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Neuron Model Interpretation of a Cyclic Motion Control Concept

Dominic Lakatos and Alin Albu-Schiffer

Abstract— Elastic properties of muscles and tendons are
assumed to play a central role for the energy efficiency and
robustness of locomotion in biological systems. Yet, the way
in which the nervous system controls highly nonlinear body
dynamics to produce stable periodic motions is far from being
well understood. On the basis of a simple but very effective
control law, which we developed and verified for variable
impedance robots, we propose a controller model, which might
be a very plausible hypothesis also for biological systems. The
original robot controller has a bang-bang action triggered by
the generalized force acting along a coordinate corresponding
to the principal oscillation mode of the system. This coordinate
is computed in a model-free, adaptive manner. It turns out that
the control law can be easily realized with a neural network,
whose weights are adapted according to the Hebbian learning
rule. If this hypothesis is confirmed, cyclic body motions can
be very easily and robustly implemented, with a surprisingly
small number of neurons.

I. INTRODUCTION

Recently, bio-inspired robot designs and control methods
[11, 121, [3], [4], [5], [6], [7], [8], [9] for the execution of
explosive and cyclic motions have been proposed. The robot
design concepts are based on the physical property of having
elasticities between the actuators and the outputs of the
joints, and are strongly inspired by the principle of skeletal
muscles [10], [11]. The springs can be exploited to robustly
handle mechanical impacts and to improve performance and
energetic efficiency during periodic and explosive movement
tasks. Especially in the case of cyclic motions such as
walking, crawling, or jumping, and running, the elastic
energy can be buffered and released to approach a resonance
like behavior, where the effort to sustain the oscillation is
minimal. Therefore, compliant actuators implement the tech-
nical concept of intrinsic mechanical oscillation modes and
correspond with the active principle of biological actuators.

This paper investigates cyclic motion control principles,
which are mainly intended for legged systems. Well estab-
lished locomotion control concept are based on the spring
loaded inverted pendulum (SLIP) model [12], [13], [14],
[15]. The idea of the SLIP model is inspired by experimental
observations of biologists [16] who hypothesize that high-
dimensional, nonlinear system dynamics anchored in a com-
plex animal collapse to this simple template dynamics. Fur-
ther related control methods are robotic implementations of
central pattern generation (CPG) [17] and adaptive frequency
oscillators (AFO) [18]. These approaches are inspired by
observations in neuro-control units of amphibians, where a
central unit composed of multiple, phase coupled oscillators,
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generates complex multi degree-of-freedom (DOF) motions.
Whereas the AFO approach of [18] considers feedback of the
plant in the motion pattern generation, the CPGs and most of
the SLIP based concepts are basically applied as open loop
control.

In our recent papers [19], [20], [21] we introduced a
control method which directly excites the intrinsic oscilla-
tory dynamics of compliantly actuated robotic plants in a
feedback manner. The controller comprises two main parts:
a switching law to generate a limit cyclic along a single
coordinate direction, and an adaptation law which converges
to a transformation corresponding to the dominant oscillation
mode of the plant. The limit cycle controller has been
derived from observations of human motor control [19],
[21]. Tt switches the (generalized) equilibrium position of
a spring triggered by measurements of the (generalized)
spring-force/deflection. The adaptive part recursively extracts
the principal components of the joint motion and thereby
accounts for the distribution of the excitation amplitudes
(similar to the eigenvectors in linear oscillation theory) such
that they fit to and properly excite the dominant intrinsic
oscillation mode of the mechanical system [20]. In contrast
to the template dynamics [12], [13] or CPG [17], [18], [15]
based approaches, which address rigid actuators or full rigid
body motions, our new cyclic motion control concept directly
uses the oscillatory plant dynamics itself as oscillation unit.
Therefore, this feedback controller has rapid convergence
properties—mimicking the fast adaptive nature of biological
systems.

The contribution of this paper is a biological neuron model
interpretation of this new cyclic motion control concept.
On the basis of correlation-based learning in a firing rate
formalism [22, Chapt. 10.2], we interpret the controller as
a biological neural network. Thereby, the switching con-
troller represents a single neuron in the hidden layer of
the network, which is driven by sensory neurons of the
input layer via synapses and acts on the actuator neurons of
the output layer via a synapses arrangement mirrored from
the input layer. The adaptation of the synaptic efficacies
is explained using the principle of Hebbian plasticity [23]
and competition between synaptic weights [24]. Therefore,
this neuron model turns out to be a biologically plausible
representation of our cyclic motion control concept. Together
with technically advantageous aspects such as robustness and
energetic efficiency, the neuron model interpretation supports
our hypothesis that the control principle might occur in
biological systems in a similar form.

The paper is organized as follows: In the next section
we describe the principle of the robotic control concept.
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actuator

Fig. 1. Generic model of a compliantly actuated mechanical systems. In
case of robotic systems the motor (actuator) acts via a mechanical spring
(elasticity) on the preceding link. In case of a biological system such as
human or animal limbs the muscles (actuators) act via tendons (elasticities)
on the preceding links.

Then, in Sect. III we propose a neuron model interpretation
of this controller. Sect. IV evaluates the performance of
the controller in simulation. Finally, Sect. IV discusses and
concludes the work.

II. ROBOTIC CONTROL CONCEPT

In this section, we introduce a generic model (Fig. 1)
which represents bio-inspired, compliantly actuated robotic
systems and can be straightforwardly modified to describe
the biological counterparts with skeletal muscles as actuators.
Then, on the basis of this model, we explain our cyclic
motion control concept, as introduced in [20].

A. Modeling compliantly actuated mechanical systems

Compliantly actuated mechanical systems can be repre-
sented by Euler-Lagrange equations [25], satisfying

d (8L(m,a’c))  OL(z,%)

dt ox oz enT d@2), (1)
where the Lagrangian L(z,z) = T(x,&) — U(x) is the
difference of the kinetic energy T'(x, &) and potential energy
U(xz). The potential energy U(x) = Uy(x) + Uy(x) is
the sum of a gravity and elastic potential, respectively. The
vector of coordinate = = (87, ¢T)” € R™™ can be divided
into actuator coordinates & € R™ and link coordinates
q € R™. The vector of generalized forces Toen = (u?, 75)T
is composed of the control input w € R™ and the external
torques Texe € R™. Moreover, the term d(x,x) € R™™
represents a dissipative force, where :'BTd(:v, @) > 0 holds.

In case of robotic systems, (GT, OT)T represent the states
of the motor dynamics. They are directly actuated via the
motor torque Ty, := u. In case of biomechanical systems,
(GT,OT)T could represent the internal states of second
order muscle dynamics. Thereby, for instance, the muscle
activation is the control input, 1.e. a := wu.

For the explanation of the robotic controller given next,
we consider the motor PD control

u=—-KpO—Kp(0—04), )

where Kp, Kp € R™*™ are symmetric and positive defi-
nite controller gain matrices, and 84 € R™ is the desired
motor position, for the system (1). Then, using classical
assumptions for robotic systems (high controller gains and
singular perturbation [26]), 1.e. @ =~ 64, we consider the
motor position 6 as control input.

B. Cyclic motion control concept

To excite and sustain a cyclic motion along an intrinsic
mechanical oscillation mode of the considered system, two
technical aspects are of major importance:

First, the timing of the energy input has to be controlled.
In the ideal case the frequency of the energy input is close to
the “natural” frequency of the oscillation mode such that the
system oscillates in resonance. Technically, this is achieved
using the switching based control law

_ sign (‘PZ) 0. if |<PZ| > €p,
0:=() = { 0 otherwise ’ 3
Herein,
p.=w' (0—q)eR )

is the generalized spring deflection of the oscillation mode',
€,. € Ry the corresponding threshold and 6. € R the
modal switching amplitude.

Second, the direction of the “step-like” excitation has
to be adapted to coincide with the (local) direction of the
oscillation mode [20]. This is achieved using the adaptation
dynamics

w(t) = vz(t) (q(t) — 2(H)w(?t)) , )

where z(t) = w(t)Tq(t) is a local approximation of the
modal coordinate and v < 1 is an adaptation gain. The
adaptation law (5) extracts the basis vector w € R™
corresponding to the major principal component of the joint
motion g(t) [27] and therefore the direction of the oscillation
mode [28]. If the adaptation dynamics (5) converges suffi-
ciently fast, a “’step-like” excitation in the required direction
is approached by

0=0y+wb,. (6)

The generalized spring deflection performs work at the joint elasticities
along the oscillation mode.

w(t) adaptation of
illati g w(t2) the excitation
oscillation mode wity) direction

Fig. 2. Principle of the cyclic motion controller. The step-by-step
convergence of the excitation to the oscillation mode is shown.



In summary, the controller principle can be explained as
follows (Fig. 2): Initially, the system is excited with a first
guess of the modal direction w(t;) at time instance ¢1. Then,
the resulting oscillatory motion is observed (cf. (5)). When
the generalized spring deflection reaches the threshold value
(cf. (3)), the system is excited again with an improved guess
of the modal direction w(t2). By repeating this procedure,
the oscillation reaches a steady-state, which is close to the

intrinsic mechanical oscillation mode of the system.

Remark 1: In the derivation of the cyclic motion con-
troller (3)-(6) we have assumed that 8, = 0 is the center
of the oscillation. The extension for a general center of the
oscillation is given in the Appendix I.

Remark 2: Since the controller changes the intrinsic dy-
namics properties of the plant only to a minimum extent,
the plant itself must have damping properties such that
oscillation excited in undesired modes decay faster than in
the desired mode. However, serially structured elastic multi-
body systems such as robotic and human arms and legs
display these beneficial damping properties [21].

Remark 3: Note that the controller requires no model
knowledge of the plant. Only measurements of the states at
position level are required. Therefore, the approach is very
robust (see, [20] and the appended video?).

III. NEURON MODEL

Besides the technical advantages discussed in the previous
section, a very promising property of the cyclic motion
control concept is its surprisingly simple interpretation as
a biological neural network. The general idea of this bio-
logically plausible neural control is shown in Fig. 3. The
sensory signals corresponding to the deflections of the joint
elasticities (measured in biological systems by the Golgi or-
gans) act on the input neurons of the network. These signals
are transmitted via synapses with efficacies w; and summed
up at a single neuron in the hidden layer. The cumulative

2Video link: www.in.tum.de/index.php?id=6123

Fig. 3. Neuron model interpretation of the cyclic motion controller.

signal is then processed in this neuron using a classical
threshold function of a firing rate model and distributed over
the output neurons of the network via additional synapses.
The output neurons encode desired equilibrium positions,
more precisely, step changes of the desired positions, for
each muscle, according to the equilibrium point hypothesis
[29]. In the following we explain how the principle of the
switching controller and the adaptation law coincide with
well established models of the biological counterparts.

A. Switching behavior of firing rate coded neuron models

The main principle of the switching controller presented
in Sect. II is similar to the simplest form of a firing rate
coded neuron model [30]:

y=0ov—e). (7

Herein v denotes the input firing rate and ¢ is a threshold
function. The input firing rate is scaled and pushed through
a nonlinear function. In more detail, if the value of the input
signal exceeds the limit ¢,, the output is changed step wise
by a predefined amount. This step wise change maintains as
long the input undercuts the threshold implication. Note that
if €, = 0, this neuron model coincides with the switching
control (3) introduced in Sect. II. A switching behavior
corresponding to €4 > 0 can be achieved by combining
multiple neurons with €, # 0.

B. Adaptation of synaptic efficacies

The adaptation of the synaptic efficacies will be explained
in a correlation-based firing rate formalism [22, Chapt. 10.2].
Thereby, the two basic principles, Hebbian plasticity [23]
and competition between synaptic weights [24], will be
consulted.

To this end, let us consider a single synapse with efficacy
w,; connecting a pre- and postsynaptic neuron of the input
and hidden layer, respectively. Then, for this single synapse,
we consider the prototype of Hebbian learning,

4
dt

w; = c;orrylpreypost , (8)
where " and vP°* represents the firing rate of the pre-
and postsynaptic neuron, respectively, and c¢5°" is a pos-
itive constant. The learning rule (8) accounts for the two
particularly important aspects in Hebb’s postulate: locality,
re. the change of the synaptic efficacy can depend only
on local variables (pre- and postsynaptic firing rate), and
cooperativity, 1.e. pre- and postsynaptic neurons have to fire
simultaneously to change the synaptic efficacy. Now, let
us consider an ensemble of N patterns {&(t1),...,&(tn)}
where at each time step ¢; one of the patterns £(t;) is fixing
the firing rate of the presynaptic neurons, 1.e., v} (t;) =
&i(t;). Assuming that each pattern £(¢;) is presented for a
short duration At such that the weight changes by a small
amount only, 1.e., AL dwi(r) 4, < w;(t), we can take the
postsynaptic firing rate Pt (t) = w(t)T&(t) as constant for

t dr



this duration. Therefore, the total weight change due to the
presentation of £(¢;) (to first order in At) is

Aw(t) =w(t+ At) —w(t) =
v (w(t)TE()) £(t) + O(AL?), )

where v = ¢§”"At.

The Hebbian learning rule in the simple form (8) leads
to exponentially growing weights. Since, this is biologically
not plausible, an additional aspect of learning has to be taken
into account, viz. competition. That means a synaptic efficacy
increases at the expense of other synaptic efficacies (acting
on the same postsynaptic neuron)?. Competition of synaptic
weights can be modeled mathematically by normalization
of the weight vector to a constant length. In the following,
we consider multiplicative normalization of ||w|| which in
turn leads to Oja’s learning rule [31]. Therefore, consider
the weight change Aw(t) due to the simple Hebbian learning
rule resulting from (9),

Aw(t) = (w(t) &(t)) &(t) .
Then, performing a normalization on the update of the
weights (after At) to unity length, 1.e.,
w(t) + Aw(t)
lw(t) + Aw(t)]”
and assuming again a small weight change during At

(v < 1), we obtain the weight change Aw(¢) including
normalization up to first order in v (Appendix II),

Aw(t) = Aw(t) —w(t) (w(t)" Aw(t)) + O(?).

(10)

w(t + At) = (1D

12)

Dividing the above equation by At and approximating the
differences by differential operators, we arrive at

w(t) =yy(t) (§(t) —y(t)w(t)) ,

where y(t) = w(t)T&(t).

Note that the biologically plausible learning rule (13)
and the adaptation law of the robotic controller (5) are
equivalent. Therefore, the neuron model interpretation given
above explains the behavior of our cyclic motion controller
from the input to the hidden layer neuron including the
adaptation of the sensory synapses. Nevertheless, as can
be seen also from Fig. 3, the proposed control law in its
current form requires the weights of the input network to be
“copied” to the output network. This is in contradiction to
the generally accepted principle of local weight adaptation.
However, the papers [32], [33] already provide a hint on
how the mechanism of “copying” synaptic weights might be
implemented in biology. Extending the network structure to
address this problem is topic of our current work.

13)

IV. SIMULATION

The performance of the cyclic motion controller is vali-
dated in simulation for the compliantly actuated quadruped
robot depicted in Fig. 4(a). The considered quadruped has
four legs and a total number of 12 hinge joints (two

3Note that thereby Hebb’s postulate of locality is still preserved.

perpendicular hinge joints in each hip and one in each
knee), i.e. n = 12. The joints of each leg are actuated via
linear springs OUy(x)/0q; = K,(g; — 0;) with stiffness
matrices K; = diag(30,7.5,9) Nm/rad. Linear, viscous
damping produces torques d; = D;(q, — 91-) with D; =
diag(0.6,0.075,0.075) Nms/rad in the joints. The mass
distribution of the trunk and legs are given in Fig. 4(a).
Furthermore, ground contact points are considered at the tips
of each leg. Thereby, a Coulomb friction constant of p =
0.75 has been assumed. The controller implementation given
in the Appendix I is applied. The parameters of the switching
controller have been chosen €, = 0.2rad and 0. = 1.0rad.
The initial weights of the adaptation controller have been
chosen such that in the initial configuration (Fig. 4(a)) a
generalized modal deflection would produce a pure vertical
force at the tips of the legs (repelling the quadruped from
the ground).

A vertical jumping motion is simulated. To demonstrate
the adaptation properties of the controller, the mechanical
joint stiffness of the robot is changed during the experiment.
At t ~ 6sec. (when the potential energy of the springs
is approximately zero) the joint stiffness is increased in-
stantaneously to 1.5K;. Fig. 4(b) depicts the phase plot
of the generalized modal motion. It can be seen that the
motion initially converges to a limit cycle corresponding
to the initial stiffness (blue line) and then converges to a
different limit cycle due to the increased stiffness (red line).
The corresponding time-plots of the vertical trunk motion
and the link positions of one of the legs are shown in Fig. 4(c)
and Fig. 4(d), respectively. Herein, it can be observed that as
a result of the increased stiffness, the controller adapts to the
decreased frequency of the oscillation mode (the frequency
decreases since the jumping height and therefore the duration
of the flight-phase increases). Moreover, Fig. 4(e) depicts the
motion of the first three modal coordinates. Note that in the
steady-state phase of the oscillation, mainly the motion of
the most dominant oscillation mode is excited, while the
motion along the other modes converges almost to zero.
A video exemplifying the simulation is appended to this
paper. In summary, this experiment clearly demonstrates
the advantageous adaptation properties of our novel cyclic
motion control concept.

V. CONCLUSION AND DISCUSSION

The main contribution of the paper is a biologically
plausible hypothesis for neural feedback control of full
body resonance limit cycles in biological organisms. This
hypothesis might provide an explanation for the easiness
and robustness with which animals can swim, crawl, run
or fly and thereby adapt to changes in body or environment
properties.

Nevertheless, it has to be pointed out that the concept
has still open questions which need to be further addressed,
possibly in close cooperation with neuro-scientists. The
most obvious open question is the current requirement to
“copy” the weights adapted in the sensory synapses to the
output synapses. Several local adaptation alternatives could



(a) Simulated quadruped. The center of masses of all bodies are placed
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Fig. 4. Simulation results for the quadruped robot shown in (a). At ¢t = 6 sec. the mechanical stiffness of the robot is increased.

. initial stiffness initial stiffness x 1.5
E .
_ﬁo 0.4
=
A
5 0.2
2 02F
1 1 I 1 1 J
0 2 4 6 8 10 12
(c) Vertical motion of the trunk.
1 —
e
5 0 q1
Zg : q2
o) :
& : q3
S S Y S G G Y Wt Nt -
g [V VT 7 ! L Ll
) 1 1 [ 1 1 J
0 2 4 6 8 10 12
(d) Motion of the link coordinates of one of the legs.
e
: 8
8 2
= 23
2
5]
g
.g ws
= w3
ks
g :
—0.5¢ I I [ I I J
0 2 4 6 8 10 12
time (sec)




be drafted. They need however to be discussed and validated
based on the knowledge of existing biological neural circuits
in future work. It is our hope that this paper will inspire
biologist to experimentally verify the presented hypothesis.

APPENDIX I
GENERAL CONTROLLER FORMULATION

Here, we provide the general controller formulation.
Therefore, consider an arbitrary center of oscillation in the
motor position 8y € R™. Regarding boundedness conditions
for the total potential energy U(x) detailed in [25], we
can compute link positions g(6) satisfying the equilibrium
condition

8U(0a q)/&q(@ = 007 q= 6(00)) — Text = 0.

Using, the static equilibrium position g(6) the generalized
spring deflection takes the form

Ap. =w" {6 -g—[00—a0)]},  (AD
such that (3) changes to
- sign(Acpz)éz if |Ap.| > e,
Aba(p=) = { 0 otherwise (A2)

Moreover, the link side motion w.r.t. the static equilibrium
position g(6y) is considered in the adaptation law (5):

w(t) =vz(t) [(q(t) — q(60)) — 2(t)w(t)] -

Herein, 2(t) = w(t)T (q(t) — q(8y)). Finally, the controller
output takes the form

0=20,+ ’w(t)A(pz .

APPENDIX II
INTERMEDIATE COMPUTATION STEP FROM (11) TO (12)

(A3)

(A4)

We make use of the binomial series (1 4+ z)~1/2 = 1 —
1/22+3/8xz%—5/162> ... and keep only terms up to O(v):

lw + Aw|| ! = (wTw + 20" A + A’ Aw)

= (14 20T A+ 0(2) =1 - wTAw + O(+?) .
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