Solar Process Heat and Co-Generation a review of recent developments

Klaus Hennecke

Content

- Motivation
- Mid-Term Status Task 49/IV
- Co-Generation Concepts
- Conclusions

The presenter greatfully acknowledges the valuable contributions from several colleagues, in particular Christoph Brunner (Task 49/IV) and Eduardo Burin (Co-Generation Project in Brazil).

Photovoltaic

Renewable Energy Technologies for Power Generation

Hydro

Solarthermal

Biomass

Geothermal

Wind

Tidal

Renewable Energy Technologies for Process Heat

Geothermal

Concentrating Solar

Biomass

Non-concentrating Solar

Challenges in Solar Process Heat

- Heat cannot be transported easily over long distances
 - Meteorological conditions at the site
 - Availability of suitable areas for collectors (ground, roof, facades)
- Solar field size (= investment cost) proportional to heat demand
 - Rational use of energy minimizes heat demand
 - Process optimization more cost effective than "free" solar energy
- Collector efficiency temperature dependent
 - Selection of suitable collector technology
 - Integration of solar heat at appropriate temperature
- Annual, daily and stochastic variations of radiation
 - Load management, heat storage and fossil or renewable back-up
 - Similar load and radiation profiles may increase solar share
- O&M effort and perceived risks of "new" technology
 - Priority for O&M personnel: Efficient and secure production process
 - Intelligent integration of solar system

Task 49/IV Solar Process Heat for Production and Advanced Applications

Industrial processes:

- All processes with a thermal energy demand at temperatures up to 400°C
- Technologies for industrial application which can be driven by sunlight or specific spectrums (e.g. UV)

 Working temperature up to 400°C; concentrating and non-concentrating technologies

Solar thermal systems:

 No restrictions in the system integration and heat carriers (air, water, thermo oil, low pressure steam)

Source: GEA Brewery Systems

Source: Smirro GmbH

Task 49/IV Sub-Tasks and Objectives

Start: February 2012, Duration: 4 years

- Subtask A: Process heat collector (SPF)
 - Improving solar process heat collectors and collector loop components
 - Providing a basis for the comparison of collectors with respect to technical and economical conditions
 - Giving comprehensive recommendations for standardized testing procedures
- Subtask B: Process integration and Process Intensification combined with solar process heat (AEE INTEC)
 - Improved solar thermal system integration for production processes
 - Increase of the solar process heat potential by PI and solar chemistry
- Subtask C: Design Guidelines, Case Studies and Dissemination (ISE)
 - worldwide overview of results and experiences
 - Performance assessment methodology for a comparison and analysis of different applications, collector systems, regional and climatic conditions
 - Support future project stake holders by providing design guidelines, simplified fast and easy to handle calculation tools

Task 49/IV Mid-Term Status

Integration Guidelines first Version issued

- integration concepts are available
- guidance for solar planners, energy consultants and process engineers
- how to identify suitable integration points for a solar thermal system
- not: planning of the solar system itself

Source: AEE INTEC

Task 49/IV Mid-Term Status

Solar Heat for Industrial Processes – SHIP database online:

- www.ship-plants.info
- based on initial survey from AEE INTEC
- programming of structure and design by PSE
- designed as a living platform to grow continuously
- How to participate (e.g. to enter your SHIP application):
 - Register with your e-mail address
 - Log-In
 - Add new data
 - add new project
 - edit existing project (by clicking on "request responsibility"-button)
 - upload pictures
 - AEE INTEC will perform plausibility check
 - Data will be published
- presently 134 projects presented
 - 15 Parabolic Trough systems in Mexico (6), Switzerland (3), USA (2), Germany (2), Egypt (1), Sweden (1)
 - 4 Linear Fresnel systems in Tunisia (2) Italy (1) India (1)

SHIP Database: Filter functions

SHIP Plants	Home	Projects	Locations	Reports	Disclaimer	Feedback				
	Listii	ng pro	jects							
FILTER										
Name contains Country	Display		o S.A.	e.g. NACE-Code C10.5						
Year of operation start	PHC	O Greece	aloniki, Greece e tion start: 1999	Ma	anufactu	ure of da	airy products			
Industry sector C10.5 - Manufacture of dairy Unit operation	Cremo SA Route de Moncor 6, 1752 Villars-sur-Glâne Switzerland Operation start: 2013									
Kind of solar thermal collectors installed Solar energy storage		Chem Switze	Dairy Saignele in du Finage 19, Irland Ition start: 2012		gier, Switzerland					
Point of Solar Heat Integration Solar thermal engineering company	N. PHC	Groml Tunisi								
Apply show all		Via Ch Switze	Dairy narels Suot, Beverland tion start: 2011	r						

SHIP Database: Detailed project data

Task 49/IV ongoing activities

Comparison of performance simulation tools (Co-ordinated by FhG ISE)

- 6 different numerical tools: TRNSYS, TSOL, ColSim, POLYSUN, GREENIUS (Download: http://freegreenius.dlr.de), Excel
- 5 test cases:
 - Preheating of make-up water
 - Heating of process baths
 - Return flow temperature lift
 - Process steam generation (via oil HX / DSG)
 - Air drying
- 3 locations: Graz, Seville, Mumbai (METEONORM 8)
- More Information: see Simon Dieckmann: Annual Performance Calculations for CSP Plants under different Feed-In-Tariff Schemes (Poster C01)

System Integration

 Heiko Schenk: SolSteam - Innovative Integration Concepts for Solar-Fossil Hybrid Process Steam Generation (Commercial and Demonstration Projects Session, Friday, 11:10 / Function C)

Task 49/IV ongoing activities: Expert meetings

Most recent expert meeting:

- 5th IEA Task 49/IV meeting: Stellenbosch University, South Africa 23th and 24th of January 2014

- The meeting was attended by 25 participants from following countries: Austria, Germany, Israel, Portugal, Swiss, France, Japan, Tunis and South

Africa

Interested to participate? Contact:

c.brunner@aee.at

Planned next expert meetings:

- 6th IEA Task 49/IV meeting: 25th/26th of September 2014, Milano Italy
- Standardization workshop on the 24th of September
- 7th IEA Task 49/IV meeting: 19th/20th of March 2015, Spain (Tecnalia)

Solar Process Heat for Automobile Industry

Air heating for paint shop

Co-Generation for Automotive Industry

Solar preheating for micro-gasturbine

Solar-aided cogeneration for Brazilian sugar cane industry

Background:

- Sugar and alcohol production from sugar cane is an important industry sector in Brazil
- Residual bagasse is used in biomass combined heat and power plants
- About 360 plants providing 6% of installed capacity
- Typical parameters:
 - 30 MW (20 MW own consumption, 10 MW into grid)
 - Live steam 67 bar / ~ 500 °C
- Operation during harvest season April December

Aim:

- Extend operating time into off-season
- Improve capacity factor

Funded in the framework of Brazilian-German i-NoPa Cooperation Program Concentrated Solar Power (CSP) by:

Ministério das Cidades

Solar-aided cogeneration

for Brazilian sugar cane industry

Concept idea

Source: UFSC

Solar-aided cogeneration for Brazilian sugar cane industry

Next Step

- "Research-into-Use" Workshop
- Florianópolis, Brazil, October 28th 2014
- Presentation of results of present
- Discussion with potential users, equipment suppliers and energy suppliers
- Definition of next steps to application

Interested to participate?

Contact

- Eduardo Burin UFSC: <u>burin@labcet.ufsc.br</u>
- Tobias Vogel UDE: tobias.vogel@uni-due.de

Conclusions

- Solar Process Heat and Co-Generation are increasingly seen as interesting potential markets for concentrating solar technologies
- The joint SHC/SolarPACES Task 49/IV made good progress and provides a good forum for cooperation
- Emerging co-generation concepts aim to create technical and economic synergies with other "green" technologies

- Contact: klaus.hennecke@dlr.de

