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ARTICLE INFO ABSTRACT
Arﬁclf-’ history: In anticipation of the Dawn Mission to 4 Vesta, we conducted a ground-based campaign of Bessel BVRI filter
Received 20 September 2012 photometry of five V-type near-Earth asteroids over a wide range of solar phase angles. We also obtained
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medium-resolution optical spectroscopy (0.38 um < 7 < 0.92 um; R ~ 500) of sixteen near-Earth and main-
belt V-type asteroids in order to investigate their spectral diversity and to draw connections between
spacecraft data of Vesta and V-type asteroids. Our disk-integrated photometry extended the excursion
in solar phase angle beyond the maximum of 24° available from Earth for Vesta to 87°, which is more
typical of the geometry during the Dawn approach and mapping phases. The majority of our broad-band
Near-Earth objects observations were obtained at the JPL 0.6-m Table Mountain Observatory but multiple nights were also
Photometry contributed by the Calar Alto 1.2-m and 2.2-m telescopes, as well as by the Purple Mountain
Spectroscopy 1-m Schmidt. Our results include a determination of rotation periods for 4 asteroids, identification of a bin-
ary candidate and four new V-type asteroids, including a confirmation of two main-belt V-type asteroids
beyond the Jupiter 1:3 resonance (Cruikshank, D.P., Tholen, D.J., Bell, ].F., Hartmann, W.K., Brown, R.H.
[1991]. Icarus 89, 1-13; Lazzaro, D. et al. [2000]. Science 288, 2033-2035; Roig, F., Gil-Hutton, R. [2006].
Icarus 183(2), 411-419; Moskovitz, N.A,, Jedicke, R., Gaidos, E., Willman, M., Nesvorny, D., Fevig, R., Ivezic,
Z.[2008]. Icarus 198, 77-90). This latter finding supports the hypothesis that some vestoids may be crustal
fragments of a disrupted basaltic parent body compositionally similar to 4 Vesta. We also obtained rota-
tionally resolved medium resolution spectra of Vesta during the Dawn orbit insertion phase, which will
be valuable for calibration and comparison of spacecraft data. Modeling of a composite V-type asteroid
phase curve yielded a generic photometric model for V asteroids. We also find that a significant amount
of the spectral diversity in the V class comes from changes in solar phase angle. A fit of a composite solar
phase curve containing our vestoid observations, previously published groundbased observations of Vesta,
and early disk-integrated Dawn observations show important differences with other asteroids. The macro-
scopic surface roughness of V-type asteroids is significantly larger than that of C-type or S-types
(Helfenstein, P., Veverka, J. [1989]. Physical characterization of asteroid surfaces from photometric analy-
sis. In: Binzel, R., Gehrels, T., Matthews, M.S. (Eds.), Asteroids II. University of Arizona Press, Tucson, pp.
557-593). This result is consistent with radar studies showing that igneous rocky asteroids - the E and
V types - exhibit the largest surface roughness (Benner, L. et al. [2008]. Icarus 198, 294-304). The effects
of what appears to be space weathering can be largely explained by phase reddening in our collection of
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V-type NEOs, but our finding that smaller vestoids, which have shorter lifetimes, are more similar to Vesta
suggests that some type of alteration of the surface through time occurs. Our observations confirm that the
south polar region of Vesta has a more diogenitic composition than its equatorial regions. The south pole,
which is dominated by a large impact feature, thus may offer a view into the interior of Vesta. We derive a
visible phase integral of 0.44 + 0.02 and a corresponding Bond albedo of 0.15 + 0.03 from our composite
V-type asteroid solar phase curve.

© 2014 Published by Elsevier Inc.

1. Introduction

The Dawn Mission is part of NASA’s Discovery Program.
Launched September 27, 2007, the spacecraft began the detailed
study of the Main Belt Asteroid 4 Vesta with orbit insertion on July
17, 2011 and continuation of its orbital mission for 1 year. The
main goals of Dawn’s in-depth study are to understand the evolu-
tion of this protoplanet and the role of water in its history; to de-
rive Vesta’s bulk properties; to model its surface composition and
geologic landforms, and to understand its relationship with the
terrestrial HED meteorites and the near-Earth vestoids (Kelley
et al., 2003; Binzel et al., 2004; Russell et al., 2012), both of which
are believed to originate from Vesta. In preparation for the Dawn
encounter, a ground-based observing campaign to study the
spectrophotometric properties of vestoids was undertaken. One
important component of this program was the gathering of photo-
metric observations of vestoids over a complete range in solar
phase angles. Because Vesta is in the Main Belt, the maximum
excursion in solar phase angle is limited to ~25°. The majority of
the observations to be obtained by Dawn are at larger solar phase
angles. No project data products or scientific results - mosaics for
both public consumption and for geophysical studies, composition
based on spectroscopic band identifications, topographic analysis
based on photoclinometry, shape models, etc. — can be of very high
fidelity without careful photometric modeling and correction.

One primary goal of this study was to derive a surface phase
function for Vesta and vestoids to be in place at the start of the
nominal mapping mission. A related goal is to quantify the effects
of solar phase reddening in V-type asteroids, and to understand
how much spectral diversity is due to the effects of changing radi-
ance and viewing geometry. The final goal of our study is to ex-
plore the variability in the optical reflectance of vestoids to
better understand their relationship to Vesta and the origin and
dynamical history of the Near-Earth Objects (NEOs) and the terres-
trial meteorites in general. Our measurements also resulted in a
number of subsidiary findings, including four new rotation curves
for near-Earth vestoids, identification of several new V-types and a
binary candidate, and constraints on a pole position for one ves-
toid. We also obtained hundreds of medium resolution spectra of
Vesta over a full rotation period at the same time as the Dawn orbit
insertion, which will enable better instrument calibration and
provide context for ground-based observations. Finally, we did
extensive photometric modeling of our observations to yield a gen-
eral V-type model that can be compared to similar models devel-
oped for S-type and C-type asteroids (Helfenstein and Veverka,
1989).

2. Spectral observations: acquisition and reduction

Medium resolution optical spectrophotometry (R ~ 300; Zyn -
~0.38 um; JAmax~ 0.95 um) of 7 near-Earth and 10 main-belt
V-type asteroids were obtained at the Palomar Mountain 200-in.
telescope (P200) equipped with a facility dual-channel long-slit
CCD spectrometer (the “Double-Spec” or DBSP; Oke and Gunn,

1982). The observing circumstances are listed in Table 1 with orbi-
tal elements, absolute magnitude, etc., as provided by the JPL Hori-
zons database. The Near-Earth Objects (NEOs) in our sample were
initially targeted in our ongoing survey of Potentially Hazardous
Asteroids (PHAs), low-AV NEOs, and asteroids scheduled for radar
observation. Their V-type taxonomy was discovered serendipi-
tously as we began to collect data on them. For our main-belt spec-
tral targets, we used the broad-band colors archived in the 4th
release of the Sloan Digital Sky Survey Moving Object Catalog
(Ivezic et al., 2002) in comparison to the V-type asteroids
contained in the SMASS II survey to identify potential V-type aster-
oids available during our scheduled observing runs, which we con-
firmed with our Palomar spectroscopy. In this way we have been
able to build a self-consistent, unbiased database of V-type
asteroids over a wide range of sizes and orbital distribution, as
illustrated in Fig. 1. A number of our asteroids targeted as V-type
by their optical SDSS colors have been studied by other observers,
including 4055 Magellen (Cruikshank et al., 1991), 5599 (1991
SG1) (Roig and Gil-Hutton, 2006). Although 7472 Kumakiri
exhibits optical colors compatible with V-type classification, the
inclusion of near-IR data revealed a reflectance spectrum more
similar to the O-type classification of 3628 BoZnémcova (Burbine
et al., 2011). Additionally, Roig and Gil-Hutton (2006), Moskovitz
et al. (2008), and Marchi et al. (2010) have used SDSS colors to
identify basaltic asteroids in the main-belt.

With the Palomar DBSP the night sky and object are first imaged
on the slit before being divided by a dichroic filter into blue and red
beams which are then dispersed and reimaged with individual
grating and camera set-ups. In addition to our target asteroids,
spectra of solar analog stars over a wide range of airmass were ob-
tained throughout each night. Wavelength calibrations were
accomplished with arc-lamp exposures and flat-fields were taken
using the illuminated dome. Our individual spectral exposures on
the NEOs were 300 s. Between exposures we recentered on the ob-
ject and updated the object rates of motion if needed. Typical
pointing drifts were on the order of 1 arcsec. Throughout our
campaign we used a 6 arcsec wide slit and kept the tailpiece of
the telescope rotated to match the parallactic angle. The effective
exposure times for our fainter targets were approximately 1 h.

The spectral data reduction proceeded in a standard manner
(Hicks and Buratti, 2004), using IRAF and custom built code. The
two channels of the spectrograph were separately analyzed and
recombined into a composite spectrum. The platescales of the
red and blue cameras are 0.468 and 0.624 arcsec pixel™!, respec-
tively. After flat-fielding, for each exposure a 21-pixel wide object
window was defined in the spatial dimension about the object cen-
terline with 5 pixel sky windows immediately adjacent. For each
exposure, after flat-fielding, a 21-pixel wide object window was
defined in the spatial dimension about the object’s centerline with
a 5 pixel sky window immediately adjacent for each exposure. A
linear fit to the sky windows was subtracted from each row to re-
move scattered light and night-sky emissions. The digital counts
were summed across the object into a one-dimensional spectrum.
Solar analog stars were reduced in a similar way and coadded to
match the airmass of our asteroids and ratioed to produce relative
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Table 1
Orbital elements and observing circumstances: Palomar spectroscopy targets.
Object UT date a (AU) e i(°) q (AU) H (mag) o (°) V (mag) Obs.?
2004 LV3 2008 12 27.19 1.23 0.28 353 0.89 18.8 84.3 159 MH, KL
2003 EF54 2009 08 25.23 1.61 0.47 3.0 0.85 20.0 43.1 16.2 MH, KL, TB, AM
8566 (1996 EN) 2009 08 25.49 1.51 0.43 38.0 0.86 16.5 93.5 16.3 MH, KL, TB, AM
2004 FG11 2010 04 07.49 1.59 0.44 3.1 0.89 20.9 62.7 17.7 MH, KL
4055 Magellan 2010 08 10.16 1.82 0.33 23.2 1.23 14.8 52.6 16.0 BB, MH
2010 MF1 2010 08 10.18 2.50 0.59 9.1 1.02 19.7 81.6 18.2 BB, MH
199432 (1998 FL71) 2010 08 10.41 1.38 0.08 5.8 2.18 14.0 4.6 174 BB, MH
35965 (1999 LH13) 2010 08 10.44 232 0.14 6.8 2.01 15.0 15.1 17.8 BB, MH
7472 Kumakiri 2010 08 10.47 3.02 0.10 9.9 271 11.9 125 173 BB, MH
19165 (1991 CD) 2010 08 10.49 2.29 0.07 7.8 2.12 13.7 209 17.6 BB, MH
12073 Larimer 2010 09 01.24 2.42 0.08 6.2 2.22 14.1 14.0 173 BB, MH
2247 Hiroshima 2010 09 01.47 2.45 0.11 5.9 2.18 13.9 229 17.6 BB, MH
6093 Makoto 2010 09 01.51 2.48 0.14 6.2 2.14 13.2 27.0 173 BB, MH
1991 SG1 2010 10 09.43 3.17 0.08 9.9 2.92 12.8 19.4 16.0 MH, KL
1999 VO6 2010 10 09.49 1.14 0.30 40.1 0.80 16.9 82.7 15.3 MH, KL
2005 GC120 2010 12 12.25 1.19 0.60 16.5 0.48 19.6 40.6 16.9 MH, KL

2 Observer key: AM = Amanda McAuley, BB = Bonnie Buratti, KL = Kenneth Lawrence, MH = Michael Hicks, TB = Tzitlaly Barajas.
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Fig. 1. Osculating elements for the V-type asteroids observed at Palomar (blue),
archived V-type asteroids in the SMASSII spectral database (red), and 4 Vesta
(green). For reference, the proper elements of the known Main Belt asteroids are
shown (Nesvorny, as archived on http://hamilton.dm.unipi.it/astdys). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

reflectance. Our exposures were obtained in rapid succession and
individual frames in each sequence were ratioed by their sum.
Changes in slope or flux in the ratios would suggest problems with
differential refraction or changing extinction but in no cases was it
required to omit any single spectral frame from the sums. Simi-
larly, we were able to cross reference our solar comparison stars ta-
ken on various nights with the well accepted solar analog 16 Cyg B.
Fig. 2 illustrates the results of our vestoid spectroscopy. The rela-
tive reflectance for these 16 objects have been normalized to unity
at 0.55 pm, offset for clarity, and presented in order of increasing
1 wm band depth.

3. Spectral observations: results

At optical wavelengths, the spectra of Vesta and the vestoids
can be characterized by the depth of the 1 um absorption feature

and the continuum slope near 0.6 pm. These quantities can be used
to explore the spectral diversity of V-type asteroids and compared
directly with Vesta. The P200 spectra do not cover fully the extent
of the 1 pm band; therefore, we used the reflectance at 0.85 pum to
compute a pseudo-band depth. After smoothing our spectra
with a 0.01 pm wide boxcar median filter we found the maximum
reflectance  Ryax and defined the pseudo-band depth
D = (Ryax — Ro.gspum)/Rmax. The spectral slope S was defined as the
percent change across 0.6-0.7 pm. Table 2 lists the spectral slope
and pseudo-band depth for our P200 targets as well as for the
V-type asteroids identified in the SMASSII asteroid spectral survey
database (Bus and Binzel, 2002a); the results are plotted in Fig. 3.
The distribution of spectral slopes and pseudo-band depths for
the P200 and SMASSII populations agree. The P200 and SMASSII
populations on average show steeper slopes and greater pseudo-
band depth than 4 Vesta. The lower four panels of Fig. 3 explore
possible correlations of S and D with absolute magnitude
H (a proxy for size) and perihelion distance g (position within
the asteroid belt). For our P200 vestoids, no correlations of psue-
do-band depth D were found with respect to absolute magnitude,
perihelion distance, or solar phase angle («), as summarized in
Table 3. However, significant correlations of spectral slope S were
found with respect to absolute magnitude (o = 4.8), perihelion dis-
tance (o = 2.7), and solar phase angle (¢ = 1.8). As illustrated in the
lower left-hand panel of Fig. 2, the small vestoids tend to have
spectral slopes more compatible with that of 4 Vesta. This result
may suggest evidence for some type of space weathering: small
NEOs have shorter collisional lifetimes and may reflect younger,
unaltered surfaces. Close approaches of NEOs to the Earth-Moon
system may lead to a gravitational shaking that refreshes the near
surface regolith (Nesvorny et al., 2005; Marchi et al., 2006; Binzel
et al,, 2010).

The taxonomy of the near-Earth asteroids presented in this pa-
per was determined during our ongoing spectral survey of plane-
tary radar targets, Potentially Hazardous Asteroids (PHAs) and
low-AV potential mission targets. Taxonomy was determined
through a direct comparison with the 1341 main-belt and Near-
Earth objects in the SMASSII spectral survey (Bus and Binzel,
2002b). All P200 and the SMASSII reflectance spectra were normal-
ized at 0.55 pm. Using the 49 channel spline-fit spectra in the
SMASSII database, we defined a misfit by summing the deviations
between the SMASSII reflectance values and the median of the
P200 spectra within each SMASSII wavelength bin. The misfit be-
tween the P200 targets and the SMASSII objects were sorted and
ranked. The P200 target was assigned the taxonomy of the best-
fit SMASSII object. The main-belt asteroids in our sample were
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Fig. 2. Relative reflectance of 16 vestoids observed at the Palomar 5-m Hale telescope equipped with the facility dual-channel “Double Spec” spectrometer. Each spectrum has
been normalized at 0.55 um, offset as shown, and arranged in order of increasing 1 pm band depth. The blue portion of the spectrum corresponds to the blue channel between
0.35 and 0.55 pum, while the red portion corresponds to the red channel that extends to 1.0 pm. In some cases, the spectra were truncated below ~0.38 pm and above 0.92 if
artifacts and noise in the data are dominant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

identified by their SDSS colors and confirmed as V-type asteroids by
our P200 spectroscopy. Two of the main-belt vestoids, 7472
Kumakiri and 1991 SG1, reside in the outer main belt well beyond
the jovian 3:1 mean motion resonance near the Kirkwood Gap at
2.5 AU, as shown in Fig. 1. To have originated from 4 Vesta, these
two objects would have had to successfully scatter across the 3:1,
5:2, and 7:3 resonances. It is possible that 7472 Kumakiri and
1991 SG1 are not derived from Vesta and represent crustal frag-
ments of a disrupted basaltic parent body compositionally similar
to 4 Vesta. Spectroscopic observations of 1459 Magnya, with a
semi-major axis of 3.15 AU, revealed basaltic composition (Lazzaro
et al., 2000).

4. Broadband photometric observations: acquisition and
reduction

To maximize the solar phase coverage of our V-type NEO targets,
an observational campaign of broad-band photometry was
mounted across multiple sites: Table Mountain Observatory (Hicks,
lead observer), Calar Alto Observatory (Duffard, lead observer), and
Purple Mountain Observatory (Zhao, lead observer). The
Table Mountain Observatory (TMO) is located 60 miles north-east
of Pasadena, California at 2300 m elevation and features a 0.6-m
f/16 Ritchey-Chretien reflector equipped with CCD detector and
Bessel BVRI filterset. TMO supports both on-site and remote obser-
vations. Fourteen nights of photometric data were acquired at TMO.
The Calar Alto Astronomical Observatory (CA) is located at 2200 m

elevation in the Sierra de Los Filabres Mountains of southern Spain.
One night of R-band photometry at the CA 1.2-m reflector (CA1.2)
and four nights of R-band photometry at the CA 2.2-m reflector
(CA2.2) were acquired. Two nights of photometric data were ac-
quired with the Purple Mountain (PM) 1-m Xuyi Schmidt telescope.
Table 4 lists the orbital elements and observational circumstances
of our broad-band photometry targets. All data were reduced in a
standard way by Hicks using IRAF and custom built code. Landolt
standards (Landolt, 1992) were observed throughout each night
at a wide range of airmass to provide photometric calibration. Lan-
dolt fields were observed at all three stations. The photometric
accuracy of the PM and CA data was verified by reimaging the CA
and PM fields at TMO and cross-calibrating background field stars,
bringing the photometry to a self consistent filter system. Typical
nightly calibration accuracies were ~0.015 mag for the V, R, and |
filters and ~0.022 for the B filter data.

5. Broadband photometric observations: results for individual
objects

In this section we discuss broadband observations of specific
NEO targets, which have provided new rotation light curves and
a composite solar phase curve; a new shape/spin model; BVRI col-
ors; a new binary candidate; identification of new V-types NEOs;
and a composite model to quantify solar phase reddening for
V-type asteroids.
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Table 2
Measured spectral properties.

Spectral slope Pseudo-band depth

P200 vestoids

1991 SG1 12.884 +1.087 0.330+0.014
1999 VO6 7.745+0.783 0.152 +0.008
2003 EF54 6.155 + 0.894 0.136 +0.008
2004 FG11 5.617 £4.075 0.287 +0.037
2004 LV3 9.984 + 0.996 0.320 £0.012
2005 GC120 8.646 + 2.450 0.444 £ 0.017
2010 MF1 7.614 £4.511 0.267 £ 0.030
2247 Hiroshima 12.706 +2.098 0.330+0.012
4055 Magellan 12.784 +1.963 0.396 +0.015
6093 Makoto 14.193+3.513 0.229 £0.023
7472 Kumakiri 9.653 +2.424 0.213+£0.017
8566 (1996 EN) 11.826 £ 0.960 0.348 +0.008
12073 Larimer 9.303 £2.031 0.261 +0.021
35965 (1999 LH13) 10.998 + 1.106 0.222 +0.011
19165 (1991 CD) 14.423 +4.530 0.343 £ 0.037
199432 (1998 FL71) 13.706 + 4.390 0.262 +0.042
SMASS II vestoids

4 Vesta 5.138 +0.202 0.201 +0.011
1929 Kollaa 15.899 + 1.302 0.281+0.012
2045 Peking 11.729+1.822 0.244 £ 0.011
2468 Repin 11.456 + 1.810 0.279 £0.012
2508 Alupka 10.561 +0.158 0.218 £0.014
2511 Patterson 11.884 + 1.600 0.271 +£0.012
2547 Hubie 9.142+1.114 0.208 +0.010
2566 Kirghizia 12.156 +1.193 0.285+0.011
2579 Spartacus 15.343 £ 6.508 0.342 +0.017
2640 Hallstrom 10.233 £ 0.996 0.230+0.011
2653 Principia 12913+ 2,515 0.313 £0.016
2704 Julian Lowe 9.922 +2.137 0.285+0.011
2763 Jeans 11.924 +0.417 0.233+0.013
2795 Lepage 14.571 +2.529 0.289 +0.012
2851 Harbin 16.861 + 0.806 0.354 £0.014
2912 Lapalma 13.346 +1.543 0.353+0.012
3155 Lee 14.097 +3.589 0.288 +0.012
3265 Fletcher 7.039 £0.352 0.156 +0.010
3307 Athabasca 14.232+1.292 0.387 +0.013
3498 Belton 7.676 +0.727 0.175+0.013
3536 Scleicher 9.368 +0.877 0.197 £0.013
3782 Celle 9.752 £ 1.563 0.236 £0.012
3849 Incidentia 9.500 + 1.572 0.226 +0.014
3850 Peltier 11.480+1.220 0.309 +0.012
3900 Knezevic 11.860+1.104 0.312+£0.011
4188 Kitezh 9.640 £ 1.019 0.244 +0.011
4215 Kamo 10.872+1.938 0.242 +0.012
4311 Zguridi 9.193 +£2.442 0.190 +0.010
4434 Nikulin 9.537 £1.161 0.253 £0.012
4796 Lewis 9.337 £2.294 0.290 +0.012
4900 Maymelou 11.167 £ 0.713 0.247 £0.011
4977 Rauthgundis 11.142 £ 1.525 0.342 +0.009
4993 Cossard 9.727 £2.846 0.244 £0.010
5240 Kwasan 10.288 +0.478 0.252 +0.014
5379 Abehiroshi 8.253 £4.730 0.230+0.018

The near-Earth Asteroid 4688 (1980 WF) was discovered photo-
graphically by Charles Kowal on November 29 1980 (IAUC 3549).
Infrared photometry (N-band; 10 pm) acquired by Veeder et al.
(1989) yielded an albedo of 0.18 and effective diameter of
0.6 km. The spectral class assigned to this asteroid has evolved
from SQ (Chapman et al., 1994) to V (Binzel et al., 2004). As a high
solar-phase vestoid target, we observed 1980 WF over the course
of four partial nights at TMO and one partial night with the
CA2.2 between January 21 and February 6 2011. We measured a
new rotational period for 1980 WF: using standard Fourier tech-
niques we determined a best-fit synodic period Psy, = 7.60 + 0.02 h
with a relatively high lightcurve amplitude of ~0.8 mag. We
measured an absolute magnitude in the Bessel R-band (effective
wavelength Zg5=0.63 pm) of Hg=19.18 mag, assuming a phase
parameter g=0.15. Our 1980 WF phased lightcurve is plotted in
Fig. 4.
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Fig. 3. Spectral slope and pseudo-band depth for P200 (blue) and SMASSII (red)
vestoids. The slope is the percent change from 0.6 to 0.7 pm. The pseudo-band
depth is the maximum reflectance wherever it exists in the spectra minus the
reflectance at 0.85 um divided by the maximum reflectance. (No phase angle
corrections have been applied.) There is no clear spectral difference between main-
belt and NEO vestoids, although Vesta appears to be an outlier. The bottom four
panels show that there is no clear correlation between these slopes and band
depths and perihelion distance or absolute magnitude, which is a proxy for size.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 3

Linear correlations for measured P200 vestoid properties.
X-axis Y-axis A (intercept) B (slope)
q S 6.865 + 1.455 2.1902 £ 0.7971
q D 0.297 +0.053 —0.0079 + 0.0288
H S 22.990 £ 2.637 —0.7878 £ 0.1641
H D 0.289+0.125 —0.0003 £ 0.0078
o S 12.292 +1.167 —0.0420 £ 0.0227
o D 0.276 +0.038 0.0002 + 0.0007

The near-Earth Asteroid 1981 Midas (1973 EA) was discovered
by Charles Kowal (IAUC 2532). Muinonen et al. (2006) combined
6 nights of time-resolved photometry from the open literature
and two additional nights of data from the object’s 2004 apparition
to search for a convex shape/pole solution using the optimum
lightcurve inversion technique described by Kaasalainen et al.
(2001). Although their dataset spanned 16 years, they were unable
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Table 4
Orbital elements and observing circumstances: Broad-band photometry targets.
UT date Filter(s) r (AU) A (AU) o (°) V (mag) Tel.® Obs.”
4688 (1980 WF) (a,e, i, H=2.23,0.52, 6, 19)
2011 01 21.11 R 1.10 0.22 52.7 17.8 T™O MH
2011 01 22.15 R 1.10 0.22 52.3 17.8 T™MO MH
2011 01 29.14 R 112 0.23 49.3 179 T™MO MH
2011 02 04.15 R 1.14 0.25 46.6 18.0 T™MO TB, MH
2011 02 05.86 R 1.15 0.26 45.9 18.1 CA2.2 RD
1981 Midas (a, e, i, H=1.78, 0.65, 40, 15.5)
2011 01 21.51 BVRI 1.26 0.86 51.0 17.6 TMO MH
2011 01 22.51 BVRI 1.25 0.84 51.6 17.5 T™MO MH
2011 02 04.54 BVRI 1.11 0.65 61.6 17.0 T™MO TB, MH
2011 02 12.55 R 1.02 0.56 70.3 16.8 TMO MH
137052 Tjelvar (1998 V033) (a,e i, H=1.25, 0.89, 15, 16.844)
2011 01 15.16 R 1.48 0.59 25.2 17.7 CA1.2 RD
2011 01 21.30 BVRI 1.42 0.51 26.2 174 T™MO MH
2011 01 22.34 BVRI 1.41 0.50 26.6 17.3 T™MO MH
2011 01 29.32 BVRI 133 0.44 31.7 17.0 T™O MH
2011 02 04.28 BVRI 1.26 0.39 395 16.9 T™MO TB, MH
2011 02 04.88 R 1.25 0.39 40.5 16.9 CA2.2 RD
201102 11.24 BVRI 117 0.36 52.0 16.9 T™MO HR, MH
2011 02 12.24 BVRI 1.16 0.36 54.0 16.9 T™MO MH
2011 02 13.26 BVRI 1.14 0.36 56.1 16.9 T™MO JF
2011 02 20.61 R 1.04 0.36 72.2 17.2 PM HZ
2011 02 21.53 R 1.02 0.36 743 17.3 PM HzZ
2011 02 25.17 R 0.97 0.36 824 17.5 T™MO DM, MH
253841 (2003 YG118) (a, e, i, H=2.28, 0.64, 8, 17.051)
2011 01 29.45 BVRI 1.21 0.32 40.6 16.6 T™MO MH
2011 02 04.44 BVRI 1.15 0.26 45.5 16.2 T™MO TB, MH
2011 02 05.17 R 1.14 0.25 46.6 16.1 CA2.2 RD
2011 02 06.21 R 113 0.24 47.9 16.1 CA2.2 RD
2011 02 07.15 R 113 0.24 49.0 16.0 CA2.2 RD
201102 1143 BVRI 1.09 0.21 56.3 15.8 T™MO HR, MH
2011 02 12.44 BVRI 1.08 0.20 58.3 15.8 TMO MH
4055 Magellan (a, e, i, H=1.82, 0.33, 23, 14.8)
2010 08 09.17 R 1.26 0.58 524 16.0 T™MO MH
2010 08 10.26 R 1.25 0.58 52.6 16.0 T™MO T
2010 08 12.26 R 1.25 0.58 52.8 16.0 T™MO TT
201008 13.18 R 1.25 0.58 52.9 16.0 T™MO T
2010 08 14.18 R 1.25 0.57 53.0 16.0 T™MO MH

2 Telescope key: TMO = Table Mountain 0.6-m, CA2.2 = Calar Alto 2.2-m, CA1.2 = Calar Alto 1.2 m, PM = Purple Mountain 1-m Schmidt.
> Observer key: DM = Deronda Mayes, HR = Heath Rhoades, HZ = Haibin Zhao, JF = James Foster, MH = Michael Hicks, RD = Rene Duffard, TB = Tzitlaly Barajas, TT = Tino
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Fig. 4. Phased lightcurve for 4688 (1980 WF), which enables a tentative determi-
nation of the period of this vestoid, as well as its absolute magnitude.

to determine a fixed pole/shape solution, but they did constrain the
sidereal period Py =5.22 £ 0.04 h. We obtained 3 nights of BVRI
photometry and 1 night of R-band photometry of 1981 Midas at
TMO, and found a best-fit synodic period Psy,=5.314+0.002 h
with a moderate lightcurve amplitude of ~0.2 mag. Our photome-
try yielded an absolute magnitude Hg=14.44 mag, assuming a
phase parameter g=0.15. The phased 1981 Midas lightcurve is
plotted in Fig. 5.

The near-Earth Asteroid 4055 Magellan (1985 DO2) was discov-
ered photographically by Eleanor Helin. The object’s taxonomic
similarity with 4 Vesta at optical and near-IR wavelengths was first
noted by Tholen et al. (1988) and was studied in depth spectro-
scopically by Whiteley (2001) and Binzel et al. (2004). Thermal
observations by Delb¢ et al. (2003) determined a geometric albedo
p =031, and, a rotational period of 7.475+0.001 h has been
determined as part of Petr Pravec’s Ondrejov Survey (http://
www.asu.cas.cz/~ppravec/neo.html). We obtained five partial
nights of R-band photometry with the TMO 0.6-m telescope and
found a best-fit synodic period Psy, =7.491 £ 0.005 h with a high
lightcurve amplitude of ~0.8 mag. Our photometry yielded an
absolute magnitude Hg = 14.56 mag, assuming a phase parameter
g=0.15. Our phased 4055 Magellan lightcurve is plotted in Fig. 6.

The near-Earth Asteroid 253841 (2003 YG118) was discovered
by the LINEAR NEO Discovery Survey on December 17, 2003
(M.P.E.C. 2003-Y91). A rotatonal period P=2.27 £0.15 h has been
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Fig. 5. Phased lightcurve for 1981 Midas, which led to an improved determination
of its period (Kaasalainen et al., 2001) and a determination of its absolute

magnitude.
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Fig. 6. Phased lightcurve for 4055 Magellan, showing a determination of its period.
The slight offset at 0.2 phase is due to evolution of the illumination, projected area,
and viewing geometries during the observing season.

reported by Brian Skiff (http://www.minorplanet.info/call.html).
Visible and near-IR spectroscopy of this object was obtained by
one of us (Duffard) at the 2.5-m Nordic Optical Telescope
(0.48-0.91 pm) and the 3.6-m Telescopio Nazionale Galileo (0.8-
2.5 um) in the object’s discovery apparition (Duffard et al., 2006).
The composite visible/near-IR reflectance spectrum of 2003
YG118 showed broad absorption features near 1 and 2 pm, sugges-
tive of an admixture of mafic minerals. Using the method developed
by Gaffey et al. (2002), which examines the 1 and 2 pm band cen-
ters and band area ratios, Duffard et al. (2006) found 2003 YG118
to be comparable to 4 Vesta and that its spectrum could be modeled

Rotational Phase

Fig. 7. Two-period lightcurve of 253841 (2003 YG118), identifying this asteroid as a
binary. The seven nights of observation are shown with a model (dotted line)
consisting of two additive components with noncommensurate periods. The
bottom curve shows the residuals between the model and the data.

as a 85/15% mixture of low-calcium (othopryoxene) and high-
calcium (clinopyroxene). Application of the Modified Gaussian
Model (MGM) developed by Sunshine and Pieters (1993) by Duffard
et al.(2006) also suggested a surface dominated by orthopyroxenes.
2003 YG118 was scheduled as a planetary radar target in February
2010, but equipment problems at the Arecibo facility unfortunately
forced the cancellation of the radar observations (L. Benner, private
communication). We observed 2003 YG118 over the course of 3
nights at optical wavelengths with the 2.2-m Calar Alto Telescope
and 4 nights with the Table Mountain 0.6-m Telescope, as outlined
in Table 4. Standard Fourier lightcurve analysis of our photometry
initially pointed towards a low lightcurve amplitude and a rapid
rotation period near 2.4 h, near the rotational disruption rate for a
strengthless spheroidal body (Margot et al.,, 2002). However,
night-to-night variations in the reduced photometry suggested
the lightcurve signature of a binary asteroid, as shown in Fig. 7. This
result would not be surprising since approximately 17% of near-
Earth asteroids larger than 200-m diameter are likely binary sys-
tems (Pravec et al., 2000, 2006). We modeled our observations
using the double-period Fourier method as described by Pravec
and Hahn (1997), which models the lightcurve as two additive
components with noncommensurate periods. We found the best-
fit solution P; =2.409 + 0.001 h and P, =29.1 + 1.8 h to be similar
to other binary NEOs. We interpret the shorter period to be the
rotation period of the primary and the longer period to reflect the
orbital period of a tidally locked companion. Vesta-family binaries
are not unknown: photometric observations of the main-belt
vestoid 3782 Celle were found to be consistent with an eclipsing/
occulting binary system P; =3.84+0.01 h and P, =36.57+0.03 h
(Ryan et al., 2004).

The near-Earth Asteroid 137052 Tjelvar (1998 V033) was dis-
covered by C.I. Lagerkvist at the La Silla 1-m Schmidt (M.P.E.C.
1998-W10) and spectral observations revealed a V-type taxonomy
(Whiteley, 2001; Bus and Binzel, 2002b; Binzel et al., 2004). Krugly
et al. (2002) reported an 8 h rotational period. We obtained 12 par-
tial nights of rotationally resolved photometry of 137052 Tjelvar
over a wide range of declinations and solar phase angles, including
1 night with the CA1.2, 1 night with the CA2.2, 2 nights with the
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PM Schmidt, and 8 nights at TMO. We determined a best-fit syn-
odic period Py, =4.514 £ 0.002 h with a relatively low lightcurve
amplitude of ~0.14 mag. We measured an absolute magnitude
Hg=16.60 mag, assuming a phase parameter g=0.15. The light-
curve of 137052 Tjelvar is plotted in Fig. 8.

Multi-filter rotationally resolved broad-band photometry can be
used to explore compositional variability between objects and
quantify wavelength-dependent solar phase effects. As listed in
Table 5, BVRI observations for three of our NEO vestoids, 1981
Midas, 137052 Tjelvar, and 253841 (2003 YG118), were obtained
over significant ranges of rotational and solar phase space. A stan-
dard color cycle consisted of seven exposures (R-I-R-V-R-B-R)
observed multiple times allowing us to measure R-band lightcurves
and instantaneous B-R, V-R, R-I colors. As with the optical spec-
troscopy, each object’s mean colors were compared to the 1341
spectra archived in the SMASSII survey (Bus and Binzel, 2002a,b).
Fig. 9 and Table 6 list the best-fit spectral analogs in the SMASSII
dataset and our data confirms V-type taxonomy in each case. All
asteroids flagged as V-type by their SDSS colors were confirmed
as V-type by their P200 spectra. Aided by a wide range in observed
solar phase angle, we used our nightly averaged colors to constrain
wavelength dependent solar phase effects, as shown in Fig. 10 and
Table 7. Our vestoid photometry suggests a subtle but statistically
significant phase at BVRI wavelengths. The trends in B-R and R-I
color imply that at high solar phase angle the optical spectrum is
reddened and the 1-pm pyroxene band is deeper, both of which
have been seen in laboratory studies of HED meteorites (Reddy
et al., 2012). If we extrapolate the mean BVRI colors back to 0°
phase, we find that the composite vestoid model matches 4 Vesta
well, as shown in Fig. 11, suggesting that a significant fraction of
observed variability at optical wavelengths may be due solely to
phase angle effects. A similar study for S-type and Q-type asteroids
found that about half of the effects of solar phase reddening could
be attributed to viewing geometry (Sanchez et al., 2012).

As shown in Buratti and Veverka (1983), the disk integrated flux
@(a), which is normalized to unity at o = 0°, can be converted to
the surface phase function f{a), where « is the solar phase angle

f(a) = ®(a) - fo/(1 — sin(ee/2) tan(et/2) In cot(c/4)) (1)
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Fig. 8. Phased lightcurve of 137052 Tjelvar (1998 VO33), with a determination of
its period.

assuming a uniform sphere or knowledge of the local incident or
emission angles and the Lommel-Seeliger scattering law. The solar
phase function f{or) contains the effects of solar phase angle alone
such as roughness and the single particle phase function. Knowl-
edge of this function is necessary to obtain photometrically
corrected spacecraft images. The changes in intensity due to the
changing emission and incident angles are modeled in the trigomet-
ric term of Eq. (1). We restricted our photometry to objects with low
lightcurve amplitude, allowing us to minimize shape effects. The
upper panel of Fig. 12 illustrates our normalized solar phase curve
in magnitude units. The dashed curve is a simple polynomial plus
exponential term (to account for the opposition surge) fit of the
form

®(0r) = Ag exp(—A;0) + Ay + A0+ Ago® + Aso® + Agar? (2)

After conversion from magnitude units to normalized linear units
the &(a) fit is applied to Eq. (1), which allowed us to generate a
polynomial plus exponential fit to flor) with Ag=0.2255, A=
0.2300 x 1072, A,=0.7745, As;=-1.6284x 1072, A4=1.2973 x
1074, As=-0.4511 x 1075, Ag=0.0556 x 108, The bottom panel
of Fig. 13 shows our empirical photometric model derived from
our vestoid data, with the IAU HG model for comparison (see next
section of more detail) Assuming Lommel-Seeliger scattering, our
simple empirical model can be used to covert I/F(x) measured by
the Dawn spacecraft to geometric albedo or to normalize the space-
craft data to any required illumination/viewing geometry.

6. Broadband photometric observations: composite phase curve
and photometric modeling

One purpose of our investigation was to explore the photomet-
ric behavior of V-type asteroids at solar phase angles inaccessible
to ground based observers of 4 Vesta, which has a maximum
excursion of ~24°. The observed brightness of Near Earth vestoids
at large solar phase angles (~80°), which is more typical of the
viewing geometries during the Dawn mapping period, enabled us
to predict the intensity of the spacecraft images prior to orbit
insertion. But in addition, our observations made it possible to con-
struct a composite visible solar phase curve of V-type asteroids,
similar to that published for S-type and C-type asteroids
(Helfenstein and Veverka, 1989). This phase curve was fit to a
physical photometric model and compared to the results of fits
to other asteroid taxonomic types.

Over the past two and a half decades, photometric models
describing the geophysical attributes of planetary surfaces have
been published (Hapke, 1981, 1984, 1986, 1990; Buratti, 1985;
Buratti and Veverka, 1985). The main parameters of these models
are macroscopic roughness, which can be characterized by a mean
slope angle (Hapke, 1984) or a mean depth-to-diameter ratio of a
crater with specified surface coverage (Buratti and Veverka,
1985); the compaction state of the active upper regions of the sur-
face (Irvine, 1966; Hapke, 1986); the single scattering albedo; and
the directional scattering properties of the particles, which in turn
are related to their size, shape, and composition. The models have
been criticized in that they do not represent physical reality very
well (see Shepard and Helfenstein, 2007, and Hakpe’s response
(Hapke, 2008; Hapke et al., 2009)) and that they are difficult to un-
iquely fit (Helfenstein et al., 1988). The first criticism can be miti-
gated somewhat by focusing on comparisons among the many fits
that have been done over the years, and the second criticism can be
largely avoided by gathering data over a full range of solar phase
angles or by fitting both disk-integrated and disk-resolved
measurements.

Following the techniques described in Hillier et al. (2011) we
applied a Hapke model to a composite phase curve that contains
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Table 5
Broad-band colors.
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UT date B-R (mag) V-R (mag) R-I (mag) Phase (°) Number of cycles
1981 Midas
2011 01 21.51 1.305 +0.056 0.508 +0.021 0.138 £0.023 51.0 3
2011 01 22.51 1.382+£0.033 0.456 +0.018 0.181 £0.011 51.6 3
2011 02 04.54 1.380 £ 0.032 0.519+£0.030 0.179 £0.033 61.6 4
Mean colors 1.359 £ 0.049 0.498 + 0.034 0.167 £ 0.030
137052 Tjelvar (1998 V033)
2011 01 21.30 1.233 £0.015 0.441 +0.016 0.215+0.015 26.2 6
2011 01 22.34 1.144+£0.177 0.472 +0.069 0.219 £ 0.025 26.6 3
2011 01 29.32 1.230+0.019 0.462 +0.025 0.215+0.011 31.7 3
2011 02 04.28 1.218 £ 0.059 0.445 +0.023 0.255+0.018 395 3
201102 11.24 1.309 + 0.084 0.442 +0.021 0.179 £ 0.043 52.0 6
2011 02 12.24 1.302 £ 0.077 0.508 +0.037 0.224 +0.050 54.0 6
2011 02 13.26 1.370 £ 0.062 0.487 +0.124 0.192 + 0.066 56.1 5
Mean colors 1.280 + 0.086 0.453 +0.061 0.212 £ 0.050
253841 (2003 YG118)
2011 01 29.45 1.251 £0.018 0.452 +0.036 0.173 £0.033 40.6 8
2011 02 04.44 1.254+0.011 0.336+0.012 0.162 +0.015 45.5 6
201102 11.43 1.270 £ 0.020 0.436 +0.011 0.186 £ 0.016 56.3 6
2011 02 12.44 1.280 +0.015 0.443 +0.014 0.170+0.017 58.3 6
Mean colors 1.263 £0.019 0.445 +0.022 0.172 £0.023
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Fig. 9a. SMASSII BVRI colors (as measured from reflectance spectra) for 1981 Midas
shown with spectra of the best fit spectral matches from the 1341 spectra in the
data base (Bus and Binzel, 2002a,b). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

our observations of the near-Earth vestoids, the published observa-
tions of Vesta (Hasegawa et al., 2009; Reddy et al., 2012), Rosetta
measurements (Fornasier et al., 2011) and the available full-disk
observations of Vesta from Dawn (see Fig. 14). Disk-integrated
measurements of Vesta’s solar phase curve were extracted from
the Framing Camera approach and survey data obtained in the
Clear Filter. We selected radiometrically and geometrically cali-
brated images that included the full disk of Vesta: these data
spanned the phase angle range from 29° to 44°. The disk-integrated
brightness of Vesta in each image was derived by performing aper-
ture photometry, subtracting any residual background signal, and
normalizing to a common spacecraft distance. The relative phase
curve derived from Dawn was then normalized to the ground based
observations as follows. First a fit was performed to Hapke’s model

Wavelength [um]

Fig. 9b. Same as Fig. 11a for 137052 Tjelvar (1998 VO33).

excluding the Dawn data. A normalization factor needed to bring
each Dawn data point in line with this fit was found. An average
of these factors was then determined and applied to the Dawn data.
For this fit, we characterize the macroscopic roughness by Hapke’s
mean slope parameter (0) and the directional properties of the sin-
gle particle phase function P by the Henyey-Greenstein g,

P(cosa,g) = (1 —g%)/(1+g% +2gcosa)”’”

3)
where g is the asymmetry parameter such that g=1 is purely for-
ward scattering, g = —1 is purely backscattering, and g = 0 is isotro-
pic (Henyey and Greenstein, 1941). The single scattering albedo
and the opposition surge parameters were also fit. For the opposi-
tion surge we fit the parameters By, which describes the amplitude
of the surge, and h, which describes its width. The width depends on
the particle sizes of regolith particles and how the particles are
compacted: a small h corresponds to a “fluffier” surface with more
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Fig. 9c. Same as Fig. 11a for 253841 (2003 YG118).
Table 6

Best-fit SMASSII matches.

Misfit Object Spectral type
1981 Midas

1.34 2763 Jeans \%
1.52 2508 Alupka \'%
1.82 349 Dembowska R
1.86 5111 Jacliff R
2.08 2371 Dimitrov R
2.08 4900 Maymelou \%
137052 Tjelvar (1998 V033)

0.46 3376 Armandhammer Sq
0.55 4824 Stradonice Sr
0.70 3265 Fletcher \%
0.74 3498 Belton \%
0.79 4311 Zguridi \'%
1.00 3536 Schleicher \%
253841 (2003 YG118)

1.08 4311 Zguridi \Y
1.31 3498 Belton \%
2.21 3536 Schleicher \'%
2.68 2547 Hubei \%
2.93 4824 Stradonice Sr
3.03 5240 Kwasan \%

void spaces between particles. We did not include the effects of
coherent backscatter (Hapke, 1990) because our observations at
small solar phase angles, particularly those <1°, are not extensive
enough to separately fit the opposition surge due to shadow hiding
(Irvine, 1966) and the surge due to coherent backscatter. We find a
backscattering coefficient, g, of —0.26, a single scattering albedo of
0.51, a mean slope roughness of 31.5°, and shadowing hiding oppo-
sition surge parameters h and B, of 0.098 and 1.0, respectively.

Table 8 summarizes our results for roughness and the single
scattering albedo along with previous work on small bodies.
Fig. 14 shows a phase curve that includes all the vestoid and Vesta
data along with the Hapke model fit and the IAU model fit from
Fig. 13. The vestoid measurements have been corrected for
rotational effects, and the Dawn observations have been corrected
for both rotational effects and projection effects due to the non-
sphericity of the asteroid.

The phase curve shown in Fig. 14 can be used to compute the
phase integral, which expresses the directional scattering proper-
ties of a planetary body:

q=2 /07I & (o) sin(or)dot (4)

The Hapke model fit yields a phase integral of 0.44 + 0.02. With
knowledge of the integral scattering properties of the V-asteroids
over a large range of solar phase angles, and a measure of the
brightness at 0°, which in turn yields a geometric albedo, the Bond
albedo can be estimated. The Bond albedo (Ag) is the ratio of the
integrated flux reflected by the satellite to the integrated flux re-
ceived, and it is equal to the geometric albedo (p) times the phase
integral. (The bolometric Bond albedo is this quantity integrated
over all wavelengths, but we do not have the spectral coverage
to determine this parameter.) Both disk integrated and disk-re-
solved values of the bolometric Bond albedo are fundamental
parameters for understanding energy balance and volatile trans-
port on a planetary body. Using the visible geometric albedo of
0.34 £ 0.02 from the JPL Horizons data base, we find a Bond albedo
of 0.15 + 0.03.

Our R-band photometry allowed us to explore solar phase
behavior of vestoids at high solar phase angles. Fig. 13 illustrates
the disk integrated photometry for four vestoids and 4 Vesta ob-
tained by our team. The H-G magnitude describes the reduced
magnitude of an atmosphereless small body as a function of abso-
lute magnitude H and solar phase parameter G and was adopted by
the IAU in 1985 (Bowell et al., 1989). The vestoid solar phase
behavior is reasonably well described by a range of phase param-
eter 0.28 < G <0.34, although the H-G model begins to deviate
from the observed behavior at solar phase angle « > 60°, more so
than the Hapke model (see also Fig. 14). The relatively high G is
consistent with a bright, high albedo asteroid where multiple scat-
tering is not insignificant.

7. Spectral observations: disk-integrated spectra of Vesta over a
complete rotation

In addition to our study of NEO vestoids, we obtained spectra of
4 Vesta over a full rotation curve near the time of Dawn orbit inser-
tion. The purpose of these observations was to provide a standard
set of well-calibrated spectral data to serve as calibration sets for
the Dawn instruments and to obtain rotational phase variations
of Vesta’s south polar regions, which had not been imaged by
HST (Zellner et al., 1997; Li et al., 2010), and which are a focus of
Dawn’s mapping mission. We obtained two nights of medium-res-
olution disk integrated spectroscopy of the asteroid at the Hale
200-in. telescope on July 7 and 8, 2011, at sub-Earth latitudes of
~40° south, closely matching the Dawn approach trajectory. Table 9
lists observing circumstances. Over 600 spectral images of the
asteroid were acquired, unfortunately through strong and variable
cirrus. The brightness of Vesta (V ~ 6 mag) forced us to use the
instrument’s most narrow slit of 0.5 arcsec, and to defocus Vesta
to well over 10 arcsec in diameter (the standard stars were not
defocused). These factors may have introduced some small scale
artifacts into our data. Data analysis procedures were the same
as that described for the vestoid objects, except in this case we ob-
served the standard stars with a 0.5 arcsec slit.

The top of Fig. 15 shows a composite spectrum of all our obser-
vations. Each observation was ratioed to the solar analogue star,
normalized to 0.5 pm and median filtered as a group. In addition,
we investigated hemispheric differences in the spectra. The bottom
panel shows the median average of all spectra with sub-observer
longitudes between 100° and 280° (IAU convention) ratioed to
the averaged spectrum (red) and all other longitudes (green). There
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Fig. 10. An illustration of solar phase reddening. The measured broad-band colors of 1981 Midas (red), 137052 Tjelvar (blue), and 2003 YG118 (green) are plotted along with
linear fits. This figure demonstrates that a significant amount of the change in spectral slope and band depth are due to solar phase angles effects. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 7
Vestoid phase reddening.

Intercept (mag) Slope (x10~3) (mag deg™')

B-R 1.161 £ 0.024 2.301+0.526
V-R 0.395 +0.025 0.749 + 0.497
R-1 0.264 +0.019 —1.608 +£0.427
B-1 1.405 £ 0.033 1.122 £0.722

is a substantial difference in the visible slope between the two
hemispheres. (We are not confident in the differences shown at
0.73, 0.82, and 0.95 um, as they are likely artifacts due to night
sky emissions or telescope flexure). The band depth centered near
0.95 um does not appear to change as a function of longitude.
One of the most valuable analyses of these spectra is a compar-
ison of the spectral properties of the south pole of Vesta with the
equatorial regions. Ground-based observations of the visible and
near-IR reflectance of Vesta have long suggested that the body is
differentiated (McCord et al., 1970), with the confirmation by the
Dawn Mission (Russell et al., 2012). Previous spectra of Vesta were
obtained at more equatorial latitudes (Fig. 16), although Gaffey
(1997) hypothesized that a small, shallow impact basin at the
south pole of Vesta was more diogenitic than the average surface.
A large body of petrologic evidence suggests that the HEDs may
come from different depths of 4 Vesta (see McSween et al., 2011,
for a review). The diogenite meteorites are assumed to originate
deep in Vesta’s crust, while the eucrites come from lava flows onto
its surface or from shallow dikes and plutons. Howardites are be-
lieved to be a mixture of the two. The large crater at Vesta’s south
pole (Schenk et al., 2012; Russell et al., 2012) appears to have exca-
vated a large portion of the crust of Vesta, exposing mineral types
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Fig. 11. Composite vestoid color model reduced to 0° solar phase angle. This figure
shows that the phase-corrected model spectrum of our composite set of V-type
asteroids fits closely to the SMASSII spectrum of 4 Vesta. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

from deeper in the crust and mantle of the asteroid. If indeed this
excavated portion of Vesta is enriched in diogenitic material, it
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predicts the brightness of vestoids at large solar phase angles. More sophisticated
photometric modeling, shown in Fig. 13, is needed to explain the decrease in
brightness beyond 50°.

should show up in our spectrum of the south pole. Fig. 16 shows
our composite spectrum, the SMASS spectrum of Vesta which is
more representative of Vesta's equatorial region, and spectra of
typical diogenite and eucrite meteorites at various particle sizes,
as archived in the Relab data base (http://www.planetary.
brown.edu/relab). Although our spectrum closely resembles the
eucrites shortward of 0.7 pm, it is more similar to diogenites than
the more equatorial SMASS spectrum, which suggests the polar
regions are enriched in diogenitic material lower in the crust or
core of Vesta. Similarly the band at 0.95 pum is deeper than the
SMASS spectrum, which is also more characteristic of a diogenitic
composition. In addition this band position is closer to that of
the diogenite samples, although given the noise in our spectrum
at the critical wavelengths, this result is only suggestive. First
results from the Dawn Visible and Infrared Spectrometer (VIR) also
suggest that the south pole is more diogenitic, based on an analysis
of the 2 pm band (De Sanctis et al., 2012). Previous groundbased
work on vestoids shows specific correlations between 1929 Kollaa
and a more eucritic composition similar to 4 Vesta’s crust (Kelley
et al., 2003).

8. Discussion, comparisons with other small bodies, and
conclusions

Our photometric investigation of V-type asteroids yielded a
number of important results that are complementary to the inves-
tigation being performed by the Dawn Spacecraft at 4 Vesta. First,
we find that the smaller vestoids exhibit deeper 1 um absorption
bands and bluer slopes in the visible portion of the spectrum. With
the classic view of space weathering, which entails the reddening
of the visible slope and dampening of absorption band strength
(Pieters et al., 2000; Hapke, 2001) this result implies that they
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Fig. 13. (Top) Our empirical photometric model derived from a composite of the
vestoid data. (Bottom) The fit to the data (blue line) compared to the IAU model,
which cannot predict the brightness at large solar phase angles. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

are younger and were injected into the inner Solar System more re-
cently. Binzel et al. (2004) found this trend with S-type asteroids.
However, with the finding that space weathering on Vesta works
in a different way than that on S-type asteroids, with more exposed
surfaces tending to be brighter and bluer due to communication of
particles (McCord et al., 2012; Pieters et al., 2012), this connection
is less clear. Laboratory ion bombardment experiments suggest
that the V-type asteroids should be redder than HEDs (Vernazza
et al, 2006; Fulvio et al., 2012). We confirmed two vestoids,
7472 Kumakiri and 1991 SG1, beyond the Jupiter 3:1 resonance.
Either there is an unknown mechanism for moving these objects
out that far, or there is another source body for V-type asteroids.
Finally, we find that phase reddening may explain much of the
spectral diversity in vestoids, and perhaps other asteroids if solar
phase color corrections are done properly.

Our results show that the particles comprising the surface of 4
Vesta, and vestoids in general, are back-scattering, similar to the
surfaces of all other airless bodies in the Solar System. The direc-
tional scattering properties are most similar to S-type asteroids.
Although we do not have extensive measurements of the opposi-
tion surge of Vesta, especially at very small phase angles, which
would enable us to determine if coherent backscatter is present,
the amplitude and width of the phase curve is typical of other
small bodies, and the amount of compaction in the upper regolith
is similar to S-type asteroids. Where Vesta does appear to be un-
ique is in its roughness: its mean slope angle of 31.5° is similar
to that of objects such as the saturnian satellite Phoebe (Buratti
et al., 2008), which is in a highly collisional environment (Bottke
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Table 8
The roughness and single scattering albedo of selected small bodies.
Object Single scattering albedo Slope angle (°) Reference
Vestoids + Vesta 0.510 32 This work
Average C-type 0.037 20 Helfenstein and Veverka (1989)
Average S 0.23 20 Helfenstein and Veverka (1989)
Phoebe 0.07 32 Buratti et al. (2008)
19/P Borrelly 0.020 20 Buratti et al. (2004)
0.057 ~35 Li et al. (2007)
Moon 0.25 20 Buratti (1985)
Table 9
4 Vesta spectroscopy observing circumstances.
UT date r (AU) 4 (AU) o (°) UT time Num. exp. Sub-observer
Start Stop Start Stop
Long. (°) Lat. (°) Long. (°) Lat. (°)
July 7, 2011 2.22 1.30 14.8 09:27 11:39 121 121.0 -38.6 269.3 -38.6
July 8, 2011 2.22 1.30 14.5 08:28 12:20 504 2323 -38.5 1329 -38.5

et al., 2010). Vesta may have had an unusually violent collisional
history that was perhaps associated with the creation of the V-type
asteroids. Our result supports recent radar findings that achon-
dritic igneous rocky asteroids - the E and V types - have the largest
surface roughness (Benner et al., 2008). Benner et al. suggest that
this high surface roughness may be due to unusual mechanical
properties or mineralogy of V-type and E-type asteroids. An addi-
tional factor may be the more substantial regolith that Vesta has,
in comparison to smaller asteroids with a lower surface gravity.
These regolith particles could serve as a supply to form rough
aggregates of particles. Roughness models are scale-invariant: they
include features from craters, mountains, and faults, down to
clumps of particles below the resolution limit of the camera. When
combined with radar measurements, our results show that the
V-class is rough at both small scales (sub-millimeter through cen-
temeter) and the decimeter scales to which radar is sensitive. For
the Moon, Helfenstein and Shepard (1999) showed that roughness

is dominated by features at the small end of the scale. Whatever
the cause of the higher macroscopic roughness of vestoids, our
result suggests Vesta and its family have had a more violent colli-
sional history, comparable to that of the saturnian satellite Phoebe,
which has been battered by the family of outer irregular saturnian
satellites (Buratti et al., 2008; Bottke et al., 2010).

Work by Binzel et al. (2004) suggests that space weathering is
important in the NEO population. However, the similarity in visible
spectral slope and the band depth at 0.85 um between the Main
Belt and Near-Earth vestoids (Fig. 3) suggests that much if not most
of the space weathering can be explained by spectral reddening
with solar phase angle that has not been fully corrected for. Finally,
space weathering on Vesta does not appear to entail the classic
effects of space weathering on S-type bodies, viz., reddening of
the visible spectral slope and muting of spectral band depths; on
the contrary slight spectral bluing and brightening appears to
occur (McCord et al., 2012; Pieters et al., 2012). The effect may
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in July 2011. The bottom graph shows the spectra binned into two ranges of
longitude: 100-280° (red) and all other longitudes (green), with the former data set
exhibiting a redder slope towards the blue end of the spectrum. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
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Fig. 16. Our composite spectrum of Vesta compared with the SMASS spectrum that
represents more equatorial viewing geometries. Also shown are spectra of typical
Diogenite and Eucrite meteorites consisting of several particle sizes, from the Relab
data base (http://www.planetary.brown.edu/relab). Although our spectrum closely
matches that of the eucrites, it is more similar to diogenitic meteorites than the
SMASS spectrum, which suggests the south polar regions may be more diogenitic in
composition.

be entirely absent on smaller NEOs as the “Vesta-like” space
weathering is due to the pulverization of surface particles. These
grains may simply leave the smaller NEOs.
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