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Abstract: Although the GPS/GNSS had become the primary source for Position, Navi-
gation and Timing (PNT) information in maritime applications, the ultimate performance
of the system can strongly degrade due to space weather events, deliberate interference
and overall system failures. Within the presented work the development of an affordable
integrated PNT unit for future on-board integrated system is presented. The system serves
the task to collect and integrate the data from individual sensors in order to deliver the
PNT information with a specified performance according to the requirements of the e-
Navigation initiative proposed by the International Maritime Organization (IMO). The
paper discusses an ongoing activity of replacing an expensive FOG inertial measurement
unit with an affordable MEMS sensor system. Preliminary results of the system perfor-
mance are presented for both static and dynamic scenarios using an Unscented Kalman
filter with unit quaternions for the attitude parametrization.

1. Introduction

Although the importance of the Position Navigation and Timing (PNT) unit for provision of
robust information has been already recognized by the e-Navigation initiative proposed by the
International Maritime Organization (IMO), its adoption for smaller size vessels is strongly
conditioned on the total ownership costs of the system. In our previous works [2] we have
demonstrated the feasibility of the approach for both inland waterways and open sea opera-
tions, where high performance inertial sensors such as fiber optic gyroscopes (FOGs) have been
used to improve the performance of the Global Navigation Satellite System (GNSS) approach.
However, a dramatic progress in performance of lower cost MicroElectroMechanical System
(MEMS) sensors had led to an appearance of affordable inertial measurement units (IMUs)
of tactical grade. Although the main characteristics of the MEMS sensors are still inferior of
those of more expensive FOG-based systems, their accuracy can become sufficient for some
application scenarios such as coasting GNSS outages of duration of several seconds while still
satisfying the accuracy requirements of maritime applications.

The presented work analyzes the performance of the developed PNT unit where an expensive
FOG sensor is replaced by the MEMS-based IMU. The Unscented Kalman Filter (UKF) with



quaternion attitude parametrization is employed to fuse the inertial and GNSS information. The
developed system is evaluated by introducing an artificial GNSS outage of prolonged duration
and assessing the accuracy of a pure inertial solution while the satellite information is not avail-
able. As the performance of modern MEMS IMUs is rapidly improving both in terms of the
sensor noise and bias stability, one can expect the overall characteristics of the PNT unit with
MEMS sensor to become similar to those of systems based on FOGs already in the nearest fu-
ture, while maintaining factor 5x-20x price advantage in the costs of the inertial part. Moreover,
the MEMS sensor can be also used as redundant component in order to detect certain failure
modes.

Although the MEMS inertial sensors have attracted an increasing attention for the pedestrian lo-
calization, certain automotive applications or low-cost UAV design, their applicability in safety
critical scenarios such as the maritime navigation has been till recent limited mainly by a poor
performance of inertial sensors, causing a rapid drift of the standalone inertial solution when the
GNSS or other reference position information is not available. Some recent works [9] have also
assessed a possibility to replace the FOG with higher performance MEMS IMUs. The authors
confirmed that a combined IMU/GNSS system is able to deliver the position and the velocity
information at rapid update rate while preserving a low noise content due to smoothing per-
formance of the inertial integration. Moreover, such a system is able to provide an additional
warning signal when the inertial output starts to deviate rapidly from the GNSS reference. Un-
fortunately, as the work [9] is dated 2008, the performance of the MEMS sensors tested was
apparently insufficient to ensure an accurate navigation for the outages of 30-60 seconds and
the FOGs have been suggested for practical implementation at the time of the study.

Increasingly commercial systems [3] are available which provide an integration of the GNSS
with MEMS inertial sensors. Unfortunately, such systems are often based on proprietary algo-
rithms and are carefully tuned with respect to the characteristics of a particular sensor system.
Although such units can be often used as an industry level reference, their extension for inno-
vative integrity monitoring schemes is somehow limited due inability to access and modify the
fusion algorithms.

2. Methods

The sensor fusion is implemented by formulating a corresponding estimation problem with the
process and measurement models given by corresponding strapdown inertial integration and
GNSS measurement models. Here for the given stochastic dynamic system a corresponding
Recursive Bayesian Estimation (RBE) algorithm is constructed. Here the strategy based on
RBE framework allows to combine all relevant information information including sensor noise
models, kinematic constraints and even meta-information such as operation modes. A generic
RBE algorithm cycle is performed in two steps:

Prediction The a priori probability is calculated from the last a posteriori probability using the
process model, which describes the system evolution in time.



Figure 1: A prediction-correction structure of a classical KF algorithm (left) and the unscented
transformation for the mean and covariance propagation [11] (right).

Correction The a posteriori probability is calculated from the a priori probability using the
sensor measurement model and the current measurement zk.

In practice, however, the methods formulated using the probability distributions do not scale up
very well and can quickly become intractable even for problems of relatively modest dimen-
sionality. Various implementations of the RBE algorithms differ in the way the probabilities are
represented and transformed in the process and measurement models [10, 6]. If the models are
linear and the probabilities are Gaussian, the linear KF is an efficient and optimal solution of the
estimation problem. The KF follows a well known prediction-corrections structure is depicted
in Fig. 1 (left). Unfortunately, most of the real-world systems are nonlinear and modifications
to the linear KF have been developed to deal with the nonlinear dynamics and/or measurement
models. The extended KF (EKF) is one of the most popular nonlinear modifications of the LKF
and is historically considered as a de facto standard within the engineering community. In EKF
the nonlinear models are linearized about the current estimate using the Taylor series expan-
sion. The state transition and observation matrices are replaced with the associated Jacobians
and similar strategy is used if the process and measurement noises also come in a nonlinear
manner. Again, the system at every time tk is represented by the state xk and an associated co-
variance Pk with the rest of the filtering scheme resembling that of the LKF. Although the EKF
inherits many advantages of the LKF such as limited computational costs and clear filtering
structure, the performance of the estimator strongly depends on the validity of the linearized
model assumption and the filter can become inaccurate or even unstable if these assumptions
are violated [10].

The UKF is a more recent alternative for the nonlinear estimation problems which uses a deter-
ministic state space sampling instead of the model linearization strategy of the EKF. Here the
probability distribution is approximated by a set of deterministically chosen so-called σ-points,
which are selected in order to preserve the Gaussian properties of the underlying distribution



under the nonlinear transformation. Each σ-point has two associated weights used for the cal-
culation of the distribution mean and the sample covariance. These σ-points are propagated
within the prediction and the correction steps using the direct model formulations while the
mean and the covariance of the distribution are calculated back from the weighted sum of these
σ-points. The equations of the prediction and correction steps resemble those of the classical
KF although reformulated to support σ-points. A detailed description of the algorithm and the
associated equations can be found in classical works [7, 11]. An advantage of the UKF can be
clearly seen in Fig. 1 (right), where the UKF outperforms the EKF for a model with stronger
nonlinearities and results in a distribution closer to the actual one obtained using the Monte
Carlo sampling of the state space.

Within the work we employ the unit quaternions for the attitude parametrization. A quaternion
is a four dimensional hyper-complex number that is often used to represent the orientation
of a rigid body or an associated coordinate frame in a 3D space. Together with the vector
counterpart the quaternions provide an alternative approach to homogeneous transformation
which can be considered to have certain redundancy due to four trivial numbers [4]. Differently
from Euler Angles, the quaternions are not subjected the phenomenon called ”gimbal lock”,
which is an effect preventing the Euler angles to be used when the pitch angle approaches +/-
90 degrees. Yet another alternative attitude parametrization in a form of the rotation matrices
results in a difficult renormalization procedure and computational inefficiency (rotation matrix
has 9 terms to describe 3D attitude), while the Rodrigues vectors as attitude parametrization
do not allow for an easy composition algorithm. Unfortunately, the quaternions have different
algebraic properties from the conventional 4D vectors and have to be carefully considered when
adopted within the KF.

In order to propagate the attitude noise properly we had implemented a multiplicative UKF
[8] which is a combination of two separate versions of the UKF operating either on a more
common vector space (position, velocity, ...) with the one for the quaternion part. The unit at-
titude quaternions are not closed over addition and scalar multiplication which constitute the
core of the weighted sum operations within the UKF [1] and the generation of the associated
σ-points is implemented by forming a special perturbation quaternion from the rotation vec-
tors, formed from the corresponding components of the process noise covariance matrix. The
noise quaternions are calculated from the columns of the square-root of the quaternion part of
the covariance matrix. Additionally, some modifications to a classical UKF scheme have to be
introduced in the residual calculation as well. Finally the attitude integration is formulated as a
quaternion multiplication, where the original attitude quaternion is multiplied by an incremen-
tal quaternion formed from the measured angular rate and perturbed with the noise quaternion,
associated with the noise of the gyroscope. The multiplicative quaternion propagation leads to
a natural way of maintaining the normalization constraint compared to heuristic normalization
implemented, e.g. in additive brute-force EKF. The vector part of the UKF follows a classical
approach to be found elsewhere [7, 11]. Note that both the gyroscope and the accelerometer out-
puts are used as noisy control inputs within the associated filter. This strategy not only reduces
the dimensionality of the estimation problem, but also also allows to avoid an explicit modeling



Figure 2: A general concept for the multi-sensor system for the PNT unit.

Figure 3: A developed MEMS module using Analog Devices ADIS16485 IMU and ARM-based
embedded platform (left) and the GNSS part of the setup in the laboratory (right).

of the motion dynamics.

3. Setup

A general concept of the multi-sensor system for the PNT unit is shown in Fig. 2. Within the
presented work we address a particular PNT unit configuration, where the GNSS information
is fused with the output of the inertial sensors (accelerometers and gyroscopes). All the sensor
data have been pre-processed and logged in real-time (C++, Linux) using a custom developed
software running on the PNT unit. The test vessel was equipped with three GNSS antennas
and corresponding receivers (Javad Delta, Fig. 3 (left)) as well as a reference high performance



FOG IMU (iMar IVRU FCAI). The developed MEMS module is based on tactical grade Ana-
log Devices ADIS16485 MEMS IMU and is shown in Fig. 3 (right). A commercially available
ARM-based platform was adopted to interface the sensor module with the rest of the system.
The platform is based on a single-core Broadcom BCM2835 SOC running at 700 MHz with
512 MB RAM and a custom Linux distribution configured with real-time kernel. The readout
and pre-processing software is based on the same real-time framework as the main fusion PNT
unit (see [5] for details). The interface platform serves several purposes such as SPI-based IMU
readout and sensor configuration, TCP/IP data transmission as well as NTP-based synchroniza-
tion of the module. The latter issue is of a primary importance in order to ensure that MEMS
IMU data are properly synchronized and optimally fused with the rest of the sensing modali-
ties. Here an internal time stamp is assigned and redundant information is introduced in order
to detect possible packet loss, although no such events have been observed so far during the test
runs.

The MEMS IMU consists of 3-axis gyroscope and 3-axis accelerometer as well as an internal
temperature sensor with the sensor data readout implemented at 205 Hz. The sensor outputs
have 32-bit resolution, although rather minor difference has been observed when using 16-bit
or 32-bit sensor configuration. The gyroscope range is 450 dps with reported 6 deg/hr in run bias
stability and 0.3 deg/

√
h angular random walk. The accelerometer range is fixed to 5g with 32µg

in run bias stability and 0.023 m/s/
√
h velocity random walk. The performance of the MEMS

IMU was checked in laboratory conditions using standard means such as Allan Variance (see
Fig. 4) and a correspondence to the manufacturer specification has been found.

Additional sensor information was also made available such as the output of the gyrocompass,
a Doppler speed log etc, but these sensor data were not employed within the presented fusion
algorithm in order not to obscure the peculiarities of GNSS and IMU integration. Note that
the IMU placement is different from the one of GNSS antennas and a level-arm compensation
has to be introduced. The results presented in this work are based on the data collected during a
normal vessel operation on 01.09.2014 near to the port of Rostock. Within the previous projects,
DLR had developed and deployed a Maritime Ground Based Augmentation System (MGBAS)
near to the Rostock port. This system allows the position estimation up to decimeter accuracy
as well as an accurate monitoring of the GNSS signal quality. Based on the MGBAS as well
as the raw data from IGS stations in proximity, the RTK results are generated and used as the
reference information within the designed filter when the fix is obtained, while floating solutions
are simply ignored [2].

4. Results

Fig. 5 shows the outputs of both inertial sensors during the static scenario. One can clearly see
a significant difference in the noise performance for both accelerometer (only Z axis is shown)
and the gyroscopes, which comes, however, at no surprise due to the official performance spec-
ifications of the sensors. Unfortunately, the outputs of the MEMS sensors also show significant
offsets with respect to the reference FOG for both the accelerometer and the gyroscope. Figure



Figure 4: Measured Allan variance of the gyroscopes in ADIS16485.

Figure 5: An example of measured acceleration Z component of both MEMS and FOG IMUs
(left) and measured gyroscope outputs (right) for static scenarios.

6 shows the initial results of a loosely-coupled IMU/GNSS UKF where the RTK fixes are em-
ployed as the reference position measurements. The left figure shows a static scenario where
no special GNSS outages are introduced and the RTK position information is provided on their
rate of availability. One can clearly see that there is almost no difference between both IMUs as
the integration time between the RTK measurements is too short for the differences in drift to
become significant. However, at the outage duration of 30 seconds (right figure) prominent drift
for both sensor setups can be observed. The drift of the FOG is around 2 meters which cane be
considered as a reasonable performance, while the drift of the MEMS sensor is already larger
than 10 meters under the same conditions.

The results for the dynamic scenario are also shown in Fig. 7, where the outage of 30 seconds



Figure 6: Performance of both IMUs for a static scenario with continuously available RTK fixes
(left) and with 30 second imposed outage (right). Region A in the right figure corresponds to a
true position as shown in the left figure.

Figure 7: Performance of the filters for a dynamic scenario with a 30 seconds outage imposed on
RTK measurements.

is imposed to assess the behavior of the systems at the absence of the reference information.
Although the performance of the FOG-based system is better than that of the system with the
MEMS sensor, the ultimate difference in terms of the final position drift is only appr. 2x larger
for the given trajectory segment and can be considered as reasonably good bearing in mind 20x
cost difference between the MEMS and FOG sensors.



5. Discussion

The obtained results confirm that under good calibration conditions the MEMS IMU can pro-
vide fairly good performance close to that of the FOG for shorter GNSS outages, although a
more expensive FOG could significantly outperform the MEMS sensor for longer outages. Note
that in all the cases an estimated gyroscope offset was subtracted from the MEMS IMU before
the attitude integration. In reality, when the gyroscope offset is not known, but is estimated
within the filter itself, the performance could slightly worse and would depend on how accurate
the actual offset estimation is. Here no special calibration has been performed for the MEMS
accelerometer, which could also partially explain slightly worse performance of the ADIS IMU.

Obviously, the MEMS sensor shows an inferior performance when compared to that of an ex-
pensive FOG IMU. However, the biggest concern should be not due to the additive noise, present
in the sensor output, but rather due to the sensor calibration. Here a fixed offset at the accelerom-
eter output results in a quadratic in time error accumulation, while gyroscope offset leads to a
cubic in time drift of the position. Therefore, the MEMS sensor has to be carefully calibrated
or a special joint estimation filter has to be constructed, where the sensor offsets and/or other
parameters have to be estimated in real-time in parallel with the conventional motion variables.
This, however, can be only implemented when an observability of the calibration parameters is
verified as any attempt to estimate too many sensor parameters simultaneously could lead to the
filter divergence. Moreover, improper sensor calibration can result in much slower convergence
of the filter when initialized far from the true state or even divergence if the observation models
ensure only local observability of the system.

Conceptually, when used alone for GNSS-only measurements, the KF solution would be not
too much different from a classical least-squares solution. When one ignores the cases of lower
satellite visibility, the KF-based approaches are, to large extent, the weighted versions of the re-
cursive least square estimators. The fundamental difference between the LS approach and RBE
techniques is that KF explicitly assumes some receiver dynamics, formulated as the process
model within the RBE algorithm. However, when the process modeling assumptions are incor-
rect, the problems can arise. Nevertheless, if the process model assumptions are reasonable and
match the true receiver dynamics, the KF would perform much butter than a memory-less LS
solver. Here, however, the IMU solves exactly the dynamics modeling problem as the inertial
measurements are integrated directly and provide smooth and continuous state estimation while
preserving all the dynamical details.

Although the results above are demonstrated using UKF techniques, the final system will be
implemented using more efficient error-state EKF. While having similar performance for the
most of navigation applications, the EKF avoids the computational burden of generating the
σ-points. An important further step is to include and validate the integrity mechanisms for the
KF-based methods using different sensing modalities. Although several mechanisms have been
historically proposed for the integrity monitoring within the KFs, so far no widely adopted
technique exists suitable for the safety-critical applications. Here one of the main challenge
comes due to the internal memory of the RBE algorithms, where an effect of the erroneous



measurement remains, in principle, forever within the estimated state.

6. Conclusions

Within the presented paper we have successfully demonstrated an application of the MEMS
IMU within a maritime integrated PNT unit as possible replacement of a far more expensive
FOG IMU. The performance of the prototype system has been evaluated using the sensor mea-
surements recorded during the real vessel campaigns. When carefully calibrated, the MEMS
sensor is able to bridge the GNSS outages of a reasonable duration and can be considered as a
part of a future resilient PNT unit. The approach is consistent with the development of the e-
Navigation strategy and, at the same time, results in an affordable setup due to lower costs with
a promising potential for performance improvement due to constantly increasing performance
of the MEMS sensors.
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