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Abstract— Elastic properties of muscles and tendons are
assumed to play a central role for the energy efficiency and
robustness of locomotion in biological systems. Yet, the way
in which the nervous system controls highly nonlinear body
dynamics to produce stable periodic motions is far from being
well understood. On the basis of a simple but very effective
control law, which we developed and verified for variable
impedance robots, we propose a controller model, which might
be a very plausible hypothesis also for biological systems. The
original robot controller has a bang-bang action triggered by
the generalized force acting along a coordinate corresponding
to the principal oscillation mode of the system. This coordinate
is computed in a model-free, adaptive manner. It turns out that
the control law can be easily realized with a neural network,
whose weights are adapted according to the Hebbian learning
rule. If this hypothesis is confirmed, cyclic body motions can
be very easily and robustly implemented, with a surprisingly
small number of neurons.

I. INTRODUCTION

Recently, bio-inspired robot designs and control methods

[1], [2], [3], [4], [5], [6], [7], [8], [9] for the execution of

explosive and cyclic motions have been proposed. The robot

design concepts are based on the physical property of having

elasticities between the actuators and the outputs of the

joints, and are strongly inspired by the principle of skeletal

muscles [10], [11]. The springs can be exploited to robustly

handle mechanical impacts and to improve performance and

energetic efficiency during periodic and explosive movement

tasks. Especially in the case of cyclic motions such as

walking, crawling, or jumping, and running, the elastic

energy can be buffered and released to approach a resonance

like behavior, where the effort to sustain the oscillation is

minimal. Therefore, compliant actuators implement the tech-

nical concept of intrinsic mechanical oscillation modes and

correspond with the active principle of biological actuators.

This paper investigates cyclic motion control principles,

which are mainly intended for legged systems. Well estab-

lished locomotion control concept are based on the spring

loaded inverted pendulum (SLIP) model [12], [13], [14],

[15]. The idea of the SLIP model is inspired by experimental

observations of biologists [16] who hypothesize that high-

dimensional, nonlinear system dynamics anchored in a com-

plex animal collapse to this simple template dynamics. Fur-

ther related control methods are robotic implementations of

central pattern generation (CPG) [17] and adaptive frequency

oscillators (AFO) [18]. These approaches are inspired by

observations in neuro-control units of amphibians, where a

central unit composed of multiple, phase coupled oscillators,
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generates complex multi degree-of-freedom (DOF) motions.

Whereas the AFO approach of [18] considers feedback of the

plant in the motion pattern generation, the CPGs and most of

the SLIP based concepts are basically applied as open loop

control.

In our recent papers [19], [20], [21] we introduced a

control method which directly excites the intrinsic oscilla-

tory dynamics of compliantly actuated robotic plants in a

feedback manner. The controller comprises two main parts:

a switching law to generate a limit cyclic along a single

coordinate direction, and an adaptation law which converges

to a transformation corresponding to the dominant oscillation

mode of the plant. The limit cycle controller has been

derived from observations of human motor control [19],

[21]. It switches the (generalized) equilibrium position of

a spring triggered by measurements of the (generalized)

spring-force/deflection. The adaptive part recursively extracts

the principal components of the joint motion and thereby

accounts for the distribution of the excitation amplitudes

(similar to the eigenvectors in linear oscillation theory) such

that they fit to and properly excite the dominant intrinsic

oscillation mode of the mechanical system [20]. In contrast

to the template dynamics [12], [13] or CPG [17], [18], [15]

based approaches, which address rigid actuators or full rigid

body motions, our new cyclic motion control concept directly

uses the oscillatory plant dynamics itself as oscillation unit.

Therefore, this feedback controller has rapid convergence

properties—mimicking the fast adaptive nature of biological

systems.

The contribution of this paper is a biological neuron model

interpretation of this new cyclic motion control concept.

On the basis of correlation-based learning in a firing rate

formalism [22, Chapt. 10.2], we interpret the controller as

a biological neural network. Thereby, the switching con-

troller represents a single neuron in the hidden layer of

the network, which is driven by sensory neurons of the

input layer via synapses and acts on the actuator neurons of

the output layer via a synapses arrangement mirrored from

the input layer. The adaptation of the synaptic efficacies

is explained using the principle of Hebbian plasticity [23]

and competition between synaptic weights [24]. Therefore,

this neuron model turns out to be a biologically plausible

representation of our cyclic motion control concept. Together

with technically advantageous aspects such as robustness and

energetic efficiency, the neuron model interpretation supports

our hypothesis that the control principle might occur in

biological systems in a similar form.

The paper is organized as follows: In the next section

we describe the principle of the robotic control concept.
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Fig. 1. Generic model of a compliantly actuated mechanical systems. In
case of robotic systems the motor (actuator) acts via a mechanical spring
(elasticity) on the preceding link. In case of a biological system such as
human or animal limbs the muscles (actuators) act via tendons (elasticities)
on the preceding links.

Then, in Sect. III we propose a neuron model interpretation

of this controller. Sect. IV evaluates the performance of

the controller in simulation. Finally, Sect. IV discusses and

concludes the work.

II. ROBOTIC CONTROL CONCEPT

In this section, we introduce a generic model (Fig. 1)

which represents bio-inspired, compliantly actuated robotic

systems and can be straightforwardly modified to describe

the biological counterparts with skeletal muscles as actuators.

Then, on the basis of this model, we explain our cyclic

motion control concept, as introduced in [20].

A. Modeling compliantly actuated mechanical systems

Compliantly actuated mechanical systems can be repre-

sented by Euler-Lagrange equations [25], satisfying

d

dt

(

∂L(x, ẋ)

∂ẋ

)

−
∂L(x, ẋ)

∂x
= τ gen − d(x, ẋ) , (1)

where the Lagrangian L(x, ẋ) = T (x, ẋ) − U(x) is the

difference of the kinetic energy T (x, ẋ) and potential energy

U(x). The potential energy U(x) = Ug(x) + Uψ(x) is

the sum of a gravity and elastic potential, respectively. The

vector of coordinate x = (θT , qT )T ∈ R
m+n can be divided

into actuator coordinates θ ∈ R
m and link coordinates

q ∈ R
n. The vector of generalized forces τ gen = (uT , τText)

T

is composed of the control input u ∈ R
m and the external

torques τ ext ∈ R
n. Moreover, the term d(x, ẋ) ∈ R

m+n

represents a dissipative force, where ẋTd(x, ẋ) ≥ 0 holds.

In case of robotic systems, (θT , θ̇
T
)T represent the states

of the motor dynamics. They are directly actuated via the

motor torque τm := u. In case of biomechanical systems,

(θT , θ̇
T
)T could represent the internal states of second

order muscle dynamics. Thereby, for instance, the muscle

activation is the control input, ı.e. a := u.

For the explanation of the robotic controller given next,

we consider the motor PD control

u = −KDθ̇ −KP (θ − θd) , (2)

where KD,KP ∈ R
m×m are symmetric and positive defi-

nite controller gain matrices, and θd ∈ R
m is the desired

motor position, for the system (1). Then, using classical

assumptions for robotic systems (high controller gains and

singular perturbation [26]), ı.e. θ ≈ θd, we consider the

motor position θ as control input.

B. Cyclic motion control concept

To excite and sustain a cyclic motion along an intrinsic

mechanical oscillation mode of the considered system, two

technical aspects are of major importance:

First, the timing of the energy input has to be controlled.

In the ideal case the frequency of the energy input is close to

the ”natural” frequency of the oscillation mode such that the

system oscillates in resonance. Technically, this is achieved

using the switching based control law

θz(ϕz) =

{

sign (ϕz) θ̂z if |ϕz| > ǫϕz

0 otherwise
. (3)

Herein,

ϕz = wT (θ − q) ∈ R (4)

is the generalized spring deflection of the oscillation mode1,

ǫϕz
∈ R>0 the corresponding threshold and θ̂z ∈ R the

modal switching amplitude.

Second, the direction of the ”step-like” excitation has

to be adapted to coincide with the (local) direction of the

oscillation mode [20]. This is achieved using the adaptation

dynamics

ẇ(t) = γz(t) (q(t)− z(t)w(t)) , (5)

where z(t) = w(t)T q(t) is a local approximation of the

modal coordinate and γ ≪ 1 is an adaptation gain. The

adaptation law (5) extracts the basis vector w ∈ R
m

corresponding to the major principal component of the joint

motion q(t) [27] and therefore the direction of the oscillation

mode [28]. If the adaptation dynamics (5) converges suffi-

ciently fast, a ”step-like” excitation in the required direction

is approached by

θ = θ0 +wθz . (6)

1The generalized spring deflection performs work at the joint elasticities
along the oscillation mode.
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Fig. 2. Principle of the cyclic motion controller. The step-by-step
convergence of the excitation to the oscillation mode is shown.



In summary, the controller principle can be explained as

follows (Fig. 2): Initially, the system is excited with a first

guess of the modal direction w(t1) at time instance t1. Then,

the resulting oscillatory motion is observed (cf. (5)). When

the generalized spring deflection reaches the threshold value

(cf. (3)), the system is excited again with an improved guess

of the modal direction w(t2). By repeating this procedure,

the oscillation reaches a steady-state, which is close to the

intrinsic mechanical oscillation mode of the system.
Remark 1: In the derivation of the cyclic motion con-

troller (3)–(6) we have assumed that θ0 = 0 is the center
of the oscillation. The extension for a general center of the
oscillation is given in the Appendix I.

Remark 2: Since the controller changes the intrinsic dy-
namics properties of the plant only to a minimum extent,
the plant itself must have damping properties such that
oscillation excited in undesired modes decay faster than in
the desired mode. However, serially structured elastic multi-
body systems such as robotic and human arms and legs
display these beneficial damping properties [21].

Remark 3: Note that the controller requires no model
knowledge of the plant. Only measurements of the states at
position level are required. Therefore, the approach is very
robust (see, [20] and the appended video2).

III. NEURON MODEL

Besides the technical advantages discussed in the previous

section, a very promising property of the cyclic motion

control concept is its surprisingly simple interpretation as

a biological neural network. The general idea of this bio-

logically plausible neural control is shown in Fig. 3. The

sensory signals corresponding to the deflections of the joint

elasticities (measured in biological systems by the Golgi or-

gans) act on the input neurons of the network. These signals

are transmitted via synapses with efficacies wi and summed

up at a single neuron in the hidden layer. The cumulative

2Video link: www.in.tum.de/index.php?id=6123
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Fig. 3. Neuron model interpretation of the cyclic motion controller.

signal is then processed in this neuron using a classical

threshold function of a firing rate model and distributed over

the output neurons of the network via additional synapses.

The output neurons encode desired equilibrium positions,

more precisely, step changes of the desired positions, for

each muscle, according to the equilibrium point hypothesis

[29]. In the following we explain how the principle of the

switching controller and the adaptation law coincide with

well established models of the biological counterparts.

A. Switching behavior of firing rate coded neuron models

The main principle of the switching controller presented

in Sect. II is similar to the simplest form of a firing rate

coded neuron model [30]:

y = φ(ν − ǫν) . (7)

Herein ν denotes the input firing rate and φ is a threshold

function. The input firing rate is scaled and pushed through

a nonlinear function. In more detail, if the value of the input

signal exceeds the limit ǫν , the output is changed step wise

by a predefined amount. This step wise change maintains as

long the input undercuts the threshold implication. Note that

if ǫν = 0, this neuron model coincides with the switching

control (3) introduced in Sect. II. A switching behavior

corresponding to ǫφz
> 0 can be achieved by combining

multiple neurons with ǫν 6= 0.

B. Adaptation of synaptic efficacies

The adaptation of the synaptic efficacies will be explained

in a correlation-based firing rate formalism [22, Chapt. 10.2].

Thereby, the two basic principles, Hebbian plasticity [23]

and competition between synaptic weights [24], will be

consulted.

To this end, let us consider a single synapse with efficacy

wi connecting a pre- and postsynaptic neuron of the input

and hidden layer, respectively. Then, for this single synapse,

we consider the prototype of Hebbian learning,

d

dt
wi = ccorr2 νprei νpost , (8)

where νprei and νpost represents the firing rate of the pre-

and postsynaptic neuron, respectively, and ccorr2 is a pos-

itive constant. The learning rule (8) accounts for the two

particularly important aspects in Hebb’s postulate: locality,

ı.e. the change of the synaptic efficacy can depend only

on local variables (pre- and postsynaptic firing rate), and

cooperativity, ı.e. pre- and postsynaptic neurons have to fire

simultaneously to change the synaptic efficacy. Now, let

us consider an ensemble of N patterns {ξ(t1), . . . , ξ(tN )}
where at each time step tj one of the patterns ξ(tj) is fixing

the firing rate of the presynaptic neurons, ı.e., νprei (tj) =
ξi(tj). Assuming that each pattern ξ(tj) is presented for a

short duration ∆t such that the weight changes by a small

amount only, ı.e.,
∫ t+∆t

t
dwi(τ)

dτ dτ ≪ wj(t), we can take the

postsynaptic firing rate νpost(t) = w(t)T ξ(t) as constant for



this duration. Therefore, the total weight change due to the

presentation of ξ(tj) (to first order in ∆t) is

∆w(t) = w(t+∆t)−w(t) =

γ
(

w(t)T ξ(t)
)

ξ(t) +O(∆t2) , (9)

where γ = ccorr2 ∆t.
The Hebbian learning rule in the simple form (8) leads

to exponentially growing weights. Since, this is biologically

not plausible, an additional aspect of learning has to be taken

into account, viz. competition. That means a synaptic efficacy

increases at the expense of other synaptic efficacies (acting

on the same postsynaptic neuron)3. Competition of synaptic

weights can be modeled mathematically by normalization

of the weight vector to a constant length. In the following,

we consider multiplicative normalization of ‖w‖ which in

turn leads to Oja’s learning rule [31]. Therefore, consider

the weight change ∆w̃(t) due to the simple Hebbian learning

rule resulting from (9),

∆w̃(t) = γ
(

w(t)T ξ(t)
)

ξ(t) . (10)

Then, performing a normalization on the update of the

weights (after ∆t) to unity length, ı.e.,

w(t+∆t) =
w(t) + ∆w̃(t)

‖w(t) + ∆w̃(t)‖
, (11)

and assuming again a small weight change during ∆t
(γ ≪ 1), we obtain the weight change ∆w(t) including

normalization up to first order in γ (Appendix II),

∆w(t) = ∆w̃(t)−w(t)
(

w(t)T∆w̃(t)
)

+O(γ2) . (12)

Dividing the above equation by ∆t and approximating the

differences by differential operators, we arrive at

ẇ(t) = γy(t) (ξ(t)− y(t)w(t)) , (13)

where y(t) = w(t)T ξ(t).
Note that the biologically plausible learning rule (13)

and the adaptation law of the robotic controller (5) are

equivalent. Therefore, the neuron model interpretation given

above explains the behavior of our cyclic motion controller

from the input to the hidden layer neuron including the

adaptation of the sensory synapses. Nevertheless, as can

be seen also from Fig. 3, the proposed control law in its

current form requires the weights of the input network to be

”copied” to the output network. This is in contradiction to

the generally accepted principle of local weight adaptation.

However, the papers [32], [33] already provide a hint on

how the mechanism of ”copying” synaptic weights might be

implemented in biology. Extending the network structure to

address this problem is topic of our current work.

IV. SIMULATION

The performance of the cyclic motion controller is vali-

dated in simulation for the compliantly actuated quadruped

robot depicted in Fig. 4(a). The considered quadruped has

four legs and a total number of 12 hinge joints (two

3Note that thereby Hebb’s postulate of locality is still preserved.

perpendicular hinge joints in each hip and one in each

knee), i. e. n = 12. The joints of each leg are actuated via

linear springs ∂Uψ(x)/∂qi = Ki(qi − θi) with stiffness

matrices Ki = diag(30, 7.5, 9)Nm/rad. Linear, viscous

damping produces torques di = Di(q̇i − θ̇i) with Di =
diag(0.6, 0.075, 0.075)Nms/rad in the joints. The mass

distribution of the trunk and legs are given in Fig. 4(a).

Furthermore, ground contact points are considered at the tips

of each leg. Thereby, a Coulomb friction constant of µ =
0.75 has been assumed. The controller implementation given

in the Appendix I is applied. The parameters of the switching

controller have been chosen ǫϕz
= 0.2 rad and θ̂z = 1.0 rad.

The initial weights of the adaptation controller have been

chosen such that in the initial configuration (Fig. 4(a)) a

generalized modal deflection would produce a pure vertical

force at the tips of the legs (repelling the quadruped from

the ground).

A vertical jumping motion is simulated. To demonstrate

the adaptation properties of the controller, the mechanical

joint stiffness of the robot is changed during the experiment.

At t ≈ 6 sec. (when the potential energy of the springs

is approximately zero) the joint stiffness is increased in-

stantaneously to 1.5Ki. Fig. 4(b) depicts the phase plot

of the generalized modal motion. It can be seen that the

motion initially converges to a limit cycle corresponding

to the initial stiffness (blue line) and then converges to a

different limit cycle due to the increased stiffness (red line).

The corresponding time-plots of the vertical trunk motion

and the link positions of one of the legs are shown in Fig. 4(c)

and Fig. 4(d), respectively. Herein, it can be observed that as

a result of the increased stiffness, the controller adapts to the

decreased frequency of the oscillation mode (the frequency

decreases since the jumping height and therefore the duration

of the flight-phase increases). Moreover, Fig. 4(e) depicts the

motion of the first three modal coordinates. Note that in the

steady-state phase of the oscillation, mainly the motion of

the most dominant oscillation mode is excited, while the

motion along the other modes converges almost to zero.

A video exemplifying the simulation is appended to this

paper. In summary, this experiment clearly demonstrates

the advantageous adaptation properties of our novel cyclic

motion control concept.

V. CONCLUSION AND DISCUSSION

The main contribution of the paper is a biologically

plausible hypothesis for neural feedback control of full

body resonance limit cycles in biological organisms. This

hypothesis might provide an explanation for the easiness

and robustness with which animals can swim, crawl, run

or fly and thereby adapt to changes in body or environment

properties.

Nevertheless, it has to be pointed out that the concept

has still open questions which need to be further addressed,

possibly in close cooperation with neuro-scientists. The

most obvious open question is the current requirement to

”copy” the weights adapted in the sensory synapses to the

output synapses. Several local adaptation alternatives could



hip joint 1

hip joint 2

knee joint

x

y

z

contact point

0.4 m0.2 m

0.1 m

0.14 m

0.14 m

mass: 4 kg
inertia: diag(0.0167, 0.0567, 0.0667) kgm2

0.1 kg

0.1 kg

(a) Simulated quadruped. The center of masses of all bodies are placed
at the volume center of either the cuboid or grey cylinders.

0 0.5 1 1.5
−80

−60

−40

−20

0

20

40

60

80

generalized modal deflection (rad)

g
en

er
al

iz
ed

m
o
d
al

v
el

o
ci

ty
(r

ad
/s

ec
)

initial stiffness

1.5 x initial stiffness

converged
periodic
motions

(b) Phase plot: generalized modal deflection vs. velocity.

0 2 4 6 8 10 12

0.2

0.4

tr
u
n
k

h
ei

g
h
t

(m
) initial stiffness initial stiffness x 1.5

(c) Vertical motion of the trunk.

0 2 4 6 8 10 12
−2

−1

0

1

li
n
k

p
o
si

ti
o
n

(r
ad

)

q1

q2

q3

(d) Motion of the link coordinates of one of the legs.

0 2 4 6 8 10 12

−1

0

1

m
o
d
al

co
o
rd

.
(r

ad
)

z1

z2

z3

(e) Motion of the first three modal coordinates corresponding to the major principal components.

0 2 4 6 8 10 12

−0.5

0

0.5

time (sec)

m
o
d
al

w
ei

g
h
ts

(-
)

w1

w2

w3

(f) Modal weights corresponding to the actuated joints of one of the legs.

Fig. 4. Simulation results for the quadruped robot shown in (a). At t ≈ 6 sec. the mechanical stiffness of the robot is increased.



be drafted. They need however to be discussed and validated

based on the knowledge of existing biological neural circuits

in future work. It is our hope that this paper will inspire

biologist to experimentally verify the presented hypothesis.

APPENDIX I
GENERAL CONTROLLER FORMULATION

Here, we provide the general controller formulation.

Therefore, consider an arbitrary center of oscillation in the

motor position θ0 ∈ R
m. Regarding boundedness conditions

for the total potential energy U(x) detailed in [25], we

can compute link positions q̄(θ0) satisfying the equilibrium

condition

∂U(θ, q)/∂q(θ = θ0, q = q̄(θ0))− τ ext = 0 .

Using, the static equilibrium position q̄(θ0) the generalized

spring deflection takes the form

∆ϕz = wT {θ − q − [θ0 − q̄(θ0)]} , (A1)

such that (3) changes to

∆θz(ϕz) =

{

sign (∆ϕz) θ̂z if |∆ϕz | > ǫϕz

0 otherwise
. (A2)

Moreover, the link side motion w.r.t. the static equilibrium

position q̄(θ0) is considered in the adaptation law (5):

ẇ(t) = γz(t) [(q(t)− q̄(θ0))− z(t)w(t)] . (A3)

Herein, z(t) = w(t)T (q(t)− q̄(θ0)). Finally, the controller

output takes the form

θ = θ0 +w(t)∆ϕz . (A4)

APPENDIX II
INTERMEDIATE COMPUTATION STEP FROM (11) TO (12)

We make use of the binomial series (1 + x)−1/2 = 1 −
1/2x+3/8x2−5/16x3 . . . and keep only terms up to O(γ):

‖w +∆w̃‖−1 =
(

wTw + 2wT∆w̃ +∆w̃T∆w̃
)−1/2

=
(

1 + 2wT∆w̃ +O(γ2)
)−1/2

= 1−wT∆w̃ +O(γ2) .
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[25] A. Albu-Schäffer, C. Ott, and F. Petit, “Constructive energie shaping

control for a class of euler-lagrange systems,” in 10th Int. IFAC
Symposium on Robot Control, 2012.

[26] P. Kokotovic, H. Khalil, and J. O’Reilly, Singular Perturbation Meth-
ods in Control: Analysis and Design. Academic Press, London, 1986.

[27] E. Oja, Subspace methods of pattern recognition. Letchworth
England: Research Studies Press and John Wiley and Sons, 1983.

[28] B. Feeny and R. Kappagantu, “On the physical interpretation of proper
orthogonal modes in vibrations,” Journal of Sound and Vibration, vol.
211, pp. 607–616, 1998.

[29] E. Bizzi, N. Hogan, F. A. Mussa-Ivaldi, and S. Giszter, “Does the
nervous system use equilibrium-point control to guide single and
multiple joint movements?” Behavioral and brain sciences, vol. 15,
no. 04, pp. 603–613, 1992.

[30] P. Dayan and L. F. Abbott, Theoretical neuroscience. MIT press
Cambridge, MA, 2001, vol. 31.

[31] E. Oja, “Simplified neuron model as a principal component analyzer,”
Journal of mathematical biology, vol. 15, no. 3, pp. 267–273, 1982.

[32] C. Fernando, K. Karishma, and E. Szathmáry, “Copying and evolution
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