

A 3D-Parallel Interior Eigenvalue Solver

Jonas Thies¹ Martin Galgon² Lukas Krämer² Andreas Pieper³ ESSEX - Equipping Sparse Solvers for the EXascale SPPEXA workshop, Heidelberg Dec. 1-3, 2014

²University of Wuppertal Applied Computer Science

³University of Greifswald Theoretical Physics

Outline

Graphene Simulation

The FEAST Eigensolver

Linear Solver: CGMN

Parallel CGMN

Experiments

Summary and Outlook

www.DLR.de • Chart 3 > FEAST+CGMN > J. Thies et al. • > SPPEXA'14

Graphene Simulation

Graphene

Physical space: carbon atoms in 2D hexagonal mesh

Fourier space ('reciprocal mesh')

Tight-binding Hamiltonian

$$H = \sum_{i} V_i c_i^{\dagger} c_i - t \sum_{\langle ij
angle} (c_i^{\dagger} c_j + c_j^{\dagger} c_i)$$

Graphene (2)

- Analytical solution for infinite Graphene sheet
- Dirac cones: graphene between conductor and semi-conductor

Graphene modeling

- disorder
- long range stencil
- bi-layer
- Long range Hamiltonian:

- gate-defined quantum dots
- spin-orbit coupling

• ...

$$H = \sum_{i} V_{i}c_{i}^{\dagger}c_{i} - t\sum_{\langle ij \rangle} (c_{i}^{\dagger}c_{j} + c_{j}^{\dagger}c_{i}) - t'\sum_{\langle \langle ij \rangle \rangle} (c_{i}^{\dagger}c_{j} + c_{j}^{\dagger}c_{i}) - t''\sum_{\langle \langle \langle ij \rangle \rangle \rangle} (c_{i}^{\dagger}c_{j} + c_{j}^{\dagger}c_{i})$$

www.DLR.de • Chart 7 > FEAST+CGMN > J. Thies et al. • > SPPEXA'14

The FEAST Eigensolver

Graphene: eigenmodes of interest

- need many eigenvalues, $\mathcal{O}(1000)$
- in the interior of the spectrum
- tight clusters

- eigenvalue density increases $\sim L$ for $L \times L$ graphene sheet
- rich spectrum of non-smooth modes

FEAST eigensolver (Polizzi '09)

FEAST algorithm for $AX = BX\Lambda$ (A, B symmetric)

Input: $I_{\lambda} := [\underline{\lambda}, \overline{\lambda}]$, an estimate \widetilde{m} of the number of eigenvalues in I_{λ} . **Output** $\widehat{m} \leq \widetilde{m}$ eigenpairs with eigenvalue in I_{λ} . **Perform:**

• Choose $Y \in \mathbb{C}^{n \times \widetilde{m}}$ of full rank and compute $U := \frac{1}{2\pi i} \int_{\mathcal{C}} (zB - A)^{-1} B dz Y,$

2 Form $A_U := U^*AU$, $B_U := U^*BU$,

3 Solve size- \widetilde{m} eigenproblem $A_U \widetilde{W} = B_U \widetilde{W} \widetilde{\Lambda}$,

4 Compute
$$(\widetilde{\Lambda}, \widetilde{X} := U \cdot \widetilde{W})$$

5 If no convergence: go to Step 1 with $Y := \widetilde{X}$.

Parallelization of FEAST

Several levels:

- I interval sectioning
- II distribute shifts
- III distribute right-hand sides
- IV parallel linear solver (MPI+X)
- V based on SIMD optimized kernels (spMVM, BLAS etc)

www.DLR.de • Chart 12 > FEAST+CGMN > J. Thies et al. • > SPPEXA'14

Linear Solver: CGMN

Linear systems for FEAST/graphene

Tough:

- very large ($N = 10^8 10^{14}$)
- complex symmetric and completely indefinite
- random numbers on and around the diagonal
- spectrum essentially continuous
- shifts get very close to the spectrum

But also nice in some ways:

- 2D mesh, very sparse (\sim 10 entries/row)
- many RHS/shift (block methods, recycling, ...)

An ancient row projection method

- Björck and Elfving, 1979
- CG on the 'minimum norm' problem, $AA^T x = b$
- preconditioned by SSOR
- efficient row-wise formulation
- extremely robust: A may be singular, non-square etc.
- row scaling alleviates issue of 'squared condition number'

Kernel operation: KACZ sweep

•	Kaczmarz	а	lgorithm
---	----------	---	----------

Interpretations:

- $SOR(\omega)$ on the normal equations $AA^T x = b$
 - successive projections onto the hyperplanes defined by the rows of A

```
In CRS (rptr,val,col):
1: compute nrms=||a_{i,j}||_2^2
2 for (i=0; i<n; i++) do
    // compute a_{i} x - b_i
3:
       scal=-b[i]
4
5
6
       for (j=rptr[i], j<rptr[i+1], j++) do
           scal+=val[j]*x[col[j]]
       end for
7.
       scal/=nrms[i]
    // update x
8:
       for (j=rptr[i]; j<rptr[i+1]; j++) do
9:
           ×[cols[j]] = omega*scal*val[j]
10
        end for
11 end for
```

www.DLR.de • Chart 16 > FEAST+CGMN > J. Thies et al. • > SPPEXA'14

Parallel CGMN

Multi-Coloring (MC) for CGMN

- requires "distance 2" coloring
- software: ColPack http://cscapes.cs.purdue.edu/coloringpage/software.htm

Component-Averaged Row Projection (CARP)

- Gordon & Gordon, 2005
- Kaczmarz locally
- write to halo
- exchange and average

Equivalent to Kaczmarz on a superspace of \mathbb{R}^n

Hybrid method: MC_CARP-CG

- global MC would require...
 - an extremely scalable coloring method
 - very well-balanced colors
 - many global sync-points (> 20 colors in our examples)
- global CARP would require...
 - huge number of MPI procs
 - increasing amount of 'interior halo elements'
 - non-trivial implementation on GPU and Xeon Phi
 - increasing number of iterations

Idea: node-local MC with MPI-based CARP between the nodes

www.DLR.de • Chart 20 > FEAST+CGMN > J. Thies et al. • > SPPEXA'14

Experiments

Experimental setup

- Machine: Intel Xeon "Ivy Bridge"
- 10 cores/socket, 2 sockets/node
- InfiniBand between nodes

Here's what we do:

- pick some shifts that may occur in FEAST
- handle 8 RHS at once (for good performance)
- conv tol 10^{-12}
- solve linear systems using CGMN variants

Sequential CGMN for various shifts

Coloring vs. CARP: single socket (1024^2 dof)

Scaling of Hybrid vs. CARP

Figure : Weak scaling for Graphene, 4096² unknowns per node

Figure : Strong scaling and block speed-up, 8192² unknowns in total

Weak scaling for a 3D benchmark

Synthetic 3D Model of Anderson localization

- uniform 3D grid
- 9-point stencil
- random numbers between -I/2 and I/2 on the diagonal (I=16.5 here)

www.DLR.de • Chart 26 > FEAST+CGMN > J. Thies et al. • > SPPEXA'14

Summary and Outlook

The (almost) final slide

- Graphene gives nice and challenging test cases for Lin. Alg.
- FEAST requires fast linear solvers for indef. systems
- row projection methods provide the necessary robustness
- algorithm that calls for MPI+X parallelization

Future work:

- node-level optimization, GPU and Xeon Phi
- other applications of CGMN: Helmholtz, conv. dom. flow,...
- Multigrid to resolve near kernel problem (?) (cf. recent work by I. Livshits)

Acknowledgment: DFG SPPEXA project ESSEX (Equipping Sparse Solvers for the EXa-scale)

References

- Pieper et. al.: Effects of disorder and contacts on transport through graphene nanoribbons *Phys. Rev. B* 88, 195409, (2013).
- Polizzi: Density-Matrix-Based Algorithms for Solving Eigenvalue Problems. *Phys. Rev. B.* 79 - 115112 (2009)
- Björck & Elfving: Accelerated projection methods for comp. pseudoinverse solutions [...] *BIT* 19, pp. 145–163, 1979.
- Gordon & Gordon: Component-averaged row projections: A robust, block-parallel scheme for sparse linear systems. SISC 27 (3), 2005, pages 1092–1117.
- Galgon et. al.: On the par. iterative solution of lin. syst. arising in the FEAST algorithm for computing inner eigenvalues. *submitted*. http://blogs.fau.de/essex/publications