Large Scale 3D Modelling via Sparse Volumes

E. Funk, A. Borner
Department Information Processing of Optical Systems
Institute Optical Sensor Systems
DLR (German Aerospace Centre),
Berlin, Germany
{eugen.funk, anko.boerner}@dlr.de

Abstract

Spatial 3D reconstruction received enormous interest in the last years.
However, the goal to store, to process and to visualize the acquired data
is still very challenging. Discrete voxel based representation techniques
became state of the art in todays research approaches. These allow
summary of redundant measurements and fast coordinate based access
to the data leading to efficient volume computations. Unfortunately, re-
presenting the 3D space with a dense voxel grid requires huge amount
of storage. Representing a volume of 100 x 100 x 100m? with resolution
of 1cm with a dense grid of 32-bit floating point values, results in a 3.8 TB
storage requirement. This motivated many state of the art approaches
to apply octrees to build sparse 3D volumes, where only the occupied
voxels are stored. This however, increases the data access complexity
from O(1) to O(d) with d as the depth of the octree, growing logarithmi-
cally when the volume or the resolution of the model is increasing.

In this work we propose to combine octrees with hash tables leading
to sparse voxel representation well suited for efficient storage and fast
data access common in 3D modelling computations. The hash table is
used to access grid cells, which further contain an octree in itself. Since
the internal octrees are constructed of much smaller depth e.g. d; = 1,
this dramatically decreases the access time complexity to O(d;). For a
standard octree with depth d = 16, this leads to a speed-up of factor 16.
An additional advantage of the hash table approach is that the volume
size is not limited and is suited for modelling huge environments.

1 Introduction

Emergence in 3D sensors such as laser scanners or 3D reconstruction from
cameras enables today spatial information from physical environments to be
acquired. This is an important step towards building models of indoor and
outdoor areas for inspection, autonomous navigation and automated geo-
metry aware monitoring. Given the fact, that most of the sensors deliver
large datasets of 3D points, the storage, processing and visualization be-
came very challenging. Many applications in robotics, medical imaging, ex-
ploration and animation focus on iterative or random access on the samples
in order to reconstruct the observed surface, to perform deconvolution or to
perform collision detection for physical based animation.

Random access to a point and its neighbours becomes a difficult task,
since the search complexity given a coordinate («, y, 2) depends on the amount
of samples in the database. Grouping the data on a regular grid and storing
it in a flat array enables fast access to the cells and has been the state of
the art technique for many years. The drawback of this approach is that the
memory requirement grows with the cube of the space size, which prohibits
to work with larger models. Representing a cube of size 100 x 100 x 100
m? at 1em resolution, would require 3.7TB memory. A common approach to
this issue is to structure the occupied cells with an octree ([1}, 2]). Unfortu-
nately, octrees suffer from a much higher access complexity O(d) with depth
d. Each time an arbitrary voxel is accessed, either when iterating or perform-
ing random access, it is necessary to traverse the full height of the octree. A
more successful method is to use paging, also known as virtual memory pro-
posed by Bridson [3]. The flat array is divided into pages or chunks and only
chunks including measurements or the model data are stored as blocks in
the memory. This enables significant reduction of the memory requirements
compared to the dense grid approach while maintaining the constant access
complexity. Further, the paging approach enables the data to be stored on an
external device such as the hard disk and to be read only if computations or
visualization is performed in the local neighbourhood. However, depending
on the size of the chunks, the memory overhead is still significant. Teschner
[4] proposed to encode the coordinate of each voxel of constant size with
a hash enabling constant time access O(1) to the data independent of the
dataset size. This approach allows to store data at nearly arbitrary resolution
enabling huge models to be managed which is only limited by the size of the
physical memory. However, generating unique hash values is a difficult task
and applying this method on a high resolution voxel grid increases the prob-
ability to access wrong voxel elements. Further, fixed grid voxels do not allow
to apply level of detail visualization or multi scale 3D modelling which is the
case when octrees are used. These two drawbacks motivated the develop-

ment of a hybrid hashed octree, which uses the hash approach from [4] for
very coarse spatial blocks to reference an internal octree of small depth to
provide access on single voxels. The octree enables voxel queries at coarser
resolution so fine details may be omitted during the rendering process if nec-
essary.

The following section introduces some details about the proposed data
structure and illustrate its run time capabilities. Section introduces a
sequential 3D modelling technique exploiting the dynamic data structure.

2 Method
2.1 Data Structure

l Empty IAHocated

#HashEntry #HashEntry

Root Nodes

Level 1

Level 2

Figure 1: The proposed data structure. Multiple octrees are stored independently in
the hash map.

We propose to combine octrees with a hash table (Figure [1) leading to
sparse voxel representation. The hash table is used to access the top level
root nodes which further contain an octree in itself. Since the internal octrees
are constructed with low depth (e.g. d € {1, 2}), this significantly decreases
the access time complexity compared to standard octrees.

To access the voxel at index coordinates (z, y, z), we begin by computing
the rootKey

int rootKey [3]={x&~ ((1<<d)-1), 1
y&~((1<<d)-1), 2
z&~ ((1<<d)-1)}; 3

where d is the depth of the internal octree, & and ~ denote, respectively,
bit-wise AND and NOT operations. At compile time, this reduces to just three
hardware AND instructions. The shift by d makes sure that the coordinates
(z,y, z) are represented by coarser values. For instance, applying an internal

o
o
o
=}
S}
-
-
-

(1<<3)1 ofrlo]r]of1]o]1 X

x&~((1<< 3)-1)

o

pll 1 111 1|l0]o0]oO ~((1<<3)1) Jo |1 |o i1]1]0|0]oO

Figure 2: lllustration of the key generation steps.

octree of depth d = 3 with 2¢ = 8 subdivision nodes in each dimension
the space is divided in coordinate ranges {[0, 7], [8, 15], - - - }. This process is
illustrated in Figure [2| Similar to [4], the rootKey is further processed to a
imperfect hash.

unsigned int rootHash=((1 << N)-1)&
(rootKey [0]1%73856093"
rootKey [1]1%19349663"
rootKey [2]*83492791) ;

No onh

Here, N is the constant bit-length of the hash map, the three constants are
large prime numbers, - is the binary X0OR operator and << is the bit-wise left
shift operator. Since the hash is imperfect, collisions occur so that two dif-
ferent coordinates are mapped to the same hash. The size of the hash map
N influences the collision probability. In our experiments N was set to 32 bit
leading to a collision of 70pm (collisions per million of distinct coordinates).
A drawback of the hash is that it is not well suited for negative coordinates.
Thus, when negative values in (z,y, z) are processed to a hash, collisions
occur up to 50%. Such high rates require countermeasures which are un-
dertaken by introducing a block of octree pointers, as illustrated in Figure
[l During the insertion process, a new octree is allocated and inserted into
the hash block. When a block is found from a hash code, the target leaf
is searched in each of the octree root nodes in this block. Finally, an oc-
tree root node enclosing the searched coordinate is traversed to give the
leaf node. The linear search within a hash block slightly reduces the perfor-
mance but regarding the hash map efficiency, the performance gain is still
immense. Table [1| shows the run-time evaluations on the simple std: :map,
google:sparse_hash_map and google:dense_hash_map.

2.2 Hashed-Octree Performance

We have compared the performance of the proposed hashed-octree with a
simple octree implementation and the recent implementation from [2]. Ta-
ble [2| shows the achieved random access times for each approach. Please
note, that the overhead resulting from accessing the octree leafs is not negli-
gible. Additionally, Table [2] shows the maximum available resolution for each

Table 1: Access and insertion time for evaluated hash maps.

Hash Map Insertion time Access time
std: :map 1.7 ps 0.9 us
google:sparse_hash_map 2.8 us 0.6 ps
google:dense_hash_map 0.6 us 0.2 us

Table 2: Access time for different data structures.

Method Access time Max. resolution
Octree (d = 16) 6.43 us 327683 (327m)3elem
Octree [2] (d = 16) 2.55 us 327682 (327m)3@lem
Hashed-Octree (d =2) 0.45 us 00

method respectively. Using an octree with depth d = 16, the maximum num-
ber of voxels is 327682 which corresponds to (327m)3 when each voxel repre-
sents a box volume of 1cm3. In contrast to this, the proposed hashed octree
does not depend on the size of the modelled volume. In theory, cities or
countries may be modelled by this approach if enough memory is available.

2.3 3D Modelling

We applied the proposed data structure for implicit surface modelling from
sequential measurements commonly provided from stereo or multi-view ca-
meras. The method relies on the volumetric approach from [5]. In short,
when a depth measurement is represented by a pixel, its corresponding 3D
coordinate in the world frame is calculated. Furthermore, the ray between
the camera focal point and the 3D point is traversed around the 3D sample
while all voxels lying in the support are updated. Figure [3|shows the concept
on a two dimensional plane. Similar to [5] a one dimensional signed distance
function is applied to all the voxels lying in front and behind the measure-
ment. The implicit value f and the weight w are both updated according to

(1):

fE-wk + filr) - w;
wh + w; (1)

wk+1 = wk =+ w;

fk-‘,—l _

| @ /\ oo Siglned Distalnce Funcltion

6\@,0“

Camera

a)

Figure 3: a) Volumetric fusion of new measurements along a ray. b) The signed
distance function applied for recursive implicit shape updates.

where w; is the confidence weight of the sample, and f;(r) the SDF shown
in Figure [Bp). Figure [4p) shows a reconstructed 3D model using the SDF-
based shape representation. Figure [p) contains the distribution of positive
(red) and negative (yellow) voxels. Its interface encodes the surface.

Voxel based shape representation became a convenient method for shape
rendering when triangle meshes are provided. Converting the meshes to the
voxel based data structure enables to increase the rendering efficiency as
has been successfully presented in [6]. Similarly, Figure [Ba) shows an ap-

a) b) c)

Figure 4: a-b) A 3D model with 22M voxels reconstructed from multi-view images. c)
The surface is the interface between voxels with positive (red) and negative (yellow)
values.

proximation of a polygon mesh with 12\ voxels. The sparse voxel grid has
been generated in approximately 1 second when four CPU cores have been
exploited. Figure [5]b) shows the root octree nodes as blue boxes. Each of
them contains a two-level octree representing the object surface via implicit
leaf values as previously shown in Figure [4b).

3 Conclusion and Outlook

A highly efficient data structure for voxel based 3D geometry has been pre-
sented. The approach enables to model arbitrary geometries and to modify
them dynamically, for instance when new measurements are available. The
performance is sufficient for real-time 3D reconstruction from depth images
which will be investigated in the future. Further research will focus on real-
time rendering depending on the camera orientation and position. An im-
portant aspect is the out-of-core extension of the hashed-octree to enable
datasets of arbitrary size to be processed and partially stored on disk.

Figure 5: a): A model represented by 12M voxels. b): Octree root nodes are shown
as blue boxes.

References

[1] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones, “Adaptively
sampled distance fields: A general representation of shape for computer
graphics,” 2000.

[2] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachiss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, 2013.

[3] R. E. Bridson, Compuational Aspects of Dynamic Surfaces. PhD thesis,
Standford, CA, USA, 2003.

[4] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross,
“Optimized spatial hashing for collision detection of deformable objects,”
Proceedings of Vision, Modeling, Visualization (VMV 2003), pp. 47-54,
2003.

[5] B. Curless and M. Levoy, “A volumetric method for building complex mod-
els from range images,” in Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’96, (New
York, NY, USA), pp. 303-312, ACM, 1996.

[6] M. G. Chajdas, M. Reitinger, and R. Westermann, “Scalable rendering for
very large meshes,” WSCG 2014, International Conference on Computer
Graphics, 2014.

	Introduction
	Method
	Data Structure
	Hashed-Octree Performance
	3D Modelling

	Conclusion and Outlook

