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The TanDEM-X mission comprises two nearly identical satellites – TSX and TDX – 

that fly at an altitude of ~515 km in a close formation at distances down to 120 m. The 

standard orbit corrections are made with hydrazine propulsion on both spacecraft, but 

the relative geometry is maintained by a dedicated cold gas system on TDX only, which 

initially comprised 36 kg of nitrogen. The routine formation-keeping requires at least 

one pair of cold gas maneuvers daily.  

Formation flight started in late 2010 and continued ever since in several 

configurations. This means that by now of the order of 2500 cold gas maneuvers have 

been performed and the remaining amount of fuel will allow for another 1500 to be 

made. Maneuvers were done mainly with the four 40 milli-Newton thrusters of branch-

A, but about 25 % of the time branch-B was used.  

The construction of a digital elevation model of the Earth requires very precise orbit 

information, which is delivered by the flight dynamics department at GSOC. This also 

yields an accuracy of <0.1 mm/s in the a posteriori reconstruction of maneuvers.  

The large number of maneuvers and the extremely accurate orbit information allow 

a unique in-orbit evaluation of the cold gas system. Thruster performance is 

reconstructed from the precise orbit determination combined with 1Hz telemetry during 

the burn and a priori laboratory measurements. Among others comparisons are made 

between the two branches and between maneuvers in flight- and anti-flight direction. 

The influence of the maneuver duration and the tank pressure will also be presented.              

 

I. Introduction 

HE TanDEM-X project is implemented in a “Public-Private Partnership” between the German Aerospace 

Centre and Astrium GmbH. 

The main objective of the TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) mission is 

to create a global digital elevation model with 12 m horizontal and 2 m vertical resolution [1]. To achieve this, 

two satellites – TerraSAR-X (TSX) and TanDEM-X (TDX; a satellite of almost identical construction) are 

forming the first configurable SAR (Synthetic Aperture Radar) interferometer in space with a separation of a 

few hundred meters only. A powerful ground segment, which is interlaced with that of TSX, completes the 

TanDEM-X system. The satellites are currently flying in a close formation with cross-track distances down to 

120 m. Three years of formation flying with various baselines are necessary to collect sufficient measurements 

for the generation of the global Digital Elevation Model (DEM). 
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DLR is responsible for the scientific exploitation of the TSX/TDX data, as well as for the planning and 

implementation of the mission, for controlling the two satellites and for generating the digital elevation model. 

Astrium Satellites* has built the satellites and shares in the costs of development and exploitation. The 

responsibility for marketing the data lies in the hands of Infoterra GmbH, a subsidiary of Astrium GmbH, as was 

the case already with TSX data. 

 

TSX was launched from Baikonur, 

Kazakhstan, on June 15th 2007 with a Dnepr 

rocket into a sun-synchronous dusk-dawn orbit 

at an altitude of 514 km. The ground coverage 

is repeated in an eleven day cycle which is 

achieved by controlling the spacecraft in a 

±250m tube around a predefined Earth-fixed 

reference orbit [2].  

 TDX was also launched from Baikonur 

almost exactly three years after TSX, namely 

on June 21st 2010.  The initial distance of 

16000 km towards TSX was soon reduced, and 

a far formation at 20 km along-track 

separation was acquired within 30 days after 

launch. The first close formation was reached 

by mid of October and the DEM acquisition 

started in December 2010 with an inter-

satellite distance of ~300 m (see [3] for details 

on the formation acquisition process). 

The TDX satellite is in general a soft- and 

hardware rebuild of TSX, but some changes 

were made in order to allow for close 

formation flight. The most important ones are 

the cold gas propulsion system and a software 

module for experimental autonomous 

formation flight (TAFF). 

A. Formation Flight 

The close formation of TSX and TDX is dictated by the wish for a configurable SAR interferometer in 

space. The satellites fly in almost identical orbits whereby the trajectory of TDX describes a helix around that of 

TSX. This is achieved by the concept of relative eccentricity and inclination vector separation [4]. The maximal 

radial separation is reached over the poles (vertical baseline typically between 200 m and 500 m) and the 

maximum separation in normal direction occurs at the equator (horizontal baseline typically 200 – 500 m; see 

Fig. 1). Thus it is guaranteed that the radial and normal separation never become zero at the same time. The 

details of the formation depend upon the mission phase. The one with the smallest baseline had a minimum 

cross-track separation of 120 m.  

The TDX-TSX relative motion is perturbed by external and internal forces. The dominating source is the 

oblateness of the Earth, which perturbs the slightly different eccentricity vectors of TSX and TDX in different 

ways, resulting in a tilt of the relative motion ellipse. Furthermore, the slightly different atmospheric drag as 

well as the relative (along-track) maneuver errors result in a change of the relative semi-major axis, which then 

yields an along-track drift. An illustration of the TDX-TSX relative motion and control can be found in [5]. 

The relative orbit perturbations need to be compensated by in-plane formation keeping maneuvers to 

maintain a stable configuration. For example, a formation with a vertical separation of 300 m requires every day 

two burns of approximately 0.5 cm/s each which are separated by half an orbit. These maneuvers primarily 

serve for the correction of the relative eccentricity vector, but they are used to adjust the along-track separation 

and to compensate possible differential drag effects, too. They are exclusively performed on TDX with the cold 

gas system. 

B. The cold gas system on TDX 

The cold gas system on TDX has two redundant branches with four 40 mN thrusters each. Two are mounted 

on the +x (body frame) side and two on the -x side. This corresponds to the flight-direction (+x) and anti-flight  

 

                                                           
*Company changed its name to Airbus Defence & Space 

 
Figure 1. TSX and TDX flying in close formation. TDX (green) 

describes a helix around the orbit of TSX (red). The radial 

separation is largest over the poles and becomes zero at the 

equator. Here the separation is maximal in normal direction. The 

distance between the satellites is typically between 150 and 500 

meters. [Source: www.dlr.de] 
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direction (-x) when the satellite has its nominal attitude for routine operations. The cold gas system consists of a 

high pressure and a low pressure section (Fig. 2).  The pressure vessel contained 36.4 kg of gaseous nitrogen 

(GN2) at launch and is connected by a pipework to the feed module. This is a plate that accommodates most of 

the cold gas components, such as the low and high pressure transducers (LPT & HPT), low and high pressure 

filters (LPF & HPF), high pressure latch valves (HPLV) and pressure regulators (PR) together with their 

interconnecting pipework. The valve plate contains the fill and vent valve, the test ports and the relief valve. The 

high pressure at launch was 280 bar. Each branch can be closed and opened by its own HPLV.  

Both branches were successfully tested on ground and during the LEOP of TDX. It was decided to use 

branch B as prime, because it had shown a more stable performance in ground tests. In September 2011 

however, after eleven months of formation flight, a switch to branch A had to be made, because of an unusual 

behavior of the prime branch (cf. [5] for details). Although investigations have shown that branch B is still 

operational, it was decided to continue the formation flight with branch A as operational prime. 

C. Maneuver calibration and reconstruction 

There are two methods to reconstruct the size of the cold gas maneuvers that are executed on-board of TDX. 

One approach is based upon the specified thrust constants in combination with the commanded on-time and 

1 Hz telemetry of the low pressure transducer. This method will be called book-keeping method in the 

following. The generated thrust as a function of the inlet pressure can be described by the linear 

expression          , where p is the low pressure and the coefficients a and b are specific for each 

thruster. It is accumulated over the burn duration    and all active thrusters (summation index i). The velocity 

increment can be derived by 

 

    
∑        ̅     

   
 ( 1 ) 

 

with  ̅ the average low pressure during the burn and     the spacecraft’s mass. The coefficients a and b have 

been determined by the manufacturer and are based on an analytical model and verification measurements. 

Uncertainties in the coefficients are of the order of 5 %. 

 
 

Figure 2. Illustration of the cold gas system. The pressure vessel is shown in yellow. Two thruster pairs are 

mounted in flight- and in anti-flight direction each. Most cold gas components are accommodated on the feed 

module.  [Source: Astrium Satellites] 
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Table 1. Thruster coefficients used in 

the book-keeping method. 

 

Thruster  
Offset 

a [mN] 

Slope 

b [mN/bar] 

A1-plus 1.54 26.666 

A1-minus 1.577 26.666 

A2-plus 1.416 26.666 

A2-minus 1.312 26.666 

B1-plus 2.685 26.666 

B1-minus 1.811 26.666 

B2-plus 1.766 26.666 

B2-minus 1.682 26.666 

 

 

 

Temperature variations are not included in Eq. (1). They are small due to the active thermal control of the 

satellite and the sun-synchronous orbit. The thruster brackets are controlled within a temperature of 20 ±0.5°C. 

Temperature variations in the other CGS components are smaller than 5° C.  

 

The second way of maneuver reconstruction is done by 

means of a precise orbit determination (POD). POD is 

carried out by GSOC on a routine basis using measurements 

of the IGOR GPS receiver*. The process is based on a 

reduced dynamic orbit determination using the “GPS High 

precision Orbit determination Software Tools” (GHOST), 

which was developed at GSOC in cooperation with Delft 

University of Technology. See [6] for a general description 

or [7] for details on the employed physical models and the 

operational implementation.  

The GSOC POD maneuver calibration was first used in the 

GRACE mission. GRACE also has 40 mN cold gas 

thrusters and the calibrated maneuvers range from 

maneuver sizes between 1 and 12 cm/s. The overall 

accuracy of calibrations based upon external orbit 

comparison is of the order of 1 % [8]. 

The size of typical TDX formation-keeping maneuvers is 0.4 to 0.7 cm/s only, which implies a somewhat larger 

uncertainty. In order to estimate the POD calibration performance, small artificial maneuvers were inserted into 

the POD processing of different TDX flight data arcs. While the POD calibrated the true maneuvers with a 

similar performance as compared to the original POD process, the artificial (i.e. 0 cm/s) maneuvers were 

estimated with very small size of 0.006 cm/s on average. This means that on TDX the accuracy will be 

1.5 - 2.5 % for the typical maneuver sizes mentioned above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
* For the purpose of POD and occultation measurements, TerraSAR-X and TanDEM-X carry the Integrated 

Geodetic Occultation and Ranging (IGOR) receiver. IGOR was developed by Broad Reach Engineering and 

provided by the German Research Centre for Geosciences (GFZ). IGOR is a geodetic grade dual-frequency 

receiver with 12 channels allocated for the tracking of GPS satellites for navigation. 
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Table 2. Example of four typical maneuver pairs. The second maneuver follows half an orbit after the first 

one and is made in the opposite direction. The pressure has not yet fully recovered and the second maneuver 

has a lower average pressure. 

 

Thruster 

pair 
Date 

Burn 

Duration [s] 
        

[bar] 
 ̅ [bar] 

   [cm/s] 

by BK 

   [cm/s] 

by POD 

A-minus 2012/05/31 20:42:02 113.194 2.31 1.448 -0.683 -0.681 

A-plus 2012/05/31 21:29:32 105.627 2.03 1.439 0.636 0.640 

A-plus 2012/06/01 19:36:49 104.454 2.29 1.449 0.633 0.633 

A-minus 2012/06/01 20:24:10 113.619 2.00 1.437 -0.680 -0.681 

B-plus 2011/05/24 18:01:34 80.928 2.77 1.376 0.472 0.451 

B-minus 2011/05/24 18:48:58 84.429 2.24 1.331 -0.470 -0.458 

B-plus 2011/05/25 16:09:42 80.000 2.75 1.375 0.466 0.444 

B-minus 2011/05/25 16:57:09 78.576 2.25 1.337 -0.440 -0.427 

 

 

 

II. Results 

A. Pressure profile 

Figure 3 shows the pressure profiles of two maneuvers pairs. The first one was made on 2011/05/25 with 

branch B, the second on 2012/06/01 with branch A. The pressure regulators show slightly different values 

during the burn within the specification of 1.5 ±0.4 bar. The pressure drops from 2.3 to 1.4 bar on branch A and 

from 2.75 bar to 1.3 bar on branch B. It stabilizes within roughly five seconds at the value observed during the 

burn. The pressure increases again after the burn and reaches its previous level after about 12 hours. The second 

maneuver normally follows already after half an orbit i.e. after 47 minutes. It can be seen in Fig. 3 that the initial 

pressure of the second burn is therefore smaller than for the first. The difference in the example is 0.23 bar for 

branch A and 0.5 bar for branch B. This also affects the pressure average of the burn (see table 2). The described 

behavior of PR-A and PR-B was already seen in ground tests.  

 

 

 

 

 
Figure 3. Pressure profiles. The maneuvers with branch B were made on 2011/05/25, those with 

branch A on 2012/06/01. The zero-point of the abscissa marks the start of the first burn of both pairs. The 

second maneuver starts after half an orbit (47 minutes). The initial pressure is lower than at the first burn 

and the difference is larger for branch B. Both pressure regulators work as expected and known from 

ground tests. 
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Figure 5: Number of maneuvers per thruster pair.  
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Figure 4. Pressure variations over mission elapsed time (MET). PR-A (red squares) is dependent upon 

the tank pressure (green line). The second maneuver of each pair has a smaller average pressure than the 

first one. The peaks at MET 278 and 750 indicate maneuvers autonomously planned by the TAFF module. 
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B. Regulated Pressure 

Figure 4 shows the regulated pressure as a function of mission elapsed time (MET). Again the average 

pressure during the burn is used. The initial value for the first burn is larger than for the second burn of each 

maneuver pair (cf. II.A). This is also seen in the average pressure in Fig. 4. The values of the first maneuver are 

separated from the second one by ~0.01 bar for branch A and by ~0.035 bar for branch B.  

PR-A (red diamonds) delivers increasing pressure with decreasing tank pressure (green line). Starting at 

1.4 bar it reaches 1.5 bar around MET 1300. The dependency upon the inlet pressure was already seen in ground 

performance tests. The effect is not observed for PR-B however (blue triangles). A peak is seen at around 

MET = 730. The maneuvers on those days were planned autonomously by TanDEM-X Autonomous Formation 

Flying Experiment (TAFF) and have much smaller burn durations (for details on TAFF please refer to [9]). 

Short burn duration leads to a higher pressure average during the maneuver, because the drop to the floor 

pressure takes a few seconds. Another peak is visible at MET 278 for branch B. It also stems from another 

TAFF closed loop campaign but comprises fewer maneuvers than the second campaign at MET 750.  

 

 

C. Evaluation of performance 

A total of 2360 cold gas maneuvers were 

made between 2010-07-20 and 2014-01-14 and 

are included in the analysis. The distribution over 

the different thruster pairs is shown in Fig. 5. 

98 maneuvers were planned autonomously by the 

TAFF module and have been excluded from the 

analysis.  

Figure 6 shows the deviations of the two 

calibration methods described in section I.C. A 

new parameter Δcal is introduced here, describing 

the deviation of both calibration methods 

as            -          . 
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Figure 6: POD vs book-keeping histogram. Shown is the difference between the Δv derived by POD and 

by the book-keeping method. Not included are TAFF maneuvers. The statistic average 

values -3.40±1.38 % for branch B and 0.61±0.96 % for branch A.  
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The mean      for branch A is 0.6 % with a standard deviation of 1.0 %. Branch B shows a mean      of 3.4 % 

with a σ of 1.4 %. A small mean difference implies that POD and book-keeping match well and the POD results 

are in good agreement with the a priori laboratory measurements. Note that a constant difference between POD 

and book-keeping is taken into account in the planning of maneuvers. The accuracy of the POD method was 

estimated in section I.C to be <2.5 % depending upon maneuver size. The actually measured standard deviations 

confirm this and also show that the random errors in the book-keeping method are comparable. A further 

discussion of this result will be done in chapter II.D. 

Figure 7 shows the dependency of      upon the average pressure during the burn. Two trends are visible: For 

branch A      is >0 and grows with increasing pressure. For branch B, however, it is decreasing with increasing 

pressure. The reason for this behavior must lie within the book-keeping method, because the calibration by POD 

is not depending upon the pressure at all. This suggests that the coefficients as measured on ground and used in 

Eq. (1) for the book-keeping method are different in orbit.  

Figure 8 shows the dependency of      upon the burn duration. The standard deviation is larger for shorter 

maneuvers. This is most obvious in the data from branch A, because it comprises more maneuvers. The standard 

deviation for branch A is 0.93 % for burn durations between 75 and 100 seconds (778 maneuvers), decreases to 

0.68 % for on-times between 100 and 125 seconds (340 maneuvers) and reaches 0.53 % for the longest 

maneuvers between 125 and 200 seconds duration (128 maneuvers). This trend is caused by increasing relative 

errors in both calibration methods for smaller burn durations. The mean absolute error in the POD is 0.006 cm/s 

(see I.C) and does not depend upon maneuver size. The relative error in the book-keeping method is increasing, 

because the fixed telemetry rate of 1 Hz does not provide sufficient data samples for a good average function. It 

is interesting that virtually all burns with duration <75 seconds on branch A show a      >0. This is not yet fully 

understood, but a possible explanation could be that these maneuvers were all made later in the mission when 

the inter satellite distance was particular small. As described in II.A, the regulated pressure is increasing with 

decreasing tank pressure and therefore also with MET (see Fig. 5). The average pressure is related to the      as 

seen in Fig. 7 and thus could be the root cause for this observation. All maneuvers with burn duration 

<75 seconds were made with an average pressure above 1.48 bar. 

The results of the different thruster pairs are shown in Fig. 11-14 in the appendix. TAFF maneuvers are not 

included in the current analysis.  
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Figure 7: Dependency upon low-pressure. Δcal for branch A is increasing with average pressure, whereas 

it is decreasing for branch B. This arises from the book-keeping method because the calibration via POD is 

not dependent upon pressure. 
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Figure 8: Dependency upon burn-duration. The variation in the Δcal is larger for shorter burns because of 

increasing relative errors in both calibration methods. Most maneuvers with burn duration shorter than 75 

seconds of branch A have a positive     . 
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Table 3. Calculated thruster coefficients. Slope and offset of the trend line in Fig. 9 are the sum of the 

new coefficients    and   . 

 

Thruster 
Offset 

a [mN] 

Calculated Offset 

a’ [mN] 

Slope 

b [mN/bar] 

Calculated Slope 

b’ [mN/bar] 

A1-plus 1.54 -9.3 26.666 34.25 

A2-plus 1.416 -9.3 26.666 34.25 

 

 

 

D. Discussion of the achieved accuracy 

There are several uncertainties in both methods which have to be taken into account.  

The attitude of TDX is varied continuously over the orbit to align the azimuth axis of the SAR instrument with 

the ground-track. Therefore, a small cross-coupling in normal direction exists and the main component in orbit 

tangential direction as determined in the POD method is smaller. The attitude offset is not a constant value but 

varies with geographic latitude. The maximum is reached over the equator and values 3.7°. This means that still 

99.8 % (cos 3.7° = 0.998) of the thrust are reflected in the POD in the worst case. 

The accuracy of the POD method was estimated to be of the order of 1.5 to 2.5 % (see section I.C). 

The thruster coefficients used in Eq. (1) are dependent upon the temperature. The thermal stability of the 

thruster brackets pronounced in I.C is not constantly fulfilled. Temperature variations reach up to 5°C due to 

eclipse seasons and limited power of the heaters. A variation of 5 °C in the gas temperature could change the 

specific impulse by about 1 second ( 1.5 %) according to the manufacturer. Furthermore, the pressure 

transducers are specified with an error range up to ± 0.5 % (full scale output).  

The reason for the larger      observed for branch B cannot be traced back to a single root cause. The mean 

deviation of -3.4% is still very good. 

 

III. Future work 

The large data set allows for an independent determination of the thruster coefficients used in Eq. (1) which 

then can be compared with the pre-flight laboratory measurements. The Δv obtained in flight direction by each 

thruster pair is known via the POD. A straight line describes the thrust level as a function of pressure well.  

 

 
     

         

  
 ∑   

    
  ̅

     

 ( 2 ) 

 

 

 A least squares fit was made for all maneuvers on branch A in flight direction. Figure 9 shows the thrust and 

the trend line for all of these maneuvers. The difference between the POD and book-keeping method - the latter 

with the newly determined coefficients (see table 3) - was calculated once more and is shown in Fig. 10. It is 

seen that the in situ calibration leads to almost perfect agreement of the two methods. 

A similar evaluation for the other thruster pairs will be done in the near future. The new coefficients will be 

used for an even more precise maneuver planning.  

An analysis of TAFF maneuvers will be done in the future as well.   
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Figure 9: Thrust as a function of the low pressure. Shown are all maneuvers made with the 

+x thrusters of branch A. Slope and offset of the trend line denote the sum of the coefficients of both 

thrusters. 
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Figure 10: Comparison of the pre-launch thruster coefficients with the calibration in space.  

Shown is the      of POD and book-keeping method. Blue symbols show the results obtained with 

the coefficients from the manufacturer, red symbols with the newly calculated coefficients. Only 

maneuvers of branch A in flight-direction are shown. 
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IV. Conclusion 

 

A calibration of 2360 cold gas maneuvers was made with two different methods – the book-keeping method 

on the one and by precise orbit determination on the other hand. The comparison shows remarkably small 

differences of only 0.6 % on average for branch A and -3.4 % for branch B.  

The influence of the low pressure and the burn duration was analyzed as well. A dependency upon the 

regulated pressure was found for both branches, which will allow for an even more precise prediction of the 

maneuver performance.  

It has been shown that formation-keeping with the TDX cold gas propulsion system can be realized very 

accurately. On average the size of an executed maneuver differs from the planning by 1.5 %. The resulting 

execution error is only 0.0075 cm/s for a typical tangential maneuver of 0.5 cm/s size. The impact on the TDX-

TSX formation is estimated as a change of the relative semi-major axis of 13 cm and relative along-track drift of 

about 1 m per orbit. To put this in perspective, the relative atmospheric drag acting on the formation in 505 km 

altitude during moderate solar activity causes a change in the relative semi-major axis of about 15 cm per day. 

The dominating effect on the formation is the perturbation due to the oblateness of the Earth, which affects the 

cross-track separation. This perturbation is about 100 times larger than maneuver uncertainty or relative drag. 

Together with relative navigation errors a remarkable formation control accuracy of 5 m (RMS) in cross-track 

direction and 30 m (RMS) in along-track direction is achieved [5]. 
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Appendix A

 

 
 

Figure 11: Maneuvers made with the +x thrusters of branch A. 
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Figure 12: Maneuvers made with the -x thrusters of branch A. 
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Figure 13: Maneuvers made with the +x thrusters of branch B. 
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Figure 14: Maneuvers made with the -x thrusters of branch B. 
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Acronym List 
 

 

AOCS Attitude and Orbit Control System 

BK Book-keeping 

CGS Cold Gas System 

DEM Digital Elevation Model 

DLR German Aerospace Center 

GFZ German Research Center for Geosciences 

GHOST GSOC High precision Orbit determination Software Tools 

GRACE Gravity Recovery And Climate Experiment 

GSOC German Space Operations Center 

HPLV High Pressure Latch Valve 

HPT High Pressure Transducer 

IGOR Integrated Geodetic Occultation and Ranging  

ISP Specific Impulse 

LEOP Launch and Early Orbit Phase 

LPT Low Pressure Transducer 

MET Mission Elapsed Time 

POD Precise Orbit Determination 

PR Pressure Regulator 

SAR Synthetic Aperture Radar 

TAFF Tandem Autonomous Formation Flight 

TDX TanDEM-X Satellite 

TSX TerraSAR-X Satellite 
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