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Abstract— A gyroscope-free inertial measurement unit
(GF-IMU) detects the relative motion of a body based
on acceleration measurements only. It consists of multiple
transducers attached at distinct locations within the body
that together form an accelerometer array. In this paper, we
employ only three accelerometer triads in order to completely
capture the transversal and angular acceleration as well as
the angular velocity. By modeling the GF-IMU as a nonlinear
control system, we are able to conduct an observability analysis,
which shows that this approach is capable of capturing an
arbitrary spatial motion. We also show that additional triads
only provide redundant information. Based on the control
system formulation, we derive the models required to employ
a nonlinear Kalman filter as a state observer. As the system
description is of a general form they are suitable for any
accelerometer array regardless of the number and placement of
the transducers. Hence, the presented Kalman filter approach
is applicable to all observable GF-IMU configurations. The
measurements taken with a prototype on a 3-D rotation table
confirm the observability analysis. The evaluations also show
that the approach using three accelerometer triads achieves an
estimation accuracy comparable with that of arrays employing
a higher number of triads.

Index Terms— Accelerometer array, angular velocity,
gyroscope-free inertial measurement unit (GF-IMU), nonlinear
Kalman filter, observability.

I. INTRODUCTION
N INERTIAL measurement unit (IMU) determines the
relative motion of a body in the form of its transversal
acceleration and its angular velocity. Such devices are widely
used in applications that require the accurate knowledge of
the position of a moving object, e.g., a ground vehicle [1] or
an aircraft [2]. The relative motion measurement provided by

Manuscript received January 10, 2014; revised April 7, 2014; accepted
May 13, 2014. Date of publication May 27, 2014; date of current version
November 6, 2014. The Associate Editor coordinating the review process
was Dr. Jesus Urena.

P. Schopp, H. Graf, and M. Maurer are with the Fritz Huet-
tinger Chair of Microelectronics, Department of Microsystems
Engineering, University of Freiburg, 79110 Freiburg, Germany (e-mail:
patrick.schopp @imtek.unifreiburg.de).

M. Romanovas is with the German Aerospace Center, Institute of Commu-
nications and Navigation, 17235 Neustrelitz, Germany.

L. Klingbeil is with the Institute of Geodesy and Geoinformation, University
of Bonn, 53115 Bonn, Germany.

Y. Manoli is with the Fritz Huettinger Chair of Microelectronics, Depart-
ment of Microsystems Engineering, University of Freiburg, 79110 Freiburg,
Germany, and also with the Institute of Micromachining and Information
Technology, 78052 Villingen-Schwenningen, Germany.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2014.2327472

an IMU is either used for pure inertial navigation or merged
with the measurements of an absolute positioning system,
such as the global positioning system [3], [4]. Nowadays,
micromachined inertial sensors are available in very small
packages at low cost. The reduced size and high availability
revealed new consumer applications, as the devices can be
integrated into everyday things, e.g., mobile phones or even
clothes [5], [6]. Examples of those applications are pedestrian
tracking [7], activity classification [8], or sports analysis [9].

A conventional IMU comprises three accelerometers and
three gyroscopes. A gyroscope-free inertial measurement unit
(GF-IMU) employs only accelerometers in order to detect the
relative body motion. Multiple sensors are attached at fixed
positions relative to each other within a rigid body. Therefore,
a GF-IMU is also referred to as an accelerometer array.

The reasons for employing accelerometer arrays are
manifold. In the following, we mention only two of the
many interesting advantages of a GF-IMU over a conven-
tional IMU. A micromachined acceleration sensor can be
designed as a mechanically passive device [10], [11]. The
deflection of a proof mass is measured to determine the
occurring acceleration. Micromechanical gyroscopes exploit
the Coriolis force that acts on a oscillating proof mass
when an angular motion is present [12], [13]. Due to the
required mechanical excitation, the power consumption of a
gyroscope is ~20 times higher compared with an accelerom-
eter. An accelerometer array can therefore be used to imple-
ment a system with a lower power consumption, even if a
redundant number of transducers is used. This is particu-
larly valuable for hand-held devices. Furthermore, the angular
acceleration can be measured directly, thus avoiding the noise-
amplification problem associated with the indirect measure-
ment by differentiation [14]. In [15], this advantage was
used to develop a hand-held microsurgical instrument which
incorporates several accelerometers in order to detect the
tremor of its user. Furthermore, accelerometer arrays have been
successfully employed in applications, such as motion analysis
during sports activities [16], [17] and impact situations [18],
[19], or automotive navigation [20], [21], which confirm that
accelerometer arrays are a viable alternative to a conventional
IMU.

A fundamental question concerning the GF-IMU concept is
the number of required transducers. The majority of publica-
tions concerned with accelerometer arrays state that at least 12
acceleration sensitive axes are necessary to directly determine
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Fig. 1. Experimental setup. We use a (a) 3-D rotation table to impose a
defined motion on the (b) designed GF-IMU prototype.

the angular velocity for a 3-D motion. This can be justified by
an inverse kinematic formulation [22]. In this paper, we are
concerned with an accelerometer array of only nine axes. By
intuition, this is the minimum number of sensors, because the
relative motion is described by nine state variables. However,
previous attempts to determine the relative motion using a nine
axes configuration could not provide a unique, singularity free
solution. In our approach, we consider the motion dynamics
as an integral part of the measurement system. Thus, we are
able to show that relative motion is trackable with only nine
transducers and provide a suitable observer. As three sensors
can be saved this leads to a lower system cost and lower power
consumption.

This paper is organized as follows. After the kinematic
fundamentals are introduced in Section II, we discuss the
existing approaches to a GF-IMU and state the novelty of
this paper compared with the state of the art in Section III.
Thereafter, we give a general system description of an arbitrary
accelerometer array in Section IV before proving that an array
of three sensor triads is generally capable to infer its relative
motion in Sections V-VII. In Section VIII, we derive the
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Fig. 2. Sensitive axis s of an accelerometer located at position r within a
rigid body b0 relative to the navigation frame " O.

models required to employ a nonlinear Kalman filter as a
state observer. Before we conclude this paper, we present
explanatory experiments that validate the theory in Section IX.
These were conducted on a 3-D rotation table using a GF-IMU
prototype we have designed (Fig. 1).

II. KINEMATIC FUNDAMENTALS

The acceleration field of a body is excited by its rela-
tive motion. Considering a rigid body undergoing a spatial
motion (Fig. 2), the acceleration "a occurring at position r
within the body frame ?O can be calculated as

"a=a+é&xr+wx(@xr) )]

where the relative body motion is defined in terms of the
linear acceleration a, the angular velocity w, and the angular
acceleration @, all described in ?0. Equation (1) is a sum
of three distinct accelerations. Besides %a, the tangential
acceleration @ x r and the centripetal acceleration @ X (@ X r)
are affecting "a. The accelerations excited by the relative
motion are different at distinct points r in the body. The
concept behind a GF-IMU exploits this fact. Several trans-
ducers distributed at multiple positions in O sample the
acceleration field. Subsequently, the relationship described
in (1) is employed to determine the relative motion of ® 0. The
fundamental question that arises is how many accelerometers
are necessary and how they must be placed in order to capture
the relative motion.

III. RELATED WORK

The common way to derive the relative motion by means
of the acceleration field is the inverse kinematic approach. For
each sensor, (1) is applied to construct a system of equations.
This system is solved for the variables of the relative motion.
The result is a computation rule by which the acceleration
values can be processed. The published approaches can be
separated into two groups: solutions that determine the angular
velocity indirectly or directly.
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The indirect methods only gather the linear and angular
accelerations directly. The angular velocity must be calcu-
lated by integration of the angular acceleration. The mini-
mum number of single axes sensors for this approach is six
[23]-[25]. However, the inverse kinematic solution for the
angular acceleration involves prior knowledge of the angu-
lar velocity. As the angular velocity is prone to integration
errors, the computation is potentially unstable. To address
this issue, methods were proposed to eliminate the angular
velocity terms from the equations to calculate the angular
acceleration. For example, this can be achieved by means of an
additional triaxial sensor [24] or by arranging the transducers
in a special cube configuration [26], [27]. Nonetheless, the
angular velocity can only be determined with an unbounded
error due to the mandatory integration step of the angular
acceleration.

The direct methods attempt to estimate the angular acceler-
ation and velocity simultaneously. This allows for a drift-free
estimation of the angular velocity. However, additional sensors
are necessary. Furthermore, the centripetal force in (1) depends
quadratically on the angular velocity. Thus, the acceleration
field is independent of the sign, i.e., the direction of the
rotation. As a consequence, an inverse kinematic approach that
computes an estimate of the angular velocity based on one set
of acceleration values cannot determine the direction of the
present rotation. Specifically, an equation system constructed
by (1) can only be solved uniquely for six quadratic terms of
the angular velocity, which are permutations of the three major
rotation axes. To recover the sign of the rotation, additional
techniques must be added that merge the obtained angular
acceleration and quadratic terms. There is no clear consensus
about the minimal number of acceleration sensitive axes in
literature. Approaches were published proposing either nine
or 12 accelerometers.

Genin et al. [28] investigated an array of single axes sensors
configured as three triplets of parallel axes. Applying an
inverse kinematic approach he concludes that nine transducers
are sufficient to obtain the quadratic terms of the angular
velocity. However, the solution he obtains is not unique.
Extending the work of Genin, closed-form expressions for
an arbitrary placement of the nine single axes sensors have
been developed in [29] and [30]. Given a set of accelera-
tions and provided that the sensor setup is feasible, these
result in eight possible solutions for the angular motion.
In addition, the derived closed-form expressions are difficult to
expand to higher, more redundant number of accelerometers.
Park et al. [31], [32] introduced another interesting method-
ology to estimate the angular velocity using nine sensors.
First, they obtain the linear and angular acceleration from a
six sensor configuration and perform an integration step to
gather the angular velocity. To deal with the unbounded drift
error, they add a separate triaxial accelerometer, which they
refer to as observer-accelerometer. The measurements of this
device are continuously predicted based on the current estimate
of the relative motion. They form a closed loop system by
correcting the angular velocity according to the difference
between predicted and actual observation. In [31], the cube
configuration is used for the six sensor setup, whereas in [32]
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they propose a coplanar setup. However, although they present
promising simulations, they cannot prove that their method is
capable to estimate the relative movement with a bounded
error in every possible situation.

Zappa et al. [22] commented on the work of Genin and
raised the following issues. In accordance with Genin, [22]
identifies two possible ways to compute an inverse kinematic
solution for a configuration of nine sensors. He then argues
that the first one is singular when one or more quadratic
terms of the angular velocity are zero and that the solution
of the second one is not unique as eight are always found.
He concludes that for a unique and singularity free solution
at least 12 accelerometers must be used. In addition to his
inverse kinematic approach, he states geometric rules for the
placement of the transducers. Those rules forbid a coplanar
setup of the sensors.

All proposed sensor configurations to a 12 axes GF-IMU
known to us comply with the rules of Zappa. They differ in the
computation of the relative motion and in particular in the way
the sign of the rotation is recovered. The simplest approach
to determine the direction of the rotation is the integration
of the gathered angular acceleration [33]. Of course, drift
errors are inevitable. To avoid these, the quadratic terms of the
angular velocity can be used to obtain the magnitude of the
rotation while only the direction is determined involving the
integrated angular acceleration [34]-[37]. In contrast to this,
recursive Bayesian filters, like the Kalman filter, allow to
recover the magnitude and direction of the rotation jointly.
Thereby, the uncertainty of the used models and the accelera-
tion measurements are considered within the filtering process,
which results in an efficient noise cancelation and a robust
estimation behavior. In our previous work, we employ an
unscented Kalman filter (UKF) to merge the measurements
of all 12 sensors [21], [38], [39]. Nonetheless, other nonlinear
variants of the Kalman filter are also applicable. For example,
Edwan uses an extended Kalman filter (EKF) to determine
the rotation in [40]. In a similar fashion, Park processes the
sensor data with an EKF in [41]. There, he also comments on
his previous work [31]. He states that his approach using only
nine sensors has a deficient estimation behavior if the angular
velocity is zero in one dimension. Therefore, he employs an
accelerometer array with twelve sensitive axes that complies
to the rules of Zappa.

In summary, there is no clear consensus about the minimal
number of transducers necessary to directly estimate the angu-
lar velocity. Although promising approaches using only nine
accelerometers were published, they all suffer from certain
shortcomings. Either the solution resulting from the inverse
kinematic approach is not unique or a flawless estimation
cannot be guaranteed. Until now, this was only achieved
for arrays consisting of 12 sensors. With this paper, we
contribute to this topic by the following. First, we model the
accelerometer array as a control system. Its internal states
are the relative body motion, its outputs are the acceleration
measurements. The number of transducers and their placement
remain arbitrary in this description. The benefit of this is
that the system dynamics are incorporated intrinsically. Then,
we use this system formulation to model an accelerometer
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array of nine sensors in a reasonable geometric configu-
ration. For this nonlinear system, we perform an analyti-
cal investigation on the observability of the system state.
Concretely, we show that the system has the property of
local weak observability (LWO). Thus, it is possible to track
the relative body motion, including the sign of the angular
velocity.

This result leads to the following advancements.
A GF-IMU is feasible with only nine accelerometers.
Thus, three sensors can be saved. In contrast to the rules
derived in [22], the transducers can be mounted on a surface,
which facilitates the integration for many applications, e.g.,
hand-held devices. As LWO for the given system is shown
any valid observer can be employed. Here, we show how
to apply a nonlinear Kalman filter. The integration of the
models is straightforward and the derived models can be
used for any GF-IMU configuration as the original control
system formulation holds true for an arbitrary sensor array.
Furthermore, the derived models are suitable for any nonlinear
Kalman filter variant. As there is no need to derive an inverse
kinematic solution, the incorporation of additional sensors
becomes trivial. In addition, we show that the observability
analysis for a configuration of 12 transducers leads to
the same results as for a configuration of nine sensors.
Nonetheless, additional sensors may increase the estimation
accuracy, which we demonstrate by our experiments.

IV. SYSTEM DESCRIPTION

The behavior of many technical systems can be modeled by
the following continuous-time state-space formulation [42]:

x = f(x,u)
X
y=h(x)

where x € R” is the state of system X, y € R™ is the
observation, and u € R! is the control input. Both the
process model f and the observation model £ are infinitely
differentiable vector functions. In the following, we use this
formulation to describe the GF-IMU as a control system. Thus,
we define the state and derive the models for an arbitrary
sensor array.

The observation model i provides a measurement y for
any state x. Since the concept of a GF-IMU is to determine
the relative body motion using only accelerometers, the sensor
equations of these transducers form the basis of the observa-
tion model. The acceleration *a; that is measured by a single-
axis sensor S; fixed at position r; can be calculated by

2

‘ai = si-"ai + o

:siT(ba+d)xri+a)X((x)Xl’i))+0i

3)

where o; is the signal offset of the respective transducer.
Vector s; is the sensitivity axis of the accelerometer described
in the body frame 0. Thus, it encodes both the sensitivity
of the sensor by its length as well as its orientation by its
direction. To generate the scalar acceleration measurement *a;,
the 3-D acceleration "a; occurring at position r; is related
with s; by their scalar product. Note that sensor model (3)
can equally be used to model accelerometers that incorporate
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more than one sensitive axis in the same sensor housing by
using several equations to calculate the sensor outputs. In the
following, the term accelerometer triad will be used to address
a triple-axis accelerometer.

The state of the system must fully cover all variables that
influence the observations y, as it is the only input to the
observation model k. For the GF-IMU, the system state x is
thus defined as

x=[ta o &"]" )

since the acceleration measurements are driven only by the
variables of the relative body motion. Clearly, x cannot be
observed by only one acceleration measurement. Hence, obser-
vation model h for the GF-IMU is constructed by applying m
sensor equations (3)

y:h(x):[sal ...Sam]T. 5)

The process model f describes the behavior of the system
and the interaction of the state variables. The derivative of the
state x is driven by the state of the system x itself and an
external input u. For the GF-IMU, the process model can be
expressed as

0 u,
x=fxu)y=fix)+fLr@=|o|+| 0 (6)
0 u;

where f| describes the impact of the current relative motion.
Concretely, f; states that the angular acceleration is the
time derivative of the angular velocity. The derivatives of the
accelerations Ya and @ are both zero in f; as they do not
depend on the state x. Instead, they are driven by the external
inputs u, and ug;, as expressed by f,. Although u, and u;
are unknown for most applications of a GF-IMU, it is still
advantageous to introduce them to the process model as they
later serve to consistently describe the dynamics of the motion
within the state estimator.

The derived system model consisting of (4)—(6) is applica-
ble to any accelerometer array. The specific approaches to
a GF-IMU distinguish themselves in the number of sensors
and the sensor placement. Thus, for every different setup, the
observation model k has to include the respective number
of sensor equations. The corresponding sensor positions r;
and sensitivity axes §; have to be adjusted according to the
placement of the sensors. However, not all possible accelerom-
eter configurations are suitable to estimate the relative motion.
Although a valid system description can be created, it is not
possible to observe x. A trivial example is an array of only
one transducer. To ensure a proper estimation of the relative
motion, the system must be analyzed whether its state is
observable by the measurements.

V. OBSERVABILITY

A system is said to be observable if its initial state can
be uniquely determined from a finite number of observations
of its outputs and the knowledge of its inputs [43]. This
also implies that the complete trajectory of the state through
the state space can be reconstructed. For linear time-invariant
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systems, observability is always a global property. Thus, if the
system is observable, every initial state can be distinguished
from any other state. However, the observation model (5)
of the GF-IMU system is nonlinear. For nonlinear systems,
observability is not necessarily a global property. Here, the
initial state may not be distinguishable from any other state,
but only from states within its neighborhood. In that case,
observability is a local property of the system. Still, this
may be sufficient to track the state of the system with a
suitable observer. In order to define a condition that indicates
whether this is possible, Hermann and Krener introduced
the concept of LWO in [44], which states the following.
A certain point in state space is called LWO if this state is
directly distinguishable from its neighbors. If LWO can be
verified for all states, then the system is said to be locally
weakly observable. The approach of Hermann and Krener was
applied to various complex control systems. Examples can
be found in robotics [45], state estimation of actuators [46],
motion estimation [47], or calibration tasks [48]. For a detailed
discussion on nonlinear observability we refer the reader
to [49], [50].

Hermann and Krener also provide an algebraic test to
check whether a system is LWO at a certain point, called
the observability rank criterion. A few mathematical tools are
necessary to apply the test, which we will introduce briefly.
The observability rank criterion is based on the observation
space O, which is spanned by the output functions y; = h;(x)
and their time derivatives d¥y;/ds* with k being the order
of the derivative. As the observation model h(x) is not
dependent on time ¢, it is not differentiable with respect to .
However, the time derivative of state x, which is the only input
to h, is described by the process model f. Therefore, f is
employed to formulate the time derivatives d¥y; /dr* as Lie-
derivatives £%h;, which can be interpreted as the derivative
of h; along the vector field of f. Like this, the time derivatives
of the observations can be described analytically and evaluated
for a certain xo. Thus, we have dy; /d¢* |x = L:]}h,-(x), which
yields for the definition of the observation space

O = span {Ekfhi(x) k>0, i= 1m} %)

Lie-derivatives can be defined recursively. Thereby, the
zeroth-order Lie-derivative of the function h; with respect to
f is the function itself

LGhi(x) = hi(x). ®)

The higher order Lie-derivatives are expressed by the scalar
product

Lomie) = (VL @) @ k=0 O

where the evaluation of the gradient operator
vV = [6/6)61 ... 0/0xm ]T generates a vector of all
partial differentials. Hence, the Lie-derivative of a scalar
function is again a scalar function.

Equation (7) states that the observation space O contains
all linear combinations of the output functions and their time
derivatives. As the state is of dimension 7, there must exist at
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least n linearly independent functions in O in order to instanta-
neously distinguish a certain point x¢ from all its neighboring
points. However, this condition is difficult to verify as there are
infinitely many combinations in O. Hermann and Krener [44]
showed that a system is locally weakly observable at a certain
point xq if the dimension of the codistribution of O equals
the dimension of the state. The codistribution VO is spanned
by the derivatives of the elements of O with respect to the
elements of x and is thus defined as

VO(x) = span {vd;h,-(x) k>0, i=1,. m} (10)

which can be evaluated for any point x( and is of matrix-form
with n columns an infinitely many rows. Thus, the observabil-
ity rank condition results in the calculation of the rank of a
matrix with infinitely many rows. However, Anguelova [51]
showed that it is sufficient to include only the first n — 1
Lie-derivatives for the rank computation. This leads to the
following matrix Ops(x), which is often referred to as the
observability matrix:

B Vﬁ(}hl(x)

.Vﬁ(}hm (x)
Oyx)=|: (1)

VE’}‘lhl (x)

| VL i (x)

Furthermore, if at an instance k the gradient Vﬁl}h i (x) shows
linear dependency on its corresponding lower order gradients,
then this kth instance as well as any further order gradients
do not need to be included in the rank calculation.

However, the observability rank criterion is only a sufficient
test for LWO. At certain singular points Op may not be full
rank although the system is LWO. An intuitive example can
be found in [49, Example 3.7].

VI. GEOMETRY

Each measurement equation /; incorporates the parameters
of its corresponding sensor, which are its position r; and its
sensitivity axis s;. This yields to a sum of six free parameters
for each single axis transducer. As we are concerned with
a configuration of m = 9 sensors, the observation model h
of the entire accelerometer array incorporates in total 54 free
parameters, that define the geometry of the array. In order
to construct the observability matrix Ops according to (11),
the Lie-derivatives of h along f must be calculated. This
introduces the geometry parameters of the array to Oys. Hence,
the rank of Oy strongly depends on these parameters. How-
ever, many of the possible combinations of these parameters
clearly result in a nonobservable system. For example, if all
sensors reside in one point or if all sensors are facing in
the same direction. Therefore, we restrict the analysis to a
certain placement of the sensors for the construction of the
observability matrix. This simplifies the rank computation
of Oy since there is no need to consider the nonobservable
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z-axis [-]

0.5

]
15 45 x-axis [-]

Fig. 3. Sensor configuration used for the observability analysis. The sensors
triads 77, T>, and T3 all reside on a surface, indicated by the triangle.

TABLE I
POSITIONS AND SENSITIVITY AXES OF THE SENSORS USED
FOR THE CONSTRUCTION OF Oy

Triad Sensor Position Sensitivity axis
T} S r; S
S1 1007
T Sa [0 o0 07 0107
S3 oo 1*
Sy 1007
T S5 1007 01 07T
Se 0o 17
S7 1007
Ts Ss [0 107 0107
So oo 1*

parameter configurations. The restrictions to the geometry are
related to a real life setup and represent a general meaningful
configuration of the sensors. Still, they are universal enough
to obtain a general understanding of the systems observability.
The resulting sensor setup is shown in Fig. 3. In the following,
we summarize the constraints we impose on the setup and state
their background.

1) Three single axis sensors are grouped into one sensor
triad T;, j = {1, 2, 3}. Within one triad the sensors are
fixed at the same position and their sensitive axes form
an orthonormal basis. This constraint accounts for the
fact that modern micromachined accelerometers usually
incorporate three sensitive axes.

2) Sensor triad 77 is fixed at the center of the body. This
simplification can be applied without any restrictions
to a viable sensor setup, as the center of the body
frame can be chosen arbitrarily by applying a coordinate
transformation.

3) The three positions of the triads span a plane. If this
was not the case they would reside in one point or on
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a line. This would lead to a nonobservable configuration.
To further simplify the computation of Oy we set the
positions of 7> and 73 at to a normalized unit length on
the x-axis and y-axis.

4) All three triads are oriented such that their sensitive axes
are parallel to the three major axes of the body. As the
sensitive axes of one triad forms an orthonormal basis,
the transducers observe a 3-D point acceleration.

A summary of the geometry parameters can be found in
Table I. Applying the geometry parameters to (5), the
GF-IMU observation model k(x) simplifies to

(@] [l T
ha (x) Pay
h3(x) baz
ha(x) bay, —wg - w?

h(x)=| hs(x) | = | bay + or0y + @, (12)

he(x) baz + w0, + be
h7(x) bay + o0y +
hg(x) bay — w2 — w?

| ho(x) | [ Pa; + oy0, + dy

where we furthermore assume that the signal offset of all
sensors equals zero.

VII. RANK TEST

As described in Section V, we construct Oy (x) by cal-
culating the Lie-derivatives L:kfh,-(x) until we find a linear
dependency between the current order and their corresponding
lower ones. The process model given in (6) describes the
GF-IMU as a control system with known inputs u. However,
during the normal operation of the accelerometer array the
motion that is imposed on the array is not controlled, i.e., the
inputs u, and u; remain unknown. This must be considered
within the observability analysis, as known inputs are assumed
here. Thus, instead of constructing the Lie-derivatives along
the complete process model f, we only employ f;, which
describes the autonomous system behavior. The resulting
matrix can be partitioned Oy as

[ VLS hi(x)]
V0 ho (x) [ 13x3]03x3 | 03x3 ]
f I3x3
VL ha(x) Lis Aex3| Bex3
Oy =|: = | 03x3| ; (13)
: A A
Vﬁ} h9(x) 033 6x3 6x3
0 .
V£f|h4(x) Oiiz Opx3|2A6x3
V25 oo

where the indexes m x n of the submatrices indicate their
size with m being the number of rows and n the num-
ber of columns. I,x, is the identity matrix and O xn
a matrix with only zero entries. As Lie-derivatives of
an order higher than k = 2 are zero vectors there is
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no need to consider them. Submatrix Agx3 of Op(x)
evaluates to

0 —2wy —20;
Wy Wy 0
. w; 0 Wy
Apx3 = o, o 0 (14)
—2wy 0 —2w,
0 w; Wy

Its time derivative A6X3 contains all entries of Agx3 but each
entry is differentiated with respect to time ¢. Thus, A6X3 is
only dependent on the angular acceleration @. Submatrix Bgx3
contains only constants and is given by

0 0 0
0 0 1
0 -1 0
0 0 0
1 0 0

In order to prove that Op is of full rank we show that
every column is linearly independent from all other columns.
For the sake of clarity, the argumentation can be found in
Appendix. We summarize the rank determination of Oy
with the following statement. The observability matrix O (x)
is of rank n = 9 for all x, except for the case when
® = @ = 0. Based upon the observability rank condition, the
GF-IMU system is locally weakly observable for all motions
except when, at the same time, no angular velocity and no
angular acceleration are present. However, the point where
® = @ = 0 is identifiable. It can be seen from (5) or (12) that
at this point the accelerometers solely measure the transversal
body acceleration bq. Thus, all sensors are recording the
same acceleration, since only @ and @ are causing diverse
accelerations within the body. As such, this point can be
uniquely detected. It can therefore be considered as a singular
point of the system where the rank condition fails although
the system is locally weakly observable.

In the following, we argue that a larger number of triads
does not change the observability property of the system
and thus only adds redundancy. To increase the number of
accelerometers we add a fourth triad 74 to the original config-
uration (Table I). The positions of the original triad configu-
ration span a plane. Hence, an additional triad placed on this
surface would result in additional acceleration measurements
that are linearly dependent on the original ones. Therefore,
triad T3 is situated out of plane at position r19,11,12 = [0 0 117
of the body. Thus, the setup of the sensors complies to the rules
derived in [22]. Three sensor equations %19, k11, and h1y are
added to the observation model (12)

hio(x) bay + wcw, + [N
hi1(x) | = | bay + oy0, — dy |. (16)
hi2(x) baz—w)%—wy

Their corresponding Lie-derivatives are introduced to observ-
ability matrix Ops. Again, Oy can be partitioned in the same
way as in (13). Here, submatrix Agx3 is extended by three
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rows to Agy3 and evaluates to

A6x3
W, 0 Wy
0 W, o
-2y 2wy 0

Agy3 = (17

In the same fashion, Bgx3 is expanded to

Bex3
0 I 0
Bos=1_1 0 o

0o 0 O

(18)

As only rows were added to Oy, its rank will be at least as
high, as for the configuration with nine sensors. Thus, it is only
necessary to check the rank at points where Oy, for the nine
sensor configuration was rank deficient. If ® = @ = 0, the
matrices Agy3 and A9X3 only hold zero entries. As such, also
the columns ¢; with j = {4,5,6} of Oy only hold zeros.
It follows that O is rank deficient for ® = ® = 0. This
is the same result as we obtained for the configuration with
three triads. Hence, using more than three triads does not result
in a system that shows a different observability characteristic.
Instead, the additional transducers only add redundancy, which
of course can be used to increase the accuracy of an observer.

VIII. STATE ESTIMATION

For multiple-input multiple-output systems, the Kalman
filter has proven to be an appropriate choice as state observer
for a large variety of applications, such as localization [52],
orientation estimation [53], or online calibration [54]. Its main
advantage is that the state estimation process incorporates the
probabilistic nature of the system and the sensor measure-
ments. In this section, we show how to employ a Kalman
filter to estimate the state of the GF-IMU system.

The standard Kalman filter supports only linear systems.
However, the GF-IMU system is nonlinear in its observation
model in (5). To support nonlinear systems, a few extensions
of the original Kalman filter have been proposed. The most
popular ones are the EKF and the UKF [55]-[57]. In general,
the structure of those algorithms is fixed. Only the state
definition as well as the process and observation models
change for each different application. Thus, in the following,
we focus on the models, which are required to employ a
nonlinear Kalman filter. The models are not limited to certain
variant.

The estimation process of the Kalman filter can be subdi-
vided into two major parts, the prediction and the correction
step. The prediction projects the state distribution from the last
time step k — 1 to the current time step k. The computations
involve the process model fXF, which computes the current
state x; based on the state x;_; at the previous time step.
It is of the form

xe = R, w1, vim) (19)

where v is a random variable that represents the noise of
the process and u is the input to the system. The correction
step generates the estimated state distribution based on the
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predicted state distribution. Here, the observation model hKF

computes the expected measurements. It is of the form

yi = W (ee, ) (20)

and takes the state and the noise of the observations ny
as input. If the system can be given in the from of fXF
and hXY basically every kind of nonlinear Kalman filter can
be employed.

In order to formulate f KF we use the original process
model f given in (6) and convert it from a continuous time to
a discrete time description. However, we do not have access
to the input u of the system. Therefore, we model the input
of (6) as process noise v. For fXF this yields

bag_y + v, At

S, v0) = | et + orm1 A + Lvg(AD)?
®k—1 + vy At

21

where Ar is the sampling period. The equations of fXF
implement the assumption that between two time steps there
is no change in the transversal and angular acceleration. The
assumption is qualified by the noise terms v, and v,;, which
are assumed to be time-independent.

The only change to the observation model A is the incorpo-
ration of the observation noise n. Hence, for all accelerometer
arrays with m transducers the observation model A
given by

aj
REE (g, my) = +°n (22)
sam
where ‘n = [*ni,...,°n,]" is a m-dimensional time-

independent vector holding the noise terms of the accelerom-
eter measurements.

The noise terms for the process model v and the observation
model n are assumed to be zero-mean normally distrib-
uted random variables. Thus, v is drawn from the distrib-
ution N'(0, R,) and n from N(0, R,). The process covari-
ance R, is constructed as

2
R, = diag ([gﬁ’ i|)
w

where the 3 x 1 vectors 02 and o2 are the variance of the
process along each dimension of the body. They express how
certain the assumption of constant acceleration holds for both
the transversal acceleration with o2 and the angular accelera-
tion with 05). The observation covariance R, is given by

R, = diag ([5012 Sanzl]T)

where each entry *o% holds the measurement variance of the
respective transducer. These variances can easily be deter-
mined by recording a set of steady-state measurements and
calculating their variance. In contrast to this, 02 and o2
can be adjusted such that they best describe the application
scenario of the accelerometer array. High values are suitable
for motions with large dynamic ranges, whereas low values are
appropriate for motions with low dynamic. In our experiments,

(23)

(24)
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we observed that the values of 02 and o3 do not affect
the estimation results critically. Still, they can be regarded as
tuning parameters of the estimation process.

The models with their respective covariances are suitable
for both the EKF and the UKF. The UKF features a good
convergence for highly nonlinear systems, whereas the EKF
is computationally more efficient [58]. In order to integrate
the models into the EKF framework one has to provide the
Jacobian matrices of both f KF and RKF [55]. In contrast to
this, the derived models and their covariances can be applied
to the UKF framework without any further changes, which
greatly facilitates the model integration.

In our experiments, which we present in the next section,
we employ the UKF as observer. We adjusted the process
covariance to o, = [1 1 117 - 750 m/s® and o, = [1 1 177 -
750°/s3, here expressed as standard deviations. Since the
Kalman filter recursively estimates the state an initial state xg
and its covariance Py must be set. In general, xo is unknown.
To account for this, Py should have large values on its main
diagonal, since these entries represent the variance of the
respective state dimension.

The derived models differ from the ones of our previous
works in [38] and [39] by the following. First, they originate
from an general system description and are therefore suitable
for any observable accelerometer array. Furthermore, as the
unknown inputs # are modeled as noise terms v, the process
model describes the propagation of an angular excitation to
the angular acceleration and velocity. Thus, the predicted
state distribution now correctly reflects the uncertainty of the
constant acceleration assumption.

IX. EXPERIMENTAL RESULTS

With the measurements we took on the 3-D rotation table,
we aim to demonstrate the estimation behavior of a GF-IMU
with two experiments. By means of experiment I, we validate
that an accelerometer array of only three triads is capable to
estimate an arbitrary motion. Thereby, the estimation accuracy
of such an array compares well to arrays that incorporate a
higher number of triads. With experiment II, we provide an
example that the choice of the initial estimates has an influence
on the estimation. This shows, that the GF-IMU system is
locally weakly observable but not globally observable.

A. Experimental Setup

The GF-IMU prototype shown in Fig. 1(b) incorporates five
sensor triads in total (Bosch Sensortec, BMA 180). A main
board is located at the center of a metal carrier plate, which
comprises a microcontroller for data readout and contains
one accelerometer triad. Four satellite boards are connected
to the main board. Each one of them carries a sensor triad.
We determined the positions, orientations, and offsets of each
acceleration sensitive axis by applying the calibration method
we previously presented in [38]. Fig. 4 shows the place-
ment of the transducers. The sensor positions and sensitivity
axes relative to the body frame are summarized in Table II.
Although the prototype does not include a configuration of
the triads like the one we used for the observability analysis
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Fig. 4. Positions and orientations of the sensors determined by the calibration
shown in (a) perspective view and (b) top view.

it features configurations that are highly related to it, which
can be reasoned by the following. For a GF-IMU, the center
of the body as well as its orientation can be arbitrarily defined
as long as the positions and orientations of the triads are
correctly defined relative to the body frame. Furthermore, the
single triads can be rotated virtually in the body frame if
we apply the same rotation to the measurement vector of the
respective triad. Using these transformation, one can generate
configurations that are equal to the one we used for the
observability analysis except for the scaling of the positions.!

The rotation table features a highly accurate measurement
instrumentation for the positions of its movable axes. These
measurements were used as reference for the motion that was

IFor example, a configuration related to the one shown in Fig. 3 can be
generated by the following steps. First, we apply a coordinate transformation
of the center of the body to the position of triad 75 and then rotate the body
about 45° counterclockwise such that the positions of the two triads 75 and Ty
lie on the major axes of the body. Next, we rotate the triads 73, T4, T5 such
that their sensitivity axes align with the major axes of the body frame. As a
result, the triads 75, T4, Ts feature the same configuration as the one used for
the observability analysis up to spread of its positions.
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TABLE II
POSITIONS AND SENSITIVITY AXES OF USED SENSORS AS DETERMINED
BY CALIBRATION. THE 15 SENSORS (S7, ..., S15) ARE CLUSTERED
INTO FIVE SENSOR TRIADS (71, ..., T5)

T; S; Position 7; (cm) Sensitivity axis s;
T Yy z x Yy z

S1 0.1 -0.3 3.9 -0.70 -0.68 -0.02

Ty S 0.0 -0.2 3.9 0.71 -0.73 -0.01
S3 0.1 -0.3 3.9 0.00 0.00 1.00

Sa 0.4 11.9 2.5 -0.01 -1.00 -0.02

1> S5 0.2 11.9 2.5 1.01 0.00 -0.01
Sé 0.4 11.9 24 0.00 -0.01 1.00

S7 11.9 -0.4 2.5 -0.98 0.01 -0.01

T3 Ss 11.9 -0.2 2.5 -0.01 -1.00 0.00
So 11.9 -0.4 2.5 0.00 0.00 1.00

S10 -0.3 -11.9 2.5 0.02 1.00 0.00

Ty S11 -0.2 -11.9 2.5 -1.02 0.02 0.00
S12 -0.3 -12.0 2.6 0.01 -0.01 1.01

S13 -11.9 0.4 2.5 0.99 -0.01 0.00

Ts  Sia -12.0 0.2 2.5 0.01 1.01 0.00
S1s -11.9 0.3 2.5 0.00 -0.01 1.00

imposed on the accelerometer array. All measurements were
recorded at a sampling frequency of 50 Hz.

For the evaluation of the first experiments, we compare
the estimations based on measurements with estimations we
obtained using simulated measurement data. Therefore, we
generated synthetic measurements by means of the observation
model (5) based on the respective reference motion. To sim-
ulate the noise of the sensors, we added random numbers to
the synthetic measurements drawn from a normal distribution
with zero mean and a standard deviation that equals the one we
experimentally determined for the sensor triads. We generated
the simulated measurements using the same sensor setup as
determined by the calibration of the prototype (Table II). Thus,
up to minor differences, the simulations represent the same
accelerometer array as the prototype but with a perfect knowl-
edge of the positions and sensitive axes of the transducers and
without any imperfection of the linear sensor characteristic.
The sensor noise is the only external source of errors.

B. Experiment |

We conducted experiment I according to the following
methodology. First, we imposed a rotation xR¢f around all
axes on the body and recorded the accelerations measured
by all five triads of the prototype. The rotation was designed
such that it covers a large area of the state space, i.e., it
contains many combinations of bq, @, and @. Subsequently, we
estimated the body motion using the data of three, four, or five
triads. This allows us to evaluate ten different configurations
of three triads, five configurations of four triads, and one five
triad configuration.

Fig. 5 shows 15s of the imposed motion. The duration
of the complete test run was 120 s. We set the estimate of
the initial state to its true value, thus Yag = [0 O g]T and
wo = ® = [0 0 0]7, with g being the gravitational
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Fig. 5. Motion imposed on the accelerometer array for experiment I showing
(a) linear acceleration and (b) angular velocity.

acceleration. However, the choice of the initial state is not
crucial for this experiment. As there is no motion imposed for
the first seconds the state estimate would also converge to the
true state within a few time steps for any other initial state. As
a measure of the estimation accuracy at each time step 7, we
used the Euclidean distance between the reference motion xRef
and the estimated motion X. We evaluated the Euclidean
distances ||?aR°f —g||; and ||@R°f — &||, separately for both
the linear acceleration and the angular velocity according to

1R = bl = (oR — ) (pR — 5)

with p being either “a or w. To assess the estimation accuracy
of the entire test run, we used the mean ||pRef — p|| of the
Euclidean distances of all time steps.

Table III summarizes the mean Euclidean distances of
all possible triad configurations. The configurations are
sorted according to the resulting mean Euclidean dis-
tances ||wRef — @|| of the simulations. Looking at this order,
two influences that have an impact on the estimation errors can
be observed. First, configurations that contain a larger number
of triads have a smaller error. This is reasonable because
the additional sensors provide extra information to estimate
the angular motion. Second, for configurations with the same
number of triads the estimation accuracy depends on the
placement of the sensors. For example, configuration 4.1 yields
the smallest error of all configurations with four triads. From
a top view perspective, the triad positions of this configuration
enclose the largest area as any other configuration of four
triads includes T7. The same can be observed for configu-
rations using three triads. Here, 3.1-3.4 do not include Tj

(25)
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TABLE III
MEAN EUCLIDEAN DISTANCES BETWEEN THE REFERENCE MOTION x REF
AND THE ESTIMATED MOTION ¥ OF EXPERIMENT I OF ALL POSSIBLE
CONFIGURATIONS OF THREE, FOUR, OR FIVE ACCELEROMETER
TRIADS FOR BOTH EXPERIMENTAL (EXP.)
AND SIMULATED (SIM.) DATA

i [Far—a] [l = 2]
Configuration in me/s? in °/s
No. Used triads Sim. Exp. Sim. Exp.
5.1 {1,2,3,4,5} 244 8.50 1.71 4.10
4.1 {2, 3,4, 5} 245 8.51 1.84 4.29
4.2 {1, 2, 3, 5} 3.82 9.68 2.01 4.67
4.3 {1, 2, 4, 5} 3.70 9.55 2.05 4.16
44 {1, 3, 4, 5} 3.94 9.64 2.05 5.97
4.5 {1, 2, 3, 4} 3.85 9.61 2.08 5.08
3.1 {2,3,5} 4.67 10.07 2.16 4.60
3.2 {2,4,5} 4.22 10.05 2.26 4.97
33 {3,4,5} 4.71 9.99 2.31 5.50
34 {2, 3, 4} 4.27 9.90 2.36 4.27
3.5 {1, 3, 4} 7.92 13.44 247 8.43
3.6 {1,2,5} 7.24 12.77 2.66 4.96
3.7 {1, 2, 3} 7.49 13.19 2.79 8.55
3.8 {1, 4, 5} 7.72 12.95 3.20 7.12
3.9 {1, 2, 4} 21.69 26.91 21.37 26.34
3.10 {1, 3,5} 21.46 25.94 22.14 24.60

and therefore their positions span a triangle which is larger
than any other configuration of three triads which is why they
yield the smallest error. The triad positions of 3.9 and 3.10
do not form a triangle from a top view perspective. Instead,
they approximately reside on a line. However, Tj is situated
above the other triads (Table II) and thus the triads span a
triangle from a side view perspective. The enclosed area is
small compared with the other configurations due to the small
relative height of 77. As a result, the estimation accuracy
of 3.9 and 3.10 is poor in proportion to other configurations.
The above rationale clusters the configurations into six groups
with the same number of triads and a similar arrangement of
the transducers in terms of the enclosed area. The groups are
indicated by the additional horizontal lines in Table III.

The mean Euclidean distances ||?aRef —2g|| of the sim-
ulations confirm the clustering of the configurations. If the
estimation of the angular velocity is erroneous, the estimation
of the linear acceleration contains errors as well. Thus, esti-
mation errors do not appear on only a single state dimension.
Instead, they are distributed among all state variables. With
simulated data, the number of triads and their configuration
seem to have a stronger impact on the accuracy of the linear
acceleration as on the accuracy of the angular velocity. How-
ever, this effect heavily depends on the variances ag and afb
of R, that define how much the estimation process relies on
the assumption of constant acceleration for either the linear
or the angular acceleration. Higher values of the variances
for a certain state variable account for a more dynamical
estimation of this dimension. Thus, the state variable is more
likely affected by sensor noise. The order of within each
group of configurations is not be the same for |[PaRef — b4
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and ||wRef — &||, which can be reasoned by the following.
The noise of the measurements leads to a false estimation of
the motion, which is distributed among the state variables.
Whether this has more effect on the linear acceleration or the
angular velocity depends on the minor geometry differences
and on the random measurement error.

The evaluations with experimental data are in good accor-
dance to the evaluation using simulated measurements. How-
ever, the error of the experiments is higher than the error of
the simulations. We reason this by the following. In contrast to
the simulation, the estimation with experimental data contains
errors in the sensor description. Those are, for example,
an inaccurate knowledge of the sensor parameters, i.e., its
position, orientation, or offset, which result from an erroneous
calibration. Furthermore, sensor nonidealities, such as nonlin-
earity, temperature drift, or cross coupling are not covered
by the linear sensor model. If such flaws occur within the
description of the accelerometers array the predicted measure-
ments contain a systematic error. This distorts the estimated
motion. Based on our experience with the GF-IMU prototype,
we believe that the main source of additional errors compared
with the simulation is an imperfect calibration of the sensors.

In summary, experiment I verifies that accelerometer arrays
with three sensor triads can be utilized to estimate an arbitrary
spatial motion. Furthermore, such configurations feature a
comparable performance to arrays with a higher number of
triads. However, the positions of the sensors must span a
surface regardless of the number of triads. The simulation
and experimental results indicate that the estimation accuracy
depends on the area enclosed by the positions of the sensor
triads. However, experiment I together with the employed sen-
sor configurations does not provide a performance evaluation
for the number of employed triads given the best possible
sensor locations. A more extensive analysis of this relationship
necessary to derive a general conclusion will be part of
our future research. An interesting approach to the efficient
placement under geometrical constraints of the transducers can
be found in [15]. However, we are solely concerned with an
indirect approach and therefore do not consider the angular
velocity.

C. Experiment 11

In order to provide an example of the GF-IMU being locally
weakly observable we evaluate the same measurement data in
two estimation runs. Those only differ in the choice of the
initial state xo. Here, we present only the results obtained with
measurement data, as the simulation resulted in a very similar
behavior that differed only in terms of accuracy. Furthermore,
we consider only configuration 3.4 of Table III since this
configuration incorporates the minimum number of three triads
and showed the best experimental accuracy for the angular
velocity in experiment I.

To reduce the complexity of the evaluation we impose a
simple 1-D rotation around the z-axis on the accelerometer
array shown in Fig. 6. The peaks in the estimated angular
acceleration originate from a disorder in the control loop of
the rotation table, which generates a small imbalance of the
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Fig. 6.  Estimated angular velocity for the rotation around the body’s
z-axis of experiment II using the three triad configuration 3.4. (a) Imposed
rotation is shown, while (b) and (c) depict the estimated angular velocity and
acceleration.

imposed angular velocity. However, the recorded motion is not
affected by this.
The estimation starts at a time when the accelerometer array

is already rotating. The two different initial states fc(‘? and fcg
are set to the amplitude of the reference state provided by
the table but with opposite signs for the angular velocity w,
[Fig. 6(a)]. Until the angular velocity starts changing the UKF
correctly estimates the amplitude of w,, which can be seen in
Fig. 6(b). However, the signs of the estimated rotations remain
opposite as predetermined by their corresponding initial
values. This can be reasoned by the information that is
available for the state estimation. Only a constant rotation is
imposed on the GF-IMU. As such, the motion only excites
a transversal acceleration “a and a centrifugal acceleration
® X (0 x r) as stated by (1). Therefore, the estimates of both
initial values converge to the correct magnitude of the angu-
lar velocity. However, because of the quadratic dependency
between the angular velocity and the centrifugal acceleration
the measured accelerations are independent of the direction
of the imposed rotation. Due to this symmetry within the
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observation model the GF-IMU system is not globally observ-
able. If only a constant rotation is present, positive and
negative rotations cannot be distinguished regardless of the
duration of the rotation.

After the period of constant angular velocity, a negative
angular acceleration is imposed on the GF-IMU. Since the
applied angular velocity is decreasing, the accelerometers
are excited by two different forces: a decreasing centrifugal
acceleration @ x (@ x r) due to the declining absolute value
of w, and a constant negative tangential acceleration @ X r
caused by the negative w,. For the evaluation with initial
state 26\, these two accelerations are consistent with the current
estimated angular velocity and hence the UKF correctly tracks
the reference motion. However, they are contrary for the
evaluation with initial state fcg since a decreasing absolute
value of a negative angular velocity implies a positive angular
acceleration. This relation is described within the Kalman
filter by process model fXF. Hence, the combination of the
conflicting angular velocity estimate and acceleration measure-
ments leads to incorrect state estimations for the evaluation
with initial state fcg . For example, the angular acceleration @,
is distorted to higher values than originally imposed on the
GF-IMU [Fig. 6(c)].

As the estimates @, of the angular velocity intersect,
both correctly follow the reference values [Fig. 6(b)]. This
exemplarily shows that the GF-IMU system is locally weakly
observable. Once the state estimate coincides with the true
motion, the UKF properly tracks the sign and the amplitude
of the angular velocity. The predicted measurements are now
consistent with the actual measurements.

During the first phase of constant rotation, experiment II
demonstrates that the angular velocity is in direct relation to
the centrifugal acceleration. For any initial state, the centrifu-
gal acceleration causes the estimate to converge to the correct
magnitude of the rotation while the direction is predetermined
by the sign of the initial state. However, in most application
scenarios, the estimation starts while the body is at rest
just as the motion of experiment I. In this case, there is
no centrifugal acceleration present and hence the estimated
angular velocity of any initial state converges to zero within
only a few time-steps. Thus, the estimated and the true state
coincide, which enables the Kalman filter to correctly track the
motion.

Experiment II also illustrates a deficiency of the Kalman
filter approach. After a first period of constant rotation there is
basically sufficient information available to establish a correct
estimation of the magnitude and the direction. The estimate
with initial state fcg is not plausible as it is not consistent with
the measurement. However, the UKF does not switch to the
correct angular velocity because this sign change is unlikely
considering the estimated covariance Pi. This drawback results
from the assumption that the state is normally distributed
around its mean, which is made for all Kalman filters. As such
only unimodal probability distributions are well represented.
However, if only the measurements recorded at the period of
constant rotation are taken into account, both a positive and a
negative rotation are equally likely. As such, the state features
a multimodal distribution. There are probabilistic filters that
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support such a state distribution, e.g., the histogram or the
particle filter [57]. However, these introduce other severe
drawbacks when applied as GF-IMU observer. For example,
the histogram filter is limited to the accuracy of a predefined
grid spanned over the state space whereas the particle fil-
ter demands large computational resources due to the high
dimensionality of the defined state. Still, these are interesting
approaches that might be applicable in a hybrid combination
with the Kalman filter. As such, the presented issue as well as
investigation of alternative observer approaches is part of our
future research.

X. CONCLUSION

In this paper, we are concerned with a GF-IMU that is
based on nine accelerometers. We show that in general such a
sensor array is capable to directly capture an arbitrary spatial
motion and in particular the angular velocity. First, we model
the GF-IMU as a control system. This enables us to conduct an
analytical observability analysis that is based on the concept
of LWO. In order to restrict the analysis to reasonable array
configurations we introduce constraints on the placement of
the transducers, which are justified by nowadays commercially
available triaxial accelerometers. The constraints imply that
the sensors are grouped into three sensor triads and their
positions span a surface. This greatly reduces the complexity
of the analysis while remaining sufficiently general. The main
result of this analysis is that the GF-IMU system is locally
weakly observable for every motion except for its equilibrium
point where no angular motion is present. However, this point
is identifiable. Hence, it is possible to estimate the relative
motion using an array of three sensor triads. Any additional
triads only provide redundant information.

The derived system description allows for a simple integra-
tion of the process and observation models into the Kalman
filter framework. Only a continuous to discrete time conversion
of the process model and the extension of both models by
the appropriate noise terms is necessary. As the established
models are of a general form, the presented Kalman filter
approach is suitable for any observable GF-IMU. Further-
more, they can be applied to any nonlinear Kalman filter
variant.

With experiments taken on a 3-D rotation table we illustrate
the estimation behavior of a GF-IMU. First, we compare
the estimation accuracy of multiple three triad configurations
against configurations of four and five triads. The evaluations
confirm the results of the observability analysis. In addi-
tion, redundant sensors can be employed to yield a higher
estimation accuracy. Furthermore, we provide an explanatory
experiment, which illustrates the property of LWO of the GF-
IMU system. The experiment also demonstrates a deficiency of
the Kalman filter approach that occurs in case the accelerom-
eter array is already in a constant rotation at the start of
the estimation and the initial estimate is set to the wrong
direction of the rotation. Here, the Kalman filter estimate
does not correspond to the true motion until both intersect
for the first time although there is appropriate measurement
information available beforehand. In our future research, we
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will therefore investigate how we can extend the current
approach to eliminate this shortcoming while retaining its
computational efficiency.

APPENDIX
LINEAR INDEPENDENCE OF THE COLUMNS OF Oy

We subdivide the problem into the following parts. First,
we prove that the columns of the three groups of columns c;
with i = {1,2,3},i = {4,5,6}, and i = {7, 8, 9} are linearly
independent within each group. Then, we show for every
group, that no linear combination of columns, which are not
in that group, can give one of its columns.

Columns i = {1, 2, 3}: Consider the first three rows r; with
Jj = {1,2,3}. Within these rows, the columns i = {l, 2, 3}
contain an identity matrix. Thus, the first three columns of
Op with i = {1,2,3} are linearly independent among each
other.

Columns i = {4,5,6}: In order to determine the number
of linearly independent columns with i = {4,5, 6} we first
check if matrix Agx3 has rank 3 and hence has three linearly
independent columns. However, Agx3 is not a square matrix.
Thus, we first compute its Gramian AT A, which naturally has
the same rank as Agx3. Since ATA is a square matrix its
determinant is zero if AT A is not full rank. For matrix Agyx3
the determinant det(A” A) of its Gramian yields to

3 2
det (A7 4) = 8 (0 + ) +20 (e} +0}) o2

+24 (0 + ) o + 80 (26)

which evaluates to zero only when o, = w, = w; = 0. Thus,
Agx3 is of full rank for any x but for the case when no angular
velocity is present. For this case, we also must consider the
rank of matrix A6X3. A6><3 has the same structure as Agx3
with the entries being the time derivatives of the angular
velocity. Hence, the determinant det(A” A) is zero only when
wy = wy = @, = 0. By combining the two results, we
can make the following statement: the group of columns
i € {4,5,6} is linearly independent for all x, but for
the case when the angular acceleration and velocity is zero
(w = @ = 0). In this special case, the columns i = {4, 5, 6}
are zero vectors.

Columns i = {7,8,9}: In order to show that the columns
with i = {7, 8,9} are linearly independent, we check if the
matrix Bgx3 is of rank 3. We apply the same formalism as for
the group of columns with i = {4, 5, 6}. Since det(B” B) =2
matrix B is of rank 3. Therefore, the columns i € {7, 8, 9} are
linearly independent among each other for every motion x.

We have now shown that within the three groups the
columns are linearly independent. At rows j = {1, 2, 3} the
columns i = {4,...,9} of Oy only contain zero entries.
Hence, any of the first three columns i = {1, 2, 3} of Oy can
not be given by a linear combination of any other columns
i = {4,...,9} and a linear combination of i € {l,2, 3}
cannot give any of the columns i = {4,...,9}. Therefore,
the columns ¢; with i € {1, 2, 3} do not need to be considered
any further within the rank determination.

The remaining problem is to prove that no linear com-
bination of columns with i = {4,5,6} can give a column
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with i € {7, 8,9} and vice versa. The following rationale for
this is based on the structure of Ops. In order to check if
a linear combination of the columns i = {4,5, 6} can give
any column i = {7, 8,9} we consider the last three rows of
Oy (x) with j = {16, 17, 18}. Clearly, the columns of the
zero entry matrix Ogx3 cannot give a linear combination for
the columns of 2A6X3. Thus, the columns i = {4, 5, 6} are
linearly independent of the columns i = {7, 8, 9}. However,
this statement only holds true as long as @ # 0, which can be
seen by looking at the entries of 2A¢3. Every column contains
every entry of @. Thus, only for the case when @ = 0 matrix
Agx3 becomes Ogx3. Now, the problem is shifted to the rows
j = {13, 14, 15}. Since Agx3 = Ogx3, columns i = {4, 5, 6}
are linear independent from the columns i = {7,8,9} due
to the occupied entries of Agx3. However, its columns are
zero vectors if @ = 0. Thus, the columns of the two groups
i = {4,5,6} and i = {7,8,9} are linearly independent for
all x but for the case when w = @ = 0.

We can now conclude that Oy is of full rank for all x but
for the case when @ = @ = 0.
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