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- Continuum theory: Description of the properties and measurements of 

thermoelectrics on a macroscopic level  

 

- Characteristic time and length scales 𝜏 ≥ 10−3 s and  𝑙 ≥ 10−3 m 

 

- Transport of energy and charges – description via differential equations, 

thermal energy balance equation  

 

 
 

 

            Continuum theory: Two main categories of equations 
 

Thermoelectricity – Continuum approach 
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Electric field Temperature field 

𝐸 𝑟 𝑡 , 𝑡  𝑇 𝑟 𝑡 , 𝑡  

Equations independent of the material: 

kinematic relations of the continuum, 

loading parameters, balance equations 

Conservation laws 

 

Equations dependent on the material: 

Coverage and description of material 

properties 

Constitutive equations 

 



Thermoelectricity – Generalized heat equation 

- Charge conservation 

 

  

- (thermal) energy conservation 
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𝜚d c
𝜕𝑇

𝜕𝑡
+  𝛻 ∙ 𝑗 𝑄 = 𝑗 ∙ 𝐸 

 

𝛻 ∙ 𝑗 = 0 

- Generalized Fourier’s law – Heat flux 

 

  

- Generalized Ohm’s law – Electrical 

current density  

 

𝑗 𝑄 = −𝜅𝛻𝑇 + 𝛼𝑇𝑗 = 𝑗 𝑄,𝜅 + 𝑗 𝑄,𝜋 

𝑗 = 𝜎𝐸 − 𝜎𝛼𝛻𝑇 

Conservation equations Constitutive equations 

Differential form  Onsager‘s linear response theory 

𝜚d c
𝜕𝑇

𝜕𝑡
− 𝛻 ∙ 𝜅𝛻𝑇 + 𝜏𝑗 ∙  𝛻𝑇 =

𝑗2

𝜎
 

 

T. C. Harman, J. M. Honig:  Thermoelectric and thermomagnetic effects and applications,McGraw − Hill 1967  
Charles A. Domenicali, Irreversible Thermodynamics of Thermoelectricity, Rev.Mod. Phys. 26, 237 −  275 (1954) 

𝜏 = 𝑇
𝜕𝛼

𝜕𝑇
… Thomson coefficient, 𝜚d … mass density, 𝑐 … specific heat capacity, 𝜅 … thermal conductivity,  

𝛼 … Seebeck coefficient, 𝜎… electrical conductivity 



Solution of heat equation in thermoelectricity 
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𝜚d c
𝜕𝑇

𝜕𝑡
− 𝛻 ∙ 𝜅𝛻𝑇 + 𝜏𝑗 ∙  𝛻𝑇 =

𝑗2

𝜎
 

 

Direct problem 
Initial values, boundary conditions, material properties 

well-posed problem  

Inverse problem 
Not all values are given, Experimental data for 

estimation of boundary values 

ill-posed problem  

Performance calculation of thermoelectric  

devices and systems 

Determination of parameters in  

measurements systems, e.g. material  

properties 

- Initial conditions (IC) 

Temperature distribution  

at 𝑡 = 0: 𝑇0 𝑟 𝑡  

- Boundary conditions (BC) 

- Dirichlet/Neumann/mixed BC 

 [Boundary value problem (BVP)] 



Performance calculation of thermoelectric devices 
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Thermoelectric Generator 

(TEG) 

Thermoelectric Cooler 

(TEC) 

𝑇 𝑟 , 𝑡  

𝑃el 

Electrical power output 

𝜂 

Efficiency 

𝑄  

Heat flow 

𝜑 

Coefficient of performance 

Direct solution of the heat equation 

material properties IC BC 

Fixed boundary 

temperatures 

Fixed heat  

input 

Variation of 𝑅𝐿 or 𝐼 



Transient response in thermoelectricity  

- Time dependent fields 𝑇 = 𝑇 𝑟 , 𝑡  and 𝐸 = 𝐸 𝑟 , 𝑡  

 

- Dynamic working conditions:  

 

 

 

 

 

 

 

 

- Solution of the generalized heat equation: 

- Steady state ⟹ Ordinary differential equations 

- Transient response ⟹ Partial differential equations  

 

- Analytical solutions only in particular cases with help of integral transformation (e.g. 

Laplace) or in a (Fourier) series expansion 

 

- Approximative or numerical solution methods (CPM, FEM, FDM, Circuits...) 
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H.S. Carslaw/J.C. Jaeger “Conduction of heat in solids”, Oxford Science Publications,1986 

J. Crank, “The mathematics of diffusion”, Oxford University Press, 1979  

  

𝑇h = 𝑇h 𝑡   

𝑇h 𝑡  

BC 

Ambient 𝑇amb = 𝑇amb 𝑡   

𝑇amb 𝑡  

𝑇c = 𝑇c 𝑡   

𝑇c 𝑡  

Material e.g. 𝜅 = 𝜅 𝑇 𝑟 , 𝑡 , 𝑟 , 𝑡  

Load/Current 𝑅L = 𝑅L(𝑡) or  𝐼 = 𝐼(𝑡) 𝑅L(𝑡)  

𝐼(𝑡) 

𝑄 h(𝑡) 

𝑄 h = 𝑄 h(𝑡) 

𝑄 c(𝑡) 



- Quasi-stationary processes ⇒ Timescale of changes in the 

working/boundary conditions much greater than response time of the 

thermoelectric system ⇒ use of steady state equations for different times 

 

- TEC pulsed supercooling 
 

Stil’bans/Fedorovich, Sov. Phys. Tech. Phys. 3, 460 (1958) 

Snyder et al., J. Appl. Phys. 92, 1564 (2002) 

Mao et al., J. Appl. Phys. 112, 014514 (2012) 

 

- Transient TEG  
P.E. Gray, The Dynamic Behavior of Thermoelectric  

Devices, John Wiley & Sons, Inc., New York, 1960 

 

Montecucco et al., Appl. Therm. Eng. 35 (2012) 177-184 

Nguyen/Pochiraju, Appl. Therm. Eng. 51 (2013) 1-9 

Meng, J. Power Sources, 245 (2014) 262-269  

 

- AC impedance spectroscopy 
García-Cañadas/Min (previous talk), J. Electr. Mat. 43, 2411 (2014) 

C. Goupil (talk yesterday), J. Stockholm (poster yesterday) 

 

- Review: Separate chapter in the book “Continuum theory and modelling of 

thermoelectric elements” edited by C. Goupil, release date March 2015 

Transient performance calculations 
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𝑇 

𝑡 

𝑡 

𝐼 

𝐼opt 

𝐼p = 𝑓𝐼opt 

𝑇min,ss 

∆𝑇p 

∆𝑇pp 

𝑡min 

… 
𝑡rec 



- Thermal conductivity for semiconductors often small ⇒  ≈1 W/(m K) 

- Small samples, mechanically not easy to be processed 

- Brittleness ⇒ not possible to put in thermocouples in the sample 

- Hard to realize a good thermal contact via soldering 

- Specific heat often not known 

 

www.DLR.de  •  Chart 9 

Measurement of thermal conductivity 

Measurement techniques 𝜅 

Steady-state/stationary methods Dynamic/transient methods 

Absolute technique Comparative  technique 
- Laser Flash Thermal Diffusivity Method 

- Generalized Ioffe method ⇒ CTEM 

- 3𝜔 method 

- time-domain thermoreflectance 

 

S. Reif-Acherman “Early and current experimental methods for determining thermal conductivities of metals” Int. J. Heat Mass Transfer 77 (2014), 542-563 

T. M. Tritt “Electrical and Thermal Transport Measurement Techniques for Evaluation of the Figure-of-Merit of Bulk Thermoelectric Materials” Ch. 23, CRC  

Thermoelectric Handbook. Macro to Nano (2006)  
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Inverse heat conduction problems 

- Inverse heat conduction problems (IHCP) 

 

 

 

 

- Classification IHCP:  

- Material properties determination inverse problems, 

- Boundary value determination inverse problems, 

- Initial value determination inverse problems, 

- Source determination inverse problems, 

- Shape determination inverse problems 

 

- Unknown thermal conductivity (material property) ⇒ inverse calculation 

 

 

- Solution of the direct problem to get insights how to solve the IHCP 

Krzysztof Grysa “Inverse Heat Conduction Problems” Chapter 1 in “Heat Conduction - Basic Research” ed. by V. S. Vikhrenko,  InTech (2011) 

Temperature 𝑇 measured (at some points, times) 



Vs 

IP 

CTEM – Measurement of thermal conductivity 
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- Combined thermoelectric measurement (CTEM): 
 TC 

Gradient heater 
Sample 

- Simultaneous measurement method ⇒  

all TE properties including Harman-ZT 

- Here: focus on thermal conductivity  

measurement  

 

- Generalized Ioffe method 

 
Decrease of ΔT 

Thermal conductivity κ 

More experimental details on Poster P3.30  

H.Kolb today  



Heat 

Transient temperature difference 
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Relaxation time τ Thermal conductivity κS 

volumetric 

heat generation 

 

- Heating of one Cu block 

- Switching off after reaching ∆𝑇 ≈ 5K 

- Observing relaxation of temperatures 



Solution of the direct problem – Simple Ioffe method 

- Simple Ioffe method (sample and one block): 

1. Analytical solution as Fourier series 

2. Numerical solution with ANSYS (FEM) 
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𝜕𝑇2
𝜕𝑡

= 𝛼d,2
𝜕2𝑇2
𝜕𝑥2

 
𝜕𝑇1
𝜕𝑡

= 𝛼d,1
𝜕2𝑇1
𝜕𝑥2

 
System  

of PDE 

𝑇1 𝑥 = 0, 𝑡  

= 𝑇amb 

BC 

𝜕𝑇2
𝜕𝑥

𝑥=𝐿

= 0  

BC 

𝑇1 𝑥, 𝑡 = 0 = 𝑇amb  IC 𝑇2 𝑥, 𝑡 = 0 = 𝑇20 > 𝑇 amb 

Interface 𝑇1 𝑥 = 𝐿1−, 𝑡 = 𝑇2 𝑥 = 𝐿1+, 𝑡  −𝜅1
𝜕𝑇1
𝜕𝑥

𝑥=𝐿1−

= −𝜅2
𝜕𝑇2
𝜕𝑥

𝑥=𝐿1+

 



Sequences of transient simulations www.DLR.de  •  Chart 14 

Temperature  

Heat flux  

𝑡 = 10 −4 s 𝑡 = 10 −1 s 𝑡 = 1s 

- Short time behavior – heat wave through the sample – non-exponential 



Relaxation of temperature difference 
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𝑡 = 10s 

𝑡 = 50s 

𝑡 = 100s 

1 

1 
2 

2 

3 

3 

∝ exp −
𝑡

𝜏
 

- Thermal conductivity after algebraic treatment and Taylor expansion 

(omitting terms of second order and higher) 

 

 

 

- in the example calculation less than 1% approximation error 

𝜅1 =
𝐿1

𝐴c,s
𝑀1 𝐶2  1 +

𝜅1𝐿2

3 𝜅2𝐿1
+

𝐶1

3 𝐶2
  

𝜏 = 𝑀1
−1  … relaxation time (from the experiment) 

𝐶1 = 𝑚1𝑐1 = 𝜚d,1𝑉1 𝑐1…   thermal mass of the sample 

𝐶2 = 𝑚2𝑐2 = 𝜚d,2𝑉2 𝑐2…   thermal mass of the block 

- Relaxation to equilibrium exponential  



Influence factors on the relaxation time 
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Errors 

Contact resistance 

at the interface 

Radiation 

to the ambient 

- Fixed values of 

 

- Symmetric for both side  

- Emissivity 𝜀 

- Ambient temperature 𝑇amb 

- Significant at high 𝑇 

Overestimation of 𝜅 Underestimation of 𝜅 

Zabrocki et al., J. Electr. Mat. 42 (7), 2402-2408 (2013) 



CTEM – Peltier heat 
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3D Simulation 2D Simulation (axisymmetric) 

- transient thermal simulation  

- No holes for thermocouples 

- Heat generation in a slice 

- Contacts – bulk values of a slice 

Metal block Metal block 

S
a
m

p
le

 

- DC current through the assembly ⇒ Peltier heat at the contacts 

- At which side of the contact is the Peltier heat liberated or absorbed? 



Contacts as a slide www.DLR.de  •  Chart 18 

- Contacts through bulk values  

 

- Heat generation in the metal block or sample? 

 

- Galinstan (liquid metal solder) 

 

 

 

 

 

 

Volumetric heat generation for a certain time   

- Three thin layers: 

- Metal block 

- Contact material 

- Sample 

Cu block Cu block S 



Peltier heat from where? www.DLR.de  •  Chart 19 

Heat generation/absorbtion Metal Sample 

- Peltier heat liberated or absorbed at the metal side or the sample side 



Peltier heat – Qualify contact resistance 
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Metal Sample 

- Peltier-heat either liberated/absorbed at metal side or sample side of the 

contact material ⇒ different behavior at the switch-off 

- Experimentally observed jump ⇒ Qualification of the thermal contact resistance  



Summary 

- Generalized heat equation in thermoelectricity for transient response 

 

 

- Direct solution for the determination of the performance of  TE devices 

 

 

- Inverse problem: Determination of material properties from measurements 

of temperatures 

 

 

- Dynamic measurement of the thermal conductivity – CTEM  

www.DLR.de  •  Chart 21 

Thank you for your attention! 
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The END 


