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Abstract: This paper derives a stability statement for a novel, switching based limit cycle
control. The stability proof is based on multiple Lyapunov functions and a new interpretation
of contraction analysis. By showing that the dissipated energy on the cycle increases with
increasing velocity, while the injected energy is constant, the emergence of an attractive limit
cycle is shown. The approach applies for general, nonlinear, and compliantly actuated second-
order systems, with positive definite plant parameters and non-aperiodic solutions. An analysis
of the controller parameters reveals, that for the majority of parameters, global attractiveness
of the limit cycle can be guaranteed.

1. INTRODUCTION

In the field of robot control, mechanical systems including
nonlinear compliances have recently gained increasing at-
tention. The elasticity in the actuation can be exploited
to robustly handle impacts and unknown contact forces at
one hand, and is able to store and targetedly release po-
tential energy at the other hand (Grebenstein and Smagt
(2008); Albu-Schäffer et al. (2011); Braun et al. (2011);
Haddadin et al. (2012)). Especially, the capability to store
potential energy can be exploited in periodic motions tasks
such as hammering, and drumming, or jumping, walking,
and running. Thereby, the energy efficiency of the motion
can be increased and the required peak power of the
actuators can be reduced.

On the basis of the seminal work of Van der Pol (1926),
several control methods to implement a limit cycle behav-
ior in robotic systems have been proposed by Stramigioli
and Dijk (2008); Garofalo et al. (2013); Lakatos et al.
(2013a). These controllers change the original dynamics
of the plant by a nonlinear damping term that increases
the system energy along trajectories inside the limit cycle
and decreases the system energy outside the limit cycle.
Thereby, the original dynamics of the plant is substantially
changed. In particular, applying this approach to robotic
systems entails additional energy losses in the actuators
even in phases of positive damping, since the nonlinear
damping is generated artificially by control.

In our previous work Lakatos et al. (2013c), we introduced
a substantially different control concept to excite periodic
motions in compliantly actuated mechanical systems. The
controller switches the equilibrium position of the elas-
tic elements triggered by the force acting in the springs.
Thereby, energy is induced in the system. The concept is
based on the assumption that the plant has intrinsic damp-
ing properties such that the energy induced by the switch-
ings is dissipated in the phases between the switching. This
results in a cyclic motion where the energy exchange over
one cycle is balanced. By showing that the dissipated en-

ergy on the cycle increases with increasing velocity, while
the injected energy is constant, the emergence of a stable
and attractive limit cycle will be deduced. In our recent
works Lakatos et al. (2013b, 2014), we applied 1 this novel
concept to control multi-degree-of-freedom cyclic motions
and practically verified the robustness and efficiency of the
method for complex-structured systems including ground
contacts as appearing, for instance, in legged robotic sys-
tems. In particular, in Lakatos et al. (2013b), we combine
the switching based limit cycle control with the notion of
intrinsic mechanical oscillations modes, which further sup-
ports the idea of exploiting the mechanical properties of
the plant. Note that the above mentioned control methods
are implemented for 2nth-order (robotic) systems which
either display dominant second-order dynamics (Lakatos
et al. (2013c)) or can be reduced by control to a second-
order system (Lakatos et al. (2013a)).

This work derives a comprehensive stability statement for
the switching based limit cycle control of a nonlinear,
compliantly actuated second-order system. Stability of the
hybrid system is deduced based on multiple, physically
motivated Lyapunov functions (Branicky (1998)) and a
novel interpretation of contraction analysis, which differs
from what was proposed by Lohmiller and Slotine (1998).
Furthermore, the design of the controller parameters is
analysed. Both, the stability analysis and the controller
design exemplify the basic principle of this alternative
concept generating limit cycles.

The paper is organized as follows: Section 2 introduces the
controller and investigates the design of the controller pa-
rameters. Section 3 treats the stability analysis. Thereby,
Section 3.2 introduces the main theorem and the preceding
subsections validate the assumptions of this theorem for
the control system discussed in Section 2. In particular,
Section 3.5 presents a second theorem to prove the basic
assumption of the main theorem. This theorem represents
a new interpretation of contraction analysis and therefore

1 Videos showing applications of the switching based limit cycle
control can be found at www.robotic.dlr.de/index.php?id=357 .
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Fig. 1. Switching behavior of the potential energy. Three different sets of controller parameters (ǫφ, θ̂) are compared.
The vertical, dashed arrows represent the change of potential energy due to the switching and the ”+”/”−” signs
indicate the energy input/output. The horizontal, solid arrows represent the switching of the deflection φ. The
numbers at the start and end points of the arrows represent the transition of the switching signal σ.

may be seen as a separate result of the paper. Concluding
remarks are given in Section 4. Finally, the theorems
introduced in Section 3 are proved in Appendix A and B.

2. CONTROLLER DESIGN

Consider the system

mq̈ + dq̇ = −
∂U(φ)

∂φ
, (1)

where φ = q−θ is the deflection of a mechanical spring, θ is
the control input, x = (q, q̇)T ∈ R

2 are continuous states,
d,m > 0 are damping and (generalized) inertia constants,
respectively. The (elastic) potential U : R → R≥0 is
positive definite and the (generalized) force

τ(φ) := −∂U(φ)/∂φ (2)

is an odd and monotone function of the deflection φ. Then,
consider the switching control introduced in Lakatos et al.
(2013c)

θ(q, θ−) =

{

−sign(φ(q, θ−))θ̂ if |φ(q, θ−)| > ǫφ
0 otherwise

, (3)

where ǫφ ≥ 0 is a constant threshold, θ̂ > 0 a switching
amplitude, and θ− the state of θ before the switching. The
discontinuous control (3) switches the equilibrium position
θ of the spring (2) triggered by the the deflection φ.

Due to the switching nature of the control law, the closed-
loop system (1) and (3) can be regarded as a (continuous-
time) autonomous hybrid system (Branicky, 1998, Sect.
I-B):

ẋ(t) = f(x(t), θ(t)) =

(

q̇(t)
1

m
(τ(q(t) − θ(t))− dq̇(t))

)

(4)

θ(t) = θ(q(t), θ−) =







θ̂ if q(t)− θ− < −ǫφ
0 if − ǫφ ≤ q(t)− θ− ≤ ǫφ

−θ̂ if q(t)− θ− > ǫφ
(5)

where x(t) = (q, q̇)T ∈ R
2 and θ(t) ∈ T := {−θ̂, 0, θ̂}.

The mapping f(·, θ) : R
2 → R

2 is globally Lipschitz
continuous for each θ ∈ T , and θ : R × T → T is finite.

Therefore, (4) represents the continuous dynamics and (5)
represents the finite dynamics 2 .

Remark 1. An intuitive interpretation of the hybrid sys-
tem (4) and (5) is that the finite dynamics (5) switches the
potential of the continuous dynamics (4) at a fixed level

U(ǫφ) by constant amounts ∆U± = U(ǫφ ± θ̂)− U(ǫφ).

In the following we consider a simplified representation of
the hybrid system which is equivalent to (4) and (5) and
can be written in the form

ẋσ = fσ(xσ) . (6)

Here, each state of the switching signal σ(q(t), θ(t)) ∈
Σ := {1, 2, . . . , n} corresponds to one of the piecewise
continuous vector fields fσ(·) : R

2 → R
2. Therefore, a

number of n subsystem with corresponding hybrid states
xσ = (φσ, q̇)

T ∈ R
2 result, where φσ is defined such

that d
dtφσ = q̇. Note that there exists a one-to-one

correspondence

x = χσ(xσ) , (7)

between the hybrid states xσ and continuous states x for
each σ ∈ Σ fixed.

In the following subsections, the reduced representation
(6) of the hybrid system (4) and (5) will be explained in
detail using the visual tool of directed graphs as introduced
by Tavernini (1987). Thereby, we will distinguish three

different sets of controller parameters (ǫφ, θ̂), which lead
to different switching behaviors as illustrated in Fig. 1.

2.1 Hybrid system for ǫφ > 0, |θ̂| < 2ǫφ

In case (ǫφ, θ̂) ∈ P1, where

P1 := {(ǫφ, θ̂) ∈ R
2 | ǫφ > 0, |θ̂| < 2ǫφ} ,

the vector field in (6) takes the form

fσ(xσ) =









q̇

1

m







τ(q)− dq̇ if σ = 1 or 3

τ(q + θ̂)− dq̇ if σ = 2

τ(q − θ̂)− dq̇ if σ = 4









. (8)

The finite dynamics that selects the specific continuous
dynamics in (8) (dependent on the state of the switching

2 Note that θ− indicates that the finite state is piecewise continuous
from the right.
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Fig. 2. Directed graph representing the finite dynamics

for controller parameters (ǫφ, θ̂) ∈ P1. Each vertex
represent a state of the finite dynamics / switching
signal. Each arrow represents a transition.

signal σ) is illustrated in Fig. 2. Thereby, the correspond-
ing ordered switching sequence ΣP1 = {1, 2, 3, 4} occurs
and is repeated, if the appropriate transition condition
is satisfied. Note that the switching sequence can be ini-
tialized for any initial state σ(0) ∈ ΣP1 . Moreover, the
mapping (7) takes the form

χσ =















φσ if σ = 1 or 3

φσ − θ̂ if σ = 2

φσ + θ̂ if σ = 4
q̇









. (9)

2.2 Hybrid system for ǫφ > 0, |θ̂| ≥ 2ǫφ

θ = θ̂ θ = 0 θ = −θ̂

q + θ̂ ≤ ǫφq < −ǫφ

q − θ̂ ≥ −ǫφ q > ǫφ

q − θ̂ < −ǫφ q + θ̂ > ǫφ−ǫφ ≤ q ≤ ǫφ

σ = 2 σ = 1σ = 0

Fig. 3. Directed graph representing the finite dynamics for

controller parameters (ǫφ, θ̂) ∈ P2 ∪ P3. Each vertex
represent a state of the finite dynamics / switching
signal. Each arrow represents a transition. Dashed ar-
rows represent transitions that instantaneously evolve
to the next transition in the same direction, ı.e. only
the state σ = 0 can be stable initially (choosing initial
conditions θ(0) = 0 and −ǫφ ≤ q(0) ≤ ǫφ).

In case (ǫφ, θ̂) ∈ P2, where

P2 := {(ǫφ, θ̂) ∈ R
2 | ǫφ > 0, |θ̂| ≥ 2ǫφ} , (10)

the vector field in (6) takes the form

fσ(xσ) =









q̇

1

m







τ(q)− dq̇ if σ = 0

τ(q + θ̂)− dq̇ if σ = 1

τ(q − θ̂)− dq̇ if σ = 2









. (11)

The finite dynamics (Fig. 3) that selects the specific
continuous dynamics in (11) has two stable states (ı.e.
σ = 1 and σ = 2) and one only initially stable state (ı.e.
σ = 0). This is as the transition from σ = 1 → 0 already
satisfies the condition for a transition from σ = 0 → 2 and
vice versa. Therefore, the fundamental ordered switching
sequence ΣP2 = {1, 2} is repeated for all initial states
σ(0) ∈ ΣP2 . Moreover, the mapping (7) takes the form

χσ =















φσ if σ = 0

φσ − θ̂ if σ = 2

φσ + θ̂ if σ = 4
q̇









. (12)

2.3 Hybrid system for ǫφ = 0, |θ̂| > 0

The case (ǫφ, θ̂) ∈ P3, where

P3 := {(ǫφ, θ̂) ∈ R
2 | ǫφ = 0, |θ̂| > 0} ,

is a special case of the hybrid system introduced in Sec-
tion 2.2, equipped with the equivalent ordered switching
sequence, ı.e. ΣP3 ≡ ΣP2 . The only difference is that even
the initial conditions xσ=0(0) = 0 are unstable.

3. STABILITY ANALYSIS

3.1 Notation

Throughout we require to refer to subsystems resulting
from (6), (8), and (11). Therefore, the index j denotes the
subsystem ẋj = f j(xj), where j = σ ∈ ΣP1 ∪ ΣP2 ∪ ΣP3 .
Further, we require to specify the time instants of the
switching. Therefore, we introduce the subscripts (·)j

k±
,

where j denotes the subsystem, k counts the iteration, and
the signs ”+” and ”−” denote the time instant when the
subsystem is ”switched on” respectively ”switched off”.
For instance, tj

k+
< tj

k−
denote the k-th time instants

where the j-th subsystem is ”switched on” and ”switched
off”, respectively. For functions of time and states, we
use the same notation. That is Vj

k+
:= V (tj

k+
) and

xj
k+

:= x(tj
k+

).

Some additional generic notations are introduced in ad-
vance:

• energy exchange in the active region of subsystem j:
∆Vjk := Vj(xj

k−
)− Vj(xj

k+
) ;

• energy exchange due to the switching from subsystem
j to j + 1: ∆Uj,j+1 ≡ ∆Vj,j+1 := Vj+1(x(j+1)

k+
) −

Vj(xj
k−

) = const.;
• the index (j + 1) ∈ ΣPi

has the value min(ΣPi
) = 1

if j = max(ΣPi
) ;

• the energy exchange of the repetition k at l ∈ ΣPi
is

denoted

∆V l
(ΣPi

)k
=

l+(n−1)
∑

j=l

(∆Vjk +∆Uj,j+1) ,

in particular, ∆V l
(ΣPi

)k
≡ ∆Vl(k+1)+

.

3.2 Stability statement

The idea of the stability statement is based on multiple
Lyapunov functions for the hybrid system as in Branicky
(1998); Lu and Brown (2010); Zhao and Hill (2005, 2008).
Therefore we define scalar function Vj : R

2 → R≥0,
representing the physical energy of the subsystem j. The
functions are chosen such that they are non-increasing in
the ”active” time interval [tj

k+ , tjk−
]. Then we observe

the progress of one of the energy functions at e.g. the
”switch on” time instant Vj

k+ . If the difference of this value
between the (k + 1)-th and k-th repetition converges to



zero, the trajectory reaches a steady state, where a certain
point in the state space is reached repeatedly. Notice that
our stability statement differs from what was done in the
above mentioned papers, since it adds a condition for
the existence of limit cycles. This motivates the following
theorem:

Theorem 2. Consider the autonomous hybrid second order
system defined by (6), where the fundamental switching
sequence Σ is repeated. Suppose we have Lyapunov func-
tions Vj(t) for each individual subsystem, non-increasing
for all t ∈

⋃

k[tjk+ , tjk−
], j ∈ Σ, k ∈ N. If for all j ∈ Σ and

k ∈ N

∆Vj(k+1)+
:= Vj(k+1)+

− Vj
k+ < c

keeps bounded from above and one of the two following
conditions is satisfied,

(C1) the switching sequence Σ is finite such that the
hybrid system stays in one subsystem,

(C2) for at least one j, the sequence {∆Vj(k+1)+
} con-

verges to zero, as k → ∞,

the solution of the hybrid system keeps bounded. In case
condition (C2) is satisfied and if additionally

(C3) the equilibrium points xj = 0 of the individual
subsystems ẋj = f j(xj) are globally asymptotically
stable,

then the continuous state trajectory x(t) approaches a
limit cycle.

Proof. The proof of the above theorem is given in the
Appendix A.

In the remainder of this section we will show that the
closed-loop system (1) and (3) satisfies the conditions of
Theorem 2.

3.3 Lyapunov functions

Consider Lyapunov function candidates

Vj(xj) = T (q̇) + U(φj) (13)

for each individual subsystem resulting from (6) together
with (8) and (11), respectively. Each Vj(xj) in (13) repre-
sents the sum of the kinetic energy T (q̇) = 1

2mq̇2 and po-
tential energy U(φj) of the plant (1). Due to the definition
of U (cf. (2)), Vj(0) = 0 and the derivative along the so-

lution of the corresponding subsystem V̇j(xj) = −dq̇2 ≤ 0
is non-positive ∀xj ∈ R

2. Therefore, Vj(xj) are Lyapunov
functions for each individual subsystem j. Moreover, since
{xj ∈ R

2 |φj 6= 0, q̇ = 0} is not an invariant set, the
equilibrium point xj = 0 of the individual subsystem
j is globally asymptotically stable (La Salle’s Theorem,
see e.g. (Slotine and Li, 1991, Theorem 3.4)). Therefore,
the subsystems resulting from (6), (8), and (11) satisfy
condition (C3) of Theorem 2.

3.4 Boundedness of the energy exchange ∆V l
(ΣPi

)k

In the following we check the boundedness conditions of
Theorem 2 for different parameter sets P1, P2, and P3,
separately.

In case (ǫφ, θ̂) ∈ P1, the energy exchange of the repetition
k at j = 1 comprises

∆V 1
(ΣP1 )k

= ∆V1k +∆U1,2 +∆V2k +∆U2,3

+∆V3k +∆U3,4 +∆V4k +∆U4,1 .
(14)

Considering the switching behavior discussed in Sec-
tion 2.1 (which is illustrated in Fig. 1(a)) and since the
equilibrium point xj = 0 of each individual subsys-
tem ẋj = f j(xj) is globally asymptotically stable (Sec-
tion 3.3), it follows that

∆U1,2 = ∆U3,4 = c1 := U(ǫφ + θ̂)− U(ǫφ) > 0

−∆U2,3 = −∆U4,1 = c2 := U(ǫφ)− U(ǫφ − θ̂) > 0

∆V1k = ∆T1k + c2 < 0 =⇒ ∆T1k < −c2
∆V2k = ∆T2k − c1 < 0 =⇒ ∆T2k < c1
∆V3k = ∆T3k + c2 < 0 =⇒ ∆T3k < −c2
∆V4k = ∆T4k − c1 < 0 =⇒ ∆T4k < c1

where c1 > c2 are positive constants. Accordingly, (14) can
be compactly written

∆V 1
(ΣP1 )k

=

4
∑

j=1

∆Tjk < c = 2 (c1 − c2) > 0 , (15)

where it can be seen that the boundedness condition of
Theorem 2 is satisfied.

In case (ǫφ, θ̂) ∈ P2, the energy exchange of the repetition
k at j = 1 comprises

∆V 1
(ΣP2 )k

= ∆V1k +∆U1,2 +∆V2k +∆U2,1 . (16)

Thereby, it is assumed that the system is in a state, where
it initially reached subsystem 1. Considering the switching
behavior discussed in Section 2.2 (which is illustrated
in Fig. 1(b)) and since the equilibrium point xj = 0
of each individual subsystem ẋj = f j(xj) is globally
asymptotically stable (Section 3.3), it follows that

∆U1,2 = ∆U2,1 = c1 := U(−ǫφ + 2θ̂)− U(ǫφ) > 0

∆V1k = ∆T1k − c1 < 0 =⇒ ∆T1k < c1
∆V2k = ∆T2k − c1 < 0 =⇒ ∆T2k < c1

where c1 is a positive constant. Then, (16) reduces to

∆V 1
(ΣP2 )k

=

2
∑

j=1

∆Tjk < c = 2c1 > 0 , (17)

where it can be seen that the boundedness condition of
Theorem 2 is satisfied.

The case (ǫφ, θ̂) ∈ P3 is similar to the case (ǫφ, θ̂) ∈ P2,
except that the repeated switching sequence ΣP3 is reached
for all initial conditions x(0) 6= 0. The energy exchange of
the repetition k at j = 1 has the same form as (16). The
corresponding properties

∆U1,2 = ∆U2,1 = c3 := U(2θ̂) > 0

∆V1k = ∆T1k − c3 < 0 =⇒ ∆T1k < c3
∆V2k = ∆T2k − c3 < 0 =⇒ ∆T2k < c3

where c3 is a positive constant, can be derived from
Fig. 1(c) such that

∆V 1
(ΣP3 )k

=

2
∑

j=1

∆Tjk < c = 2c3 > 0 . (18)

It can be seen that the boundedness condition of Theo-
rem 2 is satisfied.
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Fig. 4. Contraction behavior of displacements measured at
fixed position. The specified time instants are used in
the proof in Appendix B.

3.5 Convergence of the sequence {∆V l
(ΣPi

)k
} to zero

The convergence of the sequence

{∆V j
(ΣPi

)k
} =

1

2
m{(q̇j

(k+1)+
)2 − (q̇j

k+
)2}

to zero will be shown using a concept inspired by con-
traction analysis for nonlinear systems, introduced in
Lohmiller and Slotine (1998). The contraction of nominal

and ”actual” trajectories corresponding to ∆V j
(ΣPi

)∞
=

0 and ∆V j
(ΣPi

)k
6= 0, respectively, will lead us to the

conclusion that the sequence has converged. Instead of
using the notion of virtual displacements, which describe
the displacement of two neighboring trajectories at fixed
time, we measure the distance between two trajectories
at fixed position. This is required since the considered
hybrid system switches position dependently and therefore
neighboring trajectories of each individual subsystem j
are starting and ending always at constant positions φj

k+

and φj
k−

, respectively. This in turn leads to different time
durations of the neighboring trajectories for the general,
nonlinear case of the system (1). For this reason, we intro-
duce a different notion of displacements which describes
the distance of neighboring trajectories (measured with
respect to a metric) when the position is held constant.

Let us now derive the idea of the convergence principle.
Consider therefore segments of neighboring trajectories
corresponding to the same asymptotically stable system
(denoted by xa(t) and xb(t)), which are delimited at
positions φ+ and φ− in the state plane (Fig. 4). Assume
that both trajectory segments pass through the same
quadrants of the state plane such that we can identify
sub-segments delimited at positions φ+ and φ⋆

−, where the
velocity of the outer trajectory is larger than the velocity
of the inner trajectory, ı.e. |φ̇a| > |φ̇b|. Then, considering

the physical energy W (x) = 1
2mφ̇+U(φ) of the system as

metric to measure the distance of a point on the trajectory
with respect to the origin, we will come to the conclusion

that the energy loss along the outer trajectory segments is
larger than the energy loss at the inner trajectory segment.
Therefore, the distance ∆W ab between xa and xb at the
starting position φ+ is larger than the distance at the
terminal position φ⋆

−, ı.e. ∆W ab(φ+) > ∆W ab(φ⋆
−). This

principle can be extended for the case where the trajectory
segments pass through more than one quadrant of the state
plane. Thereby, the energy loss along the outer trajectory
will be always larger than the energy loss along the inner
trajectory. This motivates the following theorem which
makes use of the foregoing definition.

Definition 3. Two trajectories xa(t) and xb(t) of the same

second order system ẋ = f(x), with states x = (φ, φ̇)T ,
are defined as neighboring trajectories, if they start and
terminate at the same positions φ+ and φ−, respectively.

Theorem 4. Consider two neighboring trajectories xa(t)
and xb(t) of the asymptotically stable system ẋ = f(x),

with states x = (φ, φ̇)T and a natural metric W (x) =
1
2mφ̇+U(φ) such that Ẇ (x) = −dφ̇2. Suppose there exist
trajectory segments defined by:

• xa
+ = (φ+, φ̇

a
+)

T , xb
+ = (φ+, φ̇

b
+)

T (starting points),

where φ+ := φa(t+) = φb(t+);

• xa
− = (φ−, φ̇

a
−)

T , xb
− = (φ−, φ̇

b
−)

T (terminal points),

where φ− := φa(ta−) = φb(tb−);

• xa
−
⋆ = (φ⋆

−, φ̇
a
−
⋆)T , xb

−
⋆ = (φ⋆

−, φ̇
b
−
⋆)T (intermediate

points), where φ⋆
− := φa(ta−

⋆) = φb(tb−
⋆) such that 3

|φ̇a(t)| > |φ̇b(t)| ≥ 0, ∀t ∈ [t+; min(ta−
⋆, tb−

⋆)];

Then, if both of these trajectory segments pass through
the same quadrants of the state plane, the distance
∆W ab(φ) = |W a(φ)−W b(φ)| measured at fixed position 4

is contracting as φ evolves from φ+ to φ−.

Remark 5. Note that in the general nonlinear case, the
fact that the velocity on the outer trajectory is larger than
on the inner trajectory, does not trivially imply that the
dissipated energy is also larger along the outer trajectory,
since on the outer trajectory, the cycle period might be
shorter.

Proof. The proof of the above theorem is given in the
Appendix B.

From Theorem 4 we can conclude that the distance be-
tween the nominal limit cycle trajectory and a neighboring
trajectory of the individual subsystem j defined by (8) or
(11) shrinks as the motions evolves from the ”switch on” to
the ”switch off” position. Since each individual subsystem
j of the hybrid system exhibits such a contraction behav-
ior, the distance, for instance, at the ”switch on” instant
shrink from repetition k to k+1. Therefore, condition (C2)
of Theorem 2 is satisfied.

3.6 Comments on the robustness and efficiency of the limit
cycle

In the preceding stability analysis it has been assumed
that the transition from subsystem j to subsystem j + 1
3 The trajectory segments connecting the starting points and inter-
mediate points are both in the same quadrant of the state plane.
4 Note that W a(φ) denotes W a((φa)−1(φ) = t), where (φa)−1(φ)
is the inverse of the mapping φa(t). The analogous notation is used
for W b(φ).
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Fig. 5. Limit cycles in the state plane obtained by simulation. Three different sets of controller parameters (ǫφ, θ̂) are
compared. Solid lines represent the continuous motion of each individual subsystem. Dashed lines represent the
switching.

always occurs. This cannot be generally guaranteed. For
the switching system (1) with switching control (3) we
can distinguish two scenarios which interrupt the switching
sequence:

(S1) the transition condition is approached, but with zero
velocity (ı.e. the damping of the system is too high
leading to an aperiodic motion);

(S2) the transition condition is not approached (this is
the case when the ”switch on” position of a subsystem
corresponds to a lower level of potential energy than
the transition condition for the next subsystem, and the
kinetic energy at the ”switch on” instant is too low).

Scenario (S1) can be avoided, when the solution of the
considered system is not aperiodic. Note that this is the
only assumption regarding the parameters of the plant (1).

Remark 6. The results of Theorem 4 can be extended
to the class of second-order systems including nonlinear
damping forces h(φ, φ̇) satisfying Ẇ (x) = −h(φ, φ̇)φ̇ ≤ 0,

where for φ̇ = 0, h(φ, φ̇) = 0 and |h(φ, φ̇)| ≥ dmin|φ̇|
is bounded by either a positive constant dmin or a non-
decreasing function dmin(‖x‖) > 0.

The only case where scenario (S2) might occur is (ǫφ, θ̂) ∈
P1. This is as the transition conditions from j = 1 / j = 3
to j = 2 / j = 4 are at a higher level of potential energy
than the ”switch on” positions (cf. Fig. 1(a) and Fig. 5(a)).
For all other controller parameters, global convergence of
the limit cycle can be shown.

From Fig. 5, qualitative statements regarding the efficiency
of the limit cycles can be deduced:

• P1: the controller injects and removes energy, while
the amount of injected energy is larger than the
removed energy;

• P2,P3: the controller strictly injects energy.

Assuming that the energy transfer from the actuators to
the load mass is associated to substantial losses in both
directions (actuator to load and load to actuator), which
is of course the case when, for instance, gear boxes are
present, the cases P2,P3 are more efficient than P3. On the
limit cycle corresponding to P2,P3, the injected energy is

completely dissipated by the natural damping properties of
the plant. This means that the actuators inject exactly the
minimum amount of energy required to sustain the limit
cycle and no power flow back to the actuator is performed.

4. CONCLUSION

A comprehensive stability analysis for a switching based
limit cycle controller is derived. The stability statement is
based on multiple, physically motivated Lyapunov func-
tions and extends the results of Branicky (1998) for limit
cycles. Furthermore, to verify the basic assumption of
the main theorem, a novel interpretation of contraction
analysis is introduced. The complete analysis is based
on physical considerations and therefore provides detailed
insights in the principles of this new concept to generate
limit cycles.

The control approach applies for general, nonlinear second-
order dynamics with positive definite stiffness, inertia, and
damping properties, where the damping is such that aperi-
odic motions can be excluded. In particular, for the major-

ity of controller parameters, that is for all (ǫφ, θ̂) ∈ P2∪P3,
global attractiveness of the limit cycle can be guaranteed.
A qualitative efficiency analysis revealed that in case of
these controller parameters, the energy efficiency of the
limit cycle is higher than in case of controller parameters,
where only local attractiveness of the limit cycle can be

guaranteed (ı.e. (ǫφ, θ̂) ∈ P1)). From a view point of
energy efficiency, this novel control concept of limit cycle
generation can be more advantageous than implementing
the classical Van der Pol oscillator by control, since the
controller performs only positive work at the plant to
sustain the limit cycle.

Appendix A. PROOF OF THEOREM 2

The first part of the proof is conceptually similar to the
proofs in Branicky (1998); Lu and Brown (2010).

Throughout the proof let S(r) and B(r) represent the
Euclidean sphere respectively ball, with radius r and
center at the origin.



First, assume that condition (C1) is satisfied in the repe-
tition p when subsystem j is active. From ∆Vj(k+1)+

≤ c

it follows that ∀j ∈ Σ there exist αj ≤ p|c| such that
Vj(xj(t)) ≤ αj for all t ∈

⋃

k=1...p[tjk+
, tj

k−
]. Then, for any

Rj > αj , ∃rj < Rj such that for all t ∈
⋃

k=1...p[tjk+ , tjk−
]

and xj(0) ∈ B(rj), Vj(xj(t)) < minVj(xj ∈ S(Rj)). This
is as Vj(xj(t)) is continuous in the active region. Since
the above result holds for all j ∈ Σ and k = 1 . . . p, all
trajectories xj(t) starting inside B(rj) stay inside B(Rj)
as long as the subsystem j is active. The trajectories xj(t)
of each individual subsystem j keep bounded in B(Rj).

Note that if we straighten the boundedness condition such
that ∆Vj(k+1)+

≤ 0 we obtain Lyapunov stability. In that

case the theorem would be equivalent to (Branicky, 1998,
Theorem 2.3). Since we are interested in the existence of
limit cycles, we keep the upper bound condition Vj(k+1)+

≤

c and additionally introduce the option of condition (C2).

Second, assume that condition (C2) is satisfied for j = 1,
ı.e. the sequence {∆V1(k+1)+

} converges to zero as k → ∞.

Since Vj(xj(t)) is non-increasing for t ∈
⋃

k[tjk+ , tjk−
],

ı.e. ∆Vjk ≤ 0, further since k → ∞ implies that the
fundamental switching sequence Σ is repeated, ı.e. (j +
1) ∈ Σ has the value min(Σ) = 1 if j = max(Σ), and
∆Vj,j+1 = const., we may conclude if ∆Vl(k+1)+

= 0 for

l = 1,

∆Vl(k+1)+
=

l+(n−1)
∑

j=l

(∆Vjk +∆Vj,j+1) = 0 ,

∀l ∈ Σ such that condition (C2) is satisfied ∀j ∈ Σ. There-
fore, the sequences {∆Vj(k+1)+

} converge to zero which

implies that the series Vj
∞+

= Vj
1+

+
∑∞

k=1 ∆Vj
(k+1)+

=

αj such that Vj(xj(t)) ≤ αj for all t ∈
⋃

k[tjk+ , tjk−
].

Then, for any Rj > αj , ∃rj < Rj such that for all t ∈
⋃

k[tjk+
, tj

k−
] and xj(0) ∈ B(rj), Vj(xj(t)) < minVj(xj ∈

S(Rj)). This is as Vj(xj(t)) is continuous in the active
region. Since the above result holds for all j ∈ Σ and k, all
trajectories xj(t) starting inside B(rj) stay inside B(Rj)
as long as the subsystem j is active. The trajectories xj(t)
of each individual subsystem j keep bounded in B(Rj).

Finally, assume that in addition to condition (C2), condi-
tion (C3) is satisfied. We have already shown that ∀j ∈ Σ,
∆Vj

∞+
= 0, which implies Vj

∞+
= αj , where αj is

constant. First of all, let Sj := {xj ∈ R
2 |Vj(xj) = αj}

and let pj := {xj ∈ Sj |φj = const.} (note that xj =

(φj , q̇)
T ). The points pj are well defined, since the hybrid

system is autonomous (state dependent switching) and
each individual subsystem ẋj = f j(xj) is asymptotically
stable. Thereby, due to the correspondence (7) (between
hybrid and continuous states) the points p⋆

j := χj(pj)
are connected via trajectory segments x⋆

j (t) := χj(xj(t))

for t ∈ [tj
∞+ , tj∞−

], where the resulting path is closed
in the domain of continuous states (denoted by ⋆). Now,
let C be the closed curve connecting the points defined by
Vj(k+1)+

= αj , let C1 be the set of points defined by Vj
k+ =

αj,1 < αj , and let C2 be the set of points defined by Vj
k+ =

αj,2 > αj . Recall that ∆Vj(k+1)+
(Vj

k+ = αj) = 0. Evi-

dently, ∆Vj(k+1)+
(Vj

k+ = αj,1) > 0 and ∆Vj(k+1)+
(Vj

k+ =

αj,1) < 0. All paths crossing C1 point outward C1 and
all paths crossing C2 point inward C2. Therefore, we can
conclude the existence of a limit cycle in the region defined
by C1 and C2 using the Poincare-Bendixson theorem (see,
e.g. (Jordan and Smith, 2007, Theorem 11.1)). Addition-
ally, since the sequence {∆Vj(k+1)+

} converges to zero as

k → ∞, the system approaches the limit cycle.

Appendix B. PROOF OF THEOREM 4

In a first step, we prove the theorem for x
a/b
− = x

a/b
−

⋆

and in a second step we show that this case implicates the

proof for general x
a/b
− .

Assume that for W (x) = 1
2mφ̇ + U(φ), the system ẋ =

f(x) satisfies Ẇ (x) = −dφ̇2 such that we have

∆W a = −d

∫ ta−
⋆

t+

(

φ̇a(t)
)2

dt = −d

∫ ta−
⋆

t+

( dφa(t))
2

( dt)
2 dt

= −d

∫ φ⋆

−

φ+

φ̇a(φ) dφ = W a(φ⋆
−)−W a(φ+)

and

∆W b = −d

∫ tb−
⋆

t+

(

φ̇b(t)
)2

dt = −d

∫ tb−
⋆

t+

(

dφb
)2

( dt)
2 dt

= −d

∫ φ⋆

−

φ+

φ̇b(φ) dφ = W b(φ⋆
−)−W b(φ+) .

Since φ̇a(φ) > φ̇b(φ) ≥ 0, ∀φ ∈ [φ+;φ
⋆
−], it follows that

−d

∫ φ⋆

−

φ+

φ̇a(φ) dφ < −d

∫ φ⋆

−

φ+

φ̇b(φ) dφ ,

W a(φ⋆
−)−W a(φ+) < W b(φ⋆

−)−W b(φ+) ,

W a(φ⋆
−)−W b(φ⋆

−) < W a(φ+)−W b(φ+) ,

∆W ab(φ⋆
−) < ∆W ab(φ+) (B.1)

which completes the proof for x
a/b
− = x

a/b
−

⋆.

Now, let us prove the theorem for general x
a/b
− .

Subdividing the trajectory segments in three parts (Fig. 4):

• xa(t), ∀t ∈ [t+; t
a
−
′] and xb(t), ∀t ∈ [t+; t

b
−
′], where

φ+ = φa(t+) = φb(t+), maxφ⋆
− = φa(ta−

′) =

φb(tb−
′), where maxφ⋆

− is the maximal φ⋆
− that satis-

fies φ̇a(φ) > φ̇b(φ) ≥ 0, ∀φ ∈ [φ+;φ
⋆
−];

• xa(t), ∀t ∈ [ta−
′; ta−

′′] and xb(t), ∀t ∈ [tb−
′; tb−

′′], where

φa(ta−
′) = φb(tb−

′) = φa(ta−
′′) = φb(tb−

′′) = maxφ⋆
−

and tb−
′ = tb−

′′ by definition of maxφ⋆
−;

• xa(t), ∀t ∈ [ta−
′′; ta−] and xb(t), ∀t ∈ [tb−

′′; tb−], where

φ− = φa(ta−) = φb(tb−) and φ̇a(φ) < φ̇b(φ) ≤ 0,
∀φ ∈ [φ−; maxφ⋆

−] and maxφ⋆
− > φ−;

yields

∆W a = −d

∫ ta−

t+

(

φ̇a(t)
)2

dt = −d

[

∫ ta−
′

t+

(

φ̇a(t)
)2

dt

+

∫ ta−
′′

ta
−

′

(

φ̇a(t)
)2

dt+

∫ ta−

ta
−

′′

(

φ̇a(t)
)2

dt

]

,



∆W b = −d

∫ tb−

t+

(

φ̇b(t)
)2

dt = −d

[

∫ tb−
′

t+

(

φ̇b(t)
)2

dt

+

∫ tb−

tb
−

′′

(

φ̇b(t)
)2

dt

]

.

Then, since φ̇a(φ) > φ̇b(φ) ≥ 0, ∀φ ∈ [φ+; maxφ⋆
−], implies

−d

∫ φ⋆

−

φ+

φ̇a(φ) dφ < −d

∫ φ⋆

−

φ+

φ̇b(φ) dφ

=⇒ −d

∫ ta−
′

t+

(

φ̇a(t)
)2

dt < −d

∫ tb−
′

t+

(

φ̇b(t)
)2

dt ,

φ̇a(φ) < φ̇b(φ) ≤ 0, ∀φ ∈ [φ−; maxφ−⋆], implies

−d

∫ φ−

maxφ−⋆

φ̇a(φ) dφ < −d

∫ φ−

maxφ−⋆

φ̇b(φ) dφ

=⇒ −d

∫ ta−

ta
−

′′

(

φ̇a(t)
)2

dt < −d

∫ tb−

tb
−

′′

(

φ̇b(t)
)2

dt ,

and ta−
′ < ta−

′′, implies

−d

∫ ta−
′′

ta
−

′

(

φ̇a(t)
)2

dt ≤ 0 ,

we conclude with a similar argumentation as around (B.1)
that

∆W ab(φ−) < ∆W ab(φ+) .

This completes the proof for general terminal points x
a/b
− .
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