now for every feature set ¢ within the loop, as well as for the subset R
of features contained in feature set j that have been found again in projections

1?'% = [lxn®) 1N+1 %]T, see Fig. 3. In matricial form, the number of equations

amounts to Z ;(2:3-M;)+2-size(R) compared to 2-3-M; in the case of local
BA for dead reckomng in Eq. (1).

Optimization processes with system equations of this magnitude clearly be-
nefit from sparse optimization methods if their Jacobians are sparse. Indeed,
zero elements are pervasive in the Jacobian of this system of equations w.r.t. the
abovementioned parameters due to the relative nature of the formulation used:
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* White boxes correspond to zero elements; gray or black boxes to non-zero ones.

We now go into detail about the calculation of the black Jacobian element
highlighted above concerning features within R that have been tracked again.
The estimated reprojection 1?“{, of these features from feature set #j onto the
left camera frame at keyframe # N+1 is a function of both, the 3-D structure 1:3:{,

of the original set #j and the current left camera pose 1jf/1\"fN that, in turn, is a
function of all local transformations by dead reckoning lying between keyframes
#j and #N + 1. Here the calculation of its partial derivative w.r.t. the first
Euler angle 1a* of the differential perturbation AT, Lat the left camera frame
of keyframe #Fk is detailed:

5 — 0J 0J 0 0yJ 27
8(1N+1vp 1N+1vp) _ 81N+1Up alN«Hyp B alz\urlvp 81N+1zp (9)
k - ~J k 5] k
da 81N+1yp 91 alz\urlzp da
where
0
~j 1N+1yp
J —
InnaUp *(6 ~j +’U0)
IN+1 Zp
5J 2
N Tp ) : (10)
) ~ ~ ~ )
inpYp | U1 -1 L | LYp
2]' - fNT AleJrl fkT ! ]éj
IN+1 N~ ~ 1;<p
1 perturbation 1

These few features are of extreme importance, as they produce the only resid-
uals bringing about loop-closing information—else global optimization equals
repeated local optimization by dead reckoning in Eq. (1).

In reality, the formulation explained above corresponds to the ideal case where
all features tracked at loop closure have also been tracked at their triangulation
frame, i.e., fmé exists and is included in both Eqs. (6) and (7); however, features
that were not succesfully tracked until keyframe #j+1 can readily be found again
when closing the loop. In that case (approx. 15% of the detected features), the
residual Eq. (6), the optimization parameters {2, as well as the Jacobian in
Eq. (7) have to be extended to include their initial projections 1m% and rm% as
well as their 3-D locations.

Our hybrid optimization utilizes the nonlinear, least squares sparse optimiza-
tion function sparselm dercrs() detailed in Ref. [10], as well as supernodal sparse
Cholesky factorization by CHOLMOD and graph partitioning by METIS to ob-
serve both primary and secondary sparsity structures of the Jacobian in Eq. (7)
[11]. We provide the abovementioned, full analytic Jacobian in CRS format for
improved performance. Of course, common derivative terms are being stored
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instead of recalculated. By way of example, timekeeping improves from 94 sec
(standard BA with full analytic Jacobian) to between 750 ms and 1.4 sec using
the sparse variant. Not providing analytic Jacobians proves slower by a factor
of 2 or 3. Global BA is performed in a separate computing thread in order not
to disrupt concurrent real-time pose tracking and 3-D modeling. In Sect. 6 we
show extended loop closure experiments, where global BA compensates for sub-
stantial dead reckoning errors of several cm in the course of obtaining consistent
topology of the map.

Apart from the novel, hybrid nature of our approach to anchor global scale by
stereo vision in selected frames (which incidentally deskills local pose tracking),
our work differs from similar relative implementations in the SLAM literature
([12,13,14,9,15,16,17]) since accurate motion tracking is here required globally,
for the whole motion history, whereas in SLAM metric accuracy is encouraged
only locally, as global topological integrity suffices [13].

5 Experimental Validation

We suggest the interested reader to retrieve the videos of the original visual
pose tracking in Refs. [1,2] at http://goo.gl/8ZaJ52 and http://goo.gl/PjDeox.
In this section we describe the image sequence attached as supplementary mate-
rial to this paper, see http://goo.gl/tqf4vB. It shows an extended scan around
a 50 cm tall sculpture. A natural browsing procedure asks for prolonged sweeps
and is characterized by the absence of loop closure events (neither local nor
global), i.e., only dead reckoning estimation is possible. Tracking starts in frame
#23033, featuring 4 sweeps in 90° relative yaw angles, prior to loop closing in
frame #24521 for a total motion length of 320 cm. During the whole trayectory
44 feature sets are initialized by feature-based stereo vision.

As can be seen by the drift of the white circles corresponding to the features
of the two first datasets, dead reckoning errors accumulate to an extent that
precludes seamless KLT tracking when trying to retrieve these sets based on
their expected relative pose to the camera—even in its AM implementation.
Appearance-based relocalization on stereo images (triggered on a sensible basis
based on the rough pose of the camera) may detect older SURF features, but
their positioning accuracy by stereo vision is still insufficient. It is only by the
inclusion of the intermediate stage concerning P3P pose estimation on KLT
features with larger search regions that we achieve the required pose accuracy
for seamless KLT tracking of 55 features pertaining to the feature set #1. After
that, pose refinement by global, hybrid BA as explained in Sect. 4.3 takes place.
Of course, relocalization on SURF features and subsequent P3P pose estimation
happened at an older image frame because these prior stages run in a separate
computing thread. After successful pose refinement by P3P pose estimation, the
AM implementation of the extended KLT tracker takes over [2], tracking as
many features of the original feature set #1 as possible. These 55 features in
turn trigger the global, hybrid BA process explained in Sect. 4.3 in a separate
computing thread. It is only by image frame #24535 that pose refinement on the
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whole pose graph is complete, updating all 43 relative transformations lini, Vie
Ny, ¢ <44 along with the 3-D pose of all 1816 features :L‘;, VpeNy, p<M,;.

Using a dated notebook equipped with an Intel® Core 2 Duo P8700 proces-
sor, the robustified nonlinear optimization takes 870 ms. The parameters vector
contains all features and relative poses involved in the loop closure (size 5769).
The size of the residuals vector is 11090 including past and current hybrid resid-
uals on stereo and monocular images.

The final pose correction after 320 cm of dead reckoning estimation amounts
to 2.5 cm and 6.5°. The appearance-based stage in Sect. 4.2 misses the point
by 7.5 mm and 1.5°, which is still adequate for successful tracking by the AM
implementation of the KLT tracking in Ref. [2]. Fig. 4 shows a typical correction
of the resulting full mesh after successful closure of the loop.

Fig. 4. Full mesh before and after loop closure correction

6 Conclusions

In this contribution we extend the real-time visual pose tracking algorithm ori-
ginally presented in Refs. [1] and [2] into pose-graph optimization in the form
of a hybrid, sparse bundle adjustment (BA) on a set of stereo keyframes and
monocular views. This extension is necessary as 3-D modeling by scanning tech-
niques is largely an exploratory act, i.e., dead reckoning motion estimation plays
a central role. It is well known that dead reckoning is subject to drifts, which
will preclude larger 3-D modeling tasks e.g. scanning around objects.

We learned that BA for dead reckoning estimation hardly improves accuracy
compared with V-GPS. In the case of loop closures, however, the use of BA makes
large pose corrections possible. This is on the assumption that older features are
tracked at loop closures, which is not possible in the presence of motion drifts
without further ado. It is by appearance-based relocalization methods, together
with a bank of parallel three-point-perspective pose solvers, that seamless feature
tracking following Ref. [2] is possible—irrespective of the accumulated motion
drift. In addition, we confirm that it is crucial to consider the sparsity of the
pose-graph optimization problem for BA to perform in a timely manner.

These types of low-cost systems have the potential to promote 3-D modeling
and conquer new markets owing to their passivity and flexibility of use.
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