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Abstract This contribution integrates uncertainty in human performance models based on
Coloured Petri Nets to predict human performance more realistically. As decisions often have
to be made under uncertainty and existing models of human cognitive performance use if-
then rules, the arising questions are about the combination of uncertainty with these rules.
Uncertainty is present, if the environment is not exactly known or cannot be predicted precisely.
As discrete uncertainty can be well integrated into Petri Nets, but continuous uncertainty is at
least of equal importance, this contribution extends Coloured Petri Nets to represent continuous
uncertainty as well which was not realized before. First, a probability distribution is selected and
subsequently implemented in Coloured Petri Nets. Finally, the integration into an application
example is shown. An experiment demonstrated that a planning model including prediction
uncertainty is able to describe the performance of human operators during interaction scenarios
more realistically.
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1. INTRODUCTION

Recently, a lot of effort was made for the development
of models to describe human cognitive performance. Be-
sides the reproduction of human behavior within Human-
Machine System (HMS) using simulations leading to the
enhancement of human cognition, these models are also
applied for the evaluation of human performance. In these
cases, human operators’ decisions are compared to those
resulting from model-based predictions to detect errors
of human operator and problems with specific tasks (e.g.
Oberheid et al. [2011], Hasselberg and Söffker [2013b]).

As humans often do not apply formal optimization meth-
ods (Gigerenzer and Todd [2001], Klein [2001]), their
behavior can in general not be predicted with a model
making always optimal decisions. Instead of optimization
methods, human often use less extensive strategies. Follow-
ing these strategies, humans are able to reach similar or
even better results as if they would try to use optimization
methods. The success of optimization methods can not be
guaranteed due to limitations. It should be stated that op-
timal models should not be used during training or as basis
for technical assistance. Human operators would be com-
pared to a formal standard they cannot hold (Klein [2001]).
If they want to conform to the model, they have to adapt
their working methods which can result into performance
decreases due to insufficient time or cognitive resources.
Models of human performance should therefore provide
realistic solutions instead of optimal solutions taking into
account human cognitive limitations. As decisions often

have to be made under uncertainty (e.g. uncertain infor-
mation or uncertain predictions) and uncertainty strongly
affects decisions, it should be integrated into models of
human performance.

Recently, some approaches of human performance model-
ing have been proposed modeling the controlled machine
or environment as Coloured Petri Net (CPN) implemented
with CPN Tools (see Hasselberg and Söffker [2013a,b],
Oberheid et al. [2011], Hasselberg et al. [2009]). These ap-
proaches allow finding possible options to complete a task
by analyzing the discrete state space of the CPN model.
Discrete state spaces can be described mathematically by
graphs (e.g. Kraiss [1985]). Each state is represented by a
node of the state space.

All possible changes of states are represented as directed
arcs in the graph. According to the existing approaches,
continuous variables changing with time are discretized
and each time step is treated as an event. Thus, the
dynamics is modeled by automatic state transitions. On
the other hand, actions of human operator are modeled by
state transition activated externally. Consequently, each
node has at least one successor node in a dynamic systems.
For each possible action of human operators in a state, this
state has an additional successor node.

In Hasselberg et al. [2009], the time remaining until a crit-
ical situation occurs is calculated by analyzing the discrete
state space of a CPN. The remaining time is calculated as-
suming both that no counteractions are executed and that
a predefined action sequence is executed. In Oberheid et al.
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[2011] the feasibility of different actions to avoid critical
situations is analyzed. Both approaches have in common
that they use the search functions integrated in CPN
Tools. Further, they both first define the action sequence
and then determine its consequences during the state space
analysis, consider only a fixed sequence and only the
immediate execution of this sequence. Both approaches
concentrate only on one type of critical situations. The
ignore other important though not critical aspects.

In Hasselberg and Söffker [2013a,b] an improved approach
was presented. It also analyzes the state space of a Colored
Petri Net model. However, it applies Access/CPN (see
Westergaard and Kristensen [2009]) to read and modify
the state of the net. This is a requirement to allow devel-
oping specific search functions independent from the func-
tions integrated in CPN Tools. The approach presented in
Hasselberg and Söffker [2013a,b] differs from the previous
approaches as it does not require action sequences to be
predefined but generates them during the search. There-
fore a human cognitive planning model was developed.

This models aims to mimic the human behavior and not
to find optimal solutions. The model follows the macro-
cognitive modeling approach defined by Cacciabue and
Hollnagel [1995]. It does not claim to model the cognitive
function and processes of human operators in detail but
to predict the overall performance of the modeled function
and processes. As estimating the consequences of options
is difficult even if all required information is available (see
Oberheid et al. [2011]), this contribution aims to integrate
the effect of imprecise predictions into the human cognitive
planning model based on CPNs to predict human perfor-
mance more realistically. As the model stores procedural
knowledge using if-then rules, the arising questions are
about the combination of uncertainty with these rules.
This contribution extends CPNs to represent continuous
uncertainty which was not realized before. This continuous
uncertainty is applied to model prediction uncertainty.
Discrete uncertainty can be well integrated into CPN
approaches. Consequently this contribution enables the
modeling of both kinds of uncertainty with CPNs.

In the following, the application example is introduced first
(see section 2). Consequently, the human operator cogni-
tive planning model developed previously is presented in
section 3. Then the extension of this model by the integra-
tion of uncertainty is explained in section 4. Finally, some
results are presented to illustrate the difference between
the precise and imprecise predictions generated with that
model (see section 5).

2. APPLICATION EXAMPLE MICROWORLD MAGIE

The human cognitive planning model extended by uncer-
tainty in this contribution was developed for the applica-
tion example Micro Air Ground Integration Environment
(MAGIE). The simulation environment MAGIE was built
as a mid-fidelity simulator to evaluate prototypes of new
procedures and assistance systems for air traffic control
in an approach sector within a simplified and highly con-
trolled setting (for details see former studies using this
simulation environment e.g. Oberheid et al. [2009, 2010]).

The simulation environment MAGIE consists of a CPN
to simulate the aircraft’s physical behavior and a Graph-
ical User Interface (GUI) which is shown in Fig. 1. Im-
plementing the simulation of MAGIE as a CPN enables
analyzing human behavior by contrasting the CPN’s state
space to queried operators’ perception and to measured
consequences of decisions.

In the arrival concept implemented in MAGIE, aircraft
are divided into two groups depending on the capabil-
ity of their Flight-Management-System (FMS). Aircraft
equipped with a 4D-FMS are able to fly specified tra-
jectories with a high time/location-precision and follow
a direct approach. They negotiate a fixed time with an
implemented Arrival Manager (AMAN) and are allowed
flying their preferred profile as long as they can meet
the time restrictions at the Late-Merging-Point (LMP)
(Oberheid et al. [2008]).

Aircraft, which are not equipped with a 4D-FMS, have to
be guided in the conventional way manually from Standard
Terminal Arrival Routes (STARs) over the path-stretching
area consisting of downwind leg, base leg, and extended
centerline. They start turning from the downwind leg
towards the extended centerline after being instructed. Un-
equipped aircraft are merged into the stream of equipped
aircraft at the LMP (Oberheid et al. [2008]). Both groups
of aircraft fly along the final to the runway. To ensure a safe
separation between the aircraft, it is crucial to stretch the
flight path of the unequipped aircraft in the right amount.

Assistance in shape of ghosting was developed to support
the operator in this task (Oberheid et al. [2010]). If ghost-
ing is activated, a copy (ghost) of each equipped aircraft is
projected onto the runway centerline extension to indicate
positions later occupied by equipped aircraft. Ghosting
reduces the length of predictions human operators have to
make. Without assistance, the positions of equipped and
unequipped aircraft have to be predicted up to the late
merging point. If ghosting is active to indicate positions
for equipped aircraft, the positions of unequipped aircraft
can be predicted relative to the ghosts.

As MAGIE was developed to analyze the benefits of that
new concept of arrival management and visual assistance,
the task of the human operator is derived from that
concept. Consequently, the operator has to control the
unequipped aircraft by issuing clearances. Unequipped
aircraft fly along their STAR into the path-stretching area
if not instructed otherwise. In contrast, equipped aircraft
and aircraft outside the control zone, which ranges from
short before the downwind leg to short after the LMP (gray
zone in Fig. 1), cannot be influenced.

The route structure and the actual position of the aircraft
together with their current and cleared speed and altitude
are also indicated in the GUI (see Fig. 1). The aircraft
equipped with a 4D-FMS are shown in red (light gray in
the figure), whereas the unequipped aircraft are shown in
yellow (dark gray in the figure). Clearances are given by
clicking on an aircraft label, choosing a clearance from
the selection window, and confirming it by another click.
In this manner, the operator can change the speed and
altitude of the aircraft. The possible altitude ranges from
3000 ft to 8000 ft. The available speed ranges from 160 kn
to 250 kn. The operator must further instruct aircraft to
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Figure 1. The GUI of the simulation environment MAGIE displays the route structure consisting of arrival routes,
downwind leg, base leg, extended centerline, LMP, final, and direct routes, which connect the STARs directly with
the LMP. The call signs of aircraft equipped with a 4D-FMS start with “A” and are shown in red, the call sign
of aircraft without a 4D-FMS start with “U” and are shown in yellow. The call sings ending with “G” indicate
ghosts, which are projections of the 4D-FMS equipped aircraft onto the extended centerline.

start the turn maneuver from the downwind leg to the
extended centerline.

The main objective of the human operator is to ensure
a safe separation between all aircraft. This is defined in
MAGIE as 3 nm for each pair of aircraft. The separation is
of utmost importance. The operator further has to ensure
an efficient trajectory. This is implemented as constraints
for different sections of the aircraft’s route (as shown in
Table 1) and by the objective to guide the aircraft quickly
to the airport (of minor importance compared to the
other objective). In summary the operator has the three
objectives (in order of decreasing priority): separation,
constraints, and throughput .

Table 1. Constraints on route sections requir-
ing reductions of speed and altitude

Section
Speed Altitude

Min Max Min Max

Downwind leg 180 kn 250 kn 5000 ft 8000 ft
Base leg 180 kn 250 kn 3000 ft 8000 ft

Ext. centerline 160 kn 230 kn 3000 ft 6000 ft
LMP 160 kn 180 kn 3000 ft 3000 ft
Finala 160 kn 180 kn 0 ft 3000 ft

Runwaya 160 kn 160 kn 0 ft 0 ft
a Not to be controlled by the human operator as outside
controlled sector

3. COLOURED PETRI NET BASED PLANNING
MODEL

The human cognitive planning model developed in Hassel-
berg and Söffker [2013a] (see also Hasselberg and Söffker
[2013b]) and extended by imprecise prediction in this
contribution is based on a CPN model of the controlled
technical system and a task specific set of rules to model

the goal-directed normative behavior of human operators.
These two models are part of the planning process which
generates one goal directed interaction sequence in each
run. This planning process is in turn a part of the planning
model which applies the planning process to generate plans
for each state during a simulation (s. Fig 2).

3.1 Models of Task Environment and Operator Behavior

In the planning model, the CPN model to simulate the
aircraft as part of MAGIE is applied as model of the
task environment. Therefore only slight modifications are
necessary. For example, the functions to connect with the
GUI are removed.

Each rule in the model of human operator behavior consist
of a problem definition, which indicates the necessity to
modify the planned interaction sequence, and a modi-
fication which is applied to the already generated part
of the interaction sequence. The problem definitions are
deducted from the objectives whereas the modifications to
counter the problems or derived from the set of available
actions.

This has been done for the example application MAGIE
(see Hasselberg and Söffker [2013a]). The problems were
derived from the objectives separation, constraints, and
throughput . The modifications were deducted from the
available actions (change altitude or speed or initialize
the turn maneuver). Due to the simplifications in the
example application, each problem can be solved by only
one specific action. The set of rules deducted for MAGIE
is given in Table 2.

3.2 The Cognitive Planning Model

The cognitive planning model is illustrated in Fig. 2. At
first, the simulation protocol is loaded which describes



Table 2. Set of rules to model human operators behavior in MAGIE

Objective Problem
Problem definition Modification

Route Other AC Additional condition Modificator Action Time

Separation

PS1 Fixed Behind
PS2 occurred &
Spd = spdold

Move Spd spdold Later

PS2 Fixed Behind Add
Spd max +
Spd spdold

Earliest

PS3 Fixed Ahead
PS4 occurred &

Cl. spd = spdother
Move Spd spdother Later

PS4 Fixed Ahead Ongoing conflict Add
Spd 160 kn +
Spd spdother

Earliest

PS5 — Ahead On final Add or move Spd spdother Now/earlier
PS6 Fixed Ahead — Add or move Spd spdother Now/earlier
PS7 Variable — — Move Turn Later

PS8 Downwind —
PS9 occurred &
Cl. spd = 250 kn

Move Spd 250 kn Later

PS9 Downwind — Spd < 250 kn Add
Spd 180 kn +

Spd 250 kn
Earliest

Position Additional condition

Constraints

Pdownwind On downwind Turn not in sequence Add Turn Now
PtoSlowBD On base or downwind Cl. spd < 250 kn Add Spd 250 kn Now
PtoSlowc On centerline Cl. spd < 230 kn Add Spd 230 kn Now

PmissLMP North or south of LMP Variable route Move Turn Later
PtoHighD On downwind Cl. alt > 5000 ft Add Alt 5000 ft Now

PtoHighBC On base or centerline Cl. alt > 3000 ft Add Alt 3000 ft Now

PtoHighLMP At LMP
Alt > 3000 ft &
variable route

Move Turn Later

Restrictions
PspeedC On centerline Spd > 230 kn Add or move Spd 230 kn Now/earlier
PspeedF On final Spd > 180 kn Add or move Spd 180 kn Now/earlier

Palt On trombone Cl. alt < 5000 ft Add Alt 5000 ft Now/earlier

spd = speed, alt = altitude, cl. = cleared

the recoded/measured interaction of a human operator
as a sequence of states. This is used as input to the
model. The model selects the first state and focus on
specific variables, called focused state. Focusing on specific
variables allows generating plans for the different parts of
the overall system individually and reducing the required
effort significantly. In the planning process an interaction
sequence is generated to transfer that focuses state into a
goal state.

The plans for separate parts of the system are integrated
step by step into the overall plan by extending the focus
to an additional part of the system. The sequences gener-
ated for former focused states are considered during the
simulation in further repetitions, to allow the detection
of problems which affect the complete state. However, the
previously generated sequences cannot be modified neither
are they considered for the application of rules. Finally.
an interaction sequence results which can transform the
original state into a goal state. This procedure is repeated
for the remaining states in the simulation protocol.

The planning model utilizes the direct access to the CPN
provided by the Access/CPN. This allows an arbitrary
marking to be defined and a focused state to be loaded
and simulated.

3.3 The Planning Process

The planning process generates a goal directed interac-
tion sequence by adding one action after the other. This
process consists of three steps and uses the CPN of the

technical system to predict future states and problems of
the systems as well as the set of rules.

The planning process starts with one state loaded into the
CPN. This is the foucesed state in the first cycle. Then
the internal dynamics of the system are simulated. If an
action sequence is already generated, the actions in that
sequence are executed during the simulation. All states
reached during the simulation are checked for problems
defined in the set of rules. If one of these state meets the
problem condition of one rule, this rule will be activated.

The activation of a rule causes the action sequence to be
modified. This is the third step of the planning process.
The modification either adds a further action or changes
the execution time of an existing action. If an action is
modified, the following actions in the sequence are deleted
because the modified action may change the systems states
and the potential problems after its execution.

After the modification, the simulation is reset to the latest
state which is not effected by the modification. These three
steps are repeated until an action sequence is found which
is suited to transform the initially loaded state into a goal
state.

The modifications of actions are applied step by step until
either the problem is solved or the action will be applied as
early as possible. In the latter case, the problems requiring
a further modification of this action are ignored during
the further procedure as they cannot be solved and are
unavoidable.
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Figure 2. Processes in the cognitive planning model.

An exemplary planning process to generate a goal directed
action sequence is illustrated in Fig. 3. In this example,
the planning process has four iteration cycles. It starts
with the first prediction from state 0 at time t = 0 and
simulates the system until a problem is detected in state
4 (t = 4). The transitions from 0 to 4 are only caused
by internal dynamics. As a problem defined in the set of
rules is detected in state 4, the action sequence is modified.
In this example, the action A1 is added at time t = 2.
Consequently, state 2, which is just before the execution
of action A1, is loaded into the CPN. During the next
run, the simulation starts at state 2 and applies the action
in the calculated interaction sequences at first and then
simulates the internal dynamics. The states 5 – 9 result.
To solve the next detected problem, a second action is
added to the sequence (A2) at t = 4. During the third run
of the simulation (from t = 4 to t = 7, resulting in the
states 10 – 13), the second action A2 is simulated and
a third problem is detected in state 13. This is solved
by a modification of the second action. The time of its
execution is decreased by one second from t = 4 to t = 3.
Consequently, the fourth run will start at t = 3 from state
6. This simulation run leads to state 18, which is a goal
state. Thus the resulting action sequence [A1(t=2), A2(t=5)]
transforms the initial state into a goal state.
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10 11 12 13

14 15 16 17 18

t

0 1 2 3 4 5 6 7

State space

Cycle 1

Cycle 2

Cycle 3

Cycle 4
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A2(t = 3) 
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Figure 3. Exemplary simulation of a planning process. An
interaction sequence is calculated by analyzing the
state space. States and situation included in the final
sequence are labeled in black. States and situations
withdrawn during the calculation are labeled in gray.
Red states indicate the presence of a problem (Has-
selberg and Söffker [2013a]).

3.4 Application of the Planning Model to MAGIE

In the application example MAGIE, a situation contains
all aircraft currently in or near the controlled sector.
As there is no interdependency between the individual
aircraft, it is possible to focus on only some of the available
aircraft and to generate plans for each aircraft individually.
In the first cycle of the planning process, only one aircraft
is focused. The focus is extended in each repetition and
one additional aircraft is considered until all aircraft are
in focus. If one of the problems defined in the set of
rules is detected during simulation, the corresponding
modification is activated. The simulation stops if a goal
is reached and all aircraft have arrived at the runway.

4. INTEGRATION OF UNCERTAINTY

In the following, a concept is proposed to integrate impre-
cise predictions into existing models of human behavior
based on a set of rules and implemented as CPN. This
concept is demonstrated and integrated into an human
operator planning model for an air traffic simulation as an
example.

The concept integrated into the model should fulfill the
following requirements to be transferable to other applica-
tions. First, CPNs are able to model discrete uncertainty
but cannot represent continuous uncertainty. Therefore,
this approach should extend the capability of CPNs to
represent continuous uncertainty as well. Furthermore, a
variable my not be exactly known but an upper or lower
boundary is given. Therefore, it should be possible to
restrict the probability distribution to these boundaries.
Additionally, changing the probability distribution should
be possible without much effort to facilitate the transfer
to other applications. For example, it should be possible
to assign lower probabilities to larger prediction errors and
higher probabilities to smaller prediction error.

To integrate imprecise prediction into the planning model,
an appropriate modeling approach and a probability distri-
bution are selected first. Next, the approach is implemen-
tation with CPNs. Then, this implementation is integrated
into the human operator planning model for the air traffic
control task. Moreover, some modifications in the planning



Figure 4. Triangular distribution, defined by the minimum
value a, the maximum value b and the value with the
highest probability c.

process are necessary. These four steps are explained in the
following.

4.1 Modeling of Probability Distributions

Uncertainty can be formalized by different methods, with
probability the most common used formalism (Henrion
[1999]). Probabilities are described by values between 0
(is not true/will not happen) and 1 (is true/will hap-
pen). Thereby the sum of the probability of all possible
values/consequences has to be 1. The probability of con-
tinuous characteristics can be described by probability dis-
tribution functions. Such a function assigns a probability
to each element within an interval. The functions can be
distinguished depending on the size of the interval which
can be infinite ([−∞,+∞]), bounded ([a,b]) or one-sided
infinite ([0,∞]).

As it should be possible to restrict uncertainty to a
limited interval with high probabilities in the intervals
center and lower probabilities at the interval borders,
the triangular distribution is selected. This distribution
is a simple distribution fulfilling these requirements. A
triangular distribution is defined by the lower limit a, the
upper limit b, and the mode c with a < b and a ≤ c ≤ b.
An example is shown in Fig. 4. As the area of the triangle
is A = 1, the height (and the probability of mode c) is
h = 2

b−a .

The probability density function of a triangular distribu-
tion is given by

f(x) =


0 for x < a

2(x−a)
(b−a)(c−a) for a ≤ x ≤ c

2(b−x)
(b−a)(b−c) for c < x ≤ b

0 for b < x

(1)

and the cumulative density function is given by

F (x) =


0 for x < a

(x−a)2

(b−a)(c−a) for a ≤ x ≤ c

1− (b−x)2

(b−a)(b−c) for c < x ≤ b

1 for b < x

. (2)

It is assumed that the characteristic is known exactly
at the beginning of the prediction at t0, thus a(t0) =
b(t0) = c(t0). To assign a higher probability to smaller
prediction errors and a lower probability to larger predic-
tion errors, the mode c(t) is calculated without prediction
error and the limits of the distribution a(t) and b(t) are
calculated with the maximal possible prediction error e.
Consequently, assuming a constant change rate r > 0,

the triangular distribution after prediction time t can be
described by

c(t) = c(t0) + r · t, (3)

b(t) = c(t0) + r · t · (1 + e), and (4)

a(t) = c(t0) + r · t · (1− e). (5)

Additionally, an upper boundary dmax and a lower bound-
ary dmin of the variable can be given. If this is the case,
the distribution has to be restricted to values within these
boundaries. However, the probability of these boundaries
itself can be larger than 0. For example, a constant change
rate inevitably causes the limits of the distribution to
reach the boundary. From then on, the probability of the
boundary is increasing. Consequently, just defining dmax

or dmin as a and b of a triangular distribution is not
sufficient.

To simplify the representation of the probability distribu-
tion with boundaries, a bundle of rays is used. The outer
rays represent the limits a and b while the middle ray
represents the mode c. Each ray rn with n = 1 . . . N rays
is calculated by

rayn(t) = c0 + r · t · (1 + E(n)). (6)

with the ray specific relative prediction error

E(n) = e · 2n−N − 1

N − 1
. (7)

Using this formula, the differences between the individual
errors magnitudes are equal, while the differences between
the cumulative probabilities are not. The cumulative prob-
ability for each ray n can be calculated using the triangular
distribution with a = 0, c = N

2 , and b = N − 1 by

F (rayn) =


0 for n < 0

2 n2

(N−1)2 for 0 ≤ n ≤ N−1
2

1− 2 (N−n−1)2

(N−1)2 for N−1
2 < n ≤ N − 1

1 for N − 1 < n

.

(8)

If three rays are used, no difference to a triangular distri-
bution appears. However, increasing the amount of rays
makes possible to describe boundaries. Instead of setting
only the outer ray (or a limit a or b of the triangular
distribution) to the value of a boundary, several rays can
be set to the value of the boundary. This makes it possible
to model a probability for the boundary. Furthermore,
exchanging the probability distribution is possible without
much effort. Just another cumulative probability distribu-
tion function F has to be implemented.

As the bundle should be integrated into the discrete
CPN model, its calculation is discretized. This allows to
handle boundaries changing with time in an easy manner.
Furthermore, the calculation of rays is modified so that
prediction errors can not only be relative to the exact
change ∆ but to an arbitrary value R. Consequently, a
ray is calculated by

rayn(t) = rayn(t− 1) + ∆ + R · E(n). (9)

4.2 Implementation of Continuous Uncertainty in Coloured
Petri Nets

To integrate the above described approach to represent
uncertainty by a bundle of rays into CPNs, a new colorset



is defined first. This realizes a bundle of rays as a list
of integers to describe the uncertainty distribution. Each
of the list’s elements represents one ray. To allow a
variable to be represented with uncertainty when needed
but to be able to represent it precisely, a colorset for
a hybrid variable is defined which can either include a
precise variable or a bundle of rays. Furthermore, to
transform a variable without uncertainty into a variable
with uncertainty and the other way around, two functions
are defined.

If the variable with uncertainty changes, every ray has
to be updated. This is realized by six functions. These
functions have in common that they expect the last value
of the variable, the exact change ∆, which specifies how
much the mode c changes, and the maximal prediction
error e as input. The first function implements equation 9
with R = ∆. The second function can be used if the
uncertainty distribution has boundaries. It additionally
expects a boundary as input and verifies that no ray
exceeds the given boundary. Finally, the third function
can be used, if the uncertainty added to each ray should
not be relative to the exact change ∆. This function
expects additionally R as input. These three functions are
implemented twice, once expecting an uncertain variable
and once expecting a hybrid variable. If the hybrid variable
contains an precise variable, just the specified ∆ is added
by each function.

Furthermore, some functions were implemented to access
the probability distribution modeled by the rays. This
requires first a function to calculate the cumulative prob-
ability for every ray n out of N rays by implementing
equation 8. A further function is defined to calculate the
cumulative probability for any given value by calculating
the cumulative probability for both nearest rays and re-
turning the interpolation. Finally, a function is defined for
the opposite query, expecting a bundle and a cumulative
probability and returning the corresponding value. This
function first searches for those both rays, which cumu-
lative probabilities surround the given probability, and
returns the interpolation between those rays.

4.3 Integration into the Planning Model

The implemented data types and functions are integrated
into the air traffic control simulation as part of the human
operator planning model described in the section 3.

A representation of an aircraft in the CPN contains
variables to describe the current position (in X- and
Y-coordinates), its altitude, its speed, and its current
position on route (given as distance to the last waypoint).
As these variables changes with time, they have to be
predicted by the cognitive planning model. Therefore, the
type of these variables is changed to the new hybrid type.

To be able to transform aircraft data stored in the pre-
cise data type without uncertainty into the newly defined
hybrid data type and vice versa, two functions are de-
fined, which integrate both functions to transform hybrid
variables. Because access to aircraft characteristics is en-
capsulated in get- and set-functions, only these functions
have to be adapted to the new hybrid data type. In
order to reduce further changes, the get- and set-functions

Table 3. Variables represented with uncer-
tainty depending on the aircraft’s equipage and

the activated assistance

Ghosting activated
Variable Equipped Unequipped

X Exact UncertainB

Y Exact Exact
Altitude Exact UncertainA

Speed Exact UncertainA

A Proportional to change of parameter
B Proportional to change relative to ghost

return the exact value by default. If uncertainty has to be
handled explicitly, the uncertain characteristics of aircraft
are accessed directly.

When the ghosting assistance is activated, human oper-
ators predict if the unequipped aircraft fit between the
ghosts on the centerline and the change of the distance
between ghost and equipped aircraft up to the LMP. As
ghost and unequipped aircraft fly in the same direction
with a similar speed on the centerline, it is assumed that
the position of the unequipped aircraft is predicted ac-
cording to the position of the ghost. Consequently, not
the change of absolute position of the aircraft generates
uncertainty, but the change of its distance to the ghosts.
Therefore, the uncertainty of the X-Position of the un-
equipped aircraft is implemented relative to the difference
between its speed and the the ghost’s speed. For example,
when the unequipped aircraft is on the centerline and flies
with the same speed as the ghosts, the uncertainty does
not change. However, if an aircraft just started a turn and
is flying in the opposite direction compared to the ghosts,
the uncertainty increases proportional to the sum of both
speeds in X-direction.

As the distance to the ghosts is used as indicator for
conflicts if the ghosting functions is active, the position of
the equipped aircraft is not of interested and consequently
not predicted. The variables predicted with uncertainty,
if ghosting assistance is activated, are summerized in
Table 3.

4.4 Adaption of the Planning Model

The cognitive model of human operators planning must
be modified slightly to generate plans under uncertainty.
First, the CPN model has to be extended to model also
uncertainty. Further some definitions used by the rules
have to be modified to scope with imprecise predictions. If
continuous values, which are associated with uncertainty
in the model, have to be kept between certain limits,
neither the maximal nor the minimal prediction error
should exceed the limit. Thus, the minimal predicted
values has to be compared to lower limits and the maximal
predicted values has to be compared to upper limits. If this
is strongly obeyed, the limits will never be violated.

Additionally, the rules regarding separation are changed
in the following way. If the minimum of all calculated
distances is below the minimum separation distance, a
conflict is detected and the corresponding rule is activated.
Furthermore, the rules defined to comply with the constric-
tions are modified to check both the minimal and maxi-



mal predicted value. After these changes are made, the
planning model can generate human-operator-like plans
including prediction uncertainty.

If the model generates a plan without uncertainty, the exe-
cution of a planned interaction sequences can be simulated
exactly as planned. However, if uncertainty is included, a
difference between the plan and the later execution will
result. When generating a plan, the decisions about actions
and their timing are based on predictions which have the
time of the plan’s generation as reference point. While the
plan is executed it can be adapted continuously. Conse-
quently, decisions can be based on predictions that have
the time of the execution of an action as reference point.
Thus the prediction horizon is shorter, the prediction is
more precise and the actions fit more to the real conditions.

If now uncertainty is considered by the model of human
operator’s planning, the generated sequences are planned
interaction sequences but not predictions of human be-
havior. To generate interaction sequences as predictions
for actual behavior, it is important to allow updating a
plan when better (more exact) prognoses are possible.

When a plan generated under uncertainty is executed, the
accuracy of predictions is steadily increasing allowing up-
dates of the plan. However, often replanning is elaborately
and only slow increases of accuracy are expected. One
possibility is to generate a more precise plan only right
before an action is executed to check if this action is still
necessary or if it should be delayed or canceled. The action
is executed only if it is confirmed by the updated plan.
Independent from the execution of this action, the plan is
updated again right before the next action is planned to
be executed (according to the updated plan). This action
has to be confirmed or refused by a further update of the
plan.

The cognitive planning model is modified in three ways
to implement that concept to get predictions of behavior.
These modifications are a further rule, a variable indicat-
ing the execution horizon te of an interaction sequence and
a function to reset uncertainty. The additional rule speci-
fies that when an interaction sequences reaches a goal but
contains an action behind the execution horizon (problem
PPLAN), the algorithm jumps back to the execution of the
first planned action (first action after te). If the action is
planned directly at te, the action is necessary according
to the best available prediction as its time of execution.
Therefore, its execution is simulated by jumping to the
state after its execution and setting te correspondingly to
the time of this successor state. Otherwise, the algorithm
jumps to the state before the action is executed. A further
planning cycle is necessary to confirm the planned action.
In both cases, the uncertainty of the state te is removed.
In other words, the uncertainty range for each variable is
set to zero. By activating this rule, the execution of a part
of the plan is simulated. As the jump back to an action
removes all later actions from the iteration sequences, a
new plan has to be generated next. This plan uses predic-
tions with the execution horizon te as reference point. The
resulting interaction sequence thus contains an expected
behavior (before te) and a plan (after te). This procedure is
repeated until an interaction sequence is generated which

contains no action after the execution horizon and hence
contains not a plan but an expected behavior.

5. RESULTS OF INTEGRATING PREDICTION
UNCERTAINTY INTO THE PLANNING MODEL

The extended model is used to generate interaction se-
quences with imprecise predictions to describe the behav-
ior of human operators more realistically. The reported
results concentrate on the differences between an exact
and an uncertain prediction. The considered situation and
the predicted consequences are shown in Fig. 5. The black
lines in this figure indicate the route structure. The LMP
is located at X = 100000, Y = 100000. In the example
situation at t = 70 the unequipped aircraft U92 is located
at X = 113399, Y = 94221 and was just instructed to start
the turn maneuver. It has a speed of 230 kn. U92 should
arrive behind the equipped aircraft A62 at the LMP and
keep a minimum separation distance of 3 nm (= 5558 m).
The uncertain prediction is calculated with the maximal
prediction error set to e = 18% and the amount of rays set
to N = 5 rays.

In the example scenario in which the depicted situation oc-
curred, an throughput performance of 0.9816 was reached
by the operator. As the planning model with prediction un-
certainty should be able to explain the difference between
the maximal and the reached performance, the maximal
prediction error has to be selected so that the interaction
sequence generated for the initial state of an interaction
reaches a similar throughput . If exact predictions are made,
an optimal throughput of 1 is reached. The higher the
maximal prediction error e is defined, the lower the reached
throughput . The maximal prediction error is iteratively
increased by 0.02 until an interaction sequence with a
throughput similar to that reached by the human oper-
ator is found. As an interaction sequence generated with
e = 18% reaches a throughput of 0.9880 and an interaction
sequence generated with e = 20% reaches a throughput of
0.9648, the maximal prediction error is set to e = 18%.

In the shown example situation, an exact prediction is
generated first. As U92 can increase its speed, the problem
PtoSlowBD is detected and a speed increase to 250 kn is
added as first element to the interaction sequence. After
the immediate execution of this action and an acceleration
to 250 kn a conflict is predicted (and would occur) at
t = 166 s. This is detected as the problem PS6. As
a consequence, a speed reduction to the speed of A62
(180 kn) is added to the sequence. When this action is
executed at t = 113 s, a conflict is still predicted but
A62 has reduced its speed in the meantime. Thus, another
speed reduction is added. For the same reason, a third
speed reduction is added later. The list of generated
clearances is given in Table 4.

For the same situation, a prediction with uncertainty
is generated. Here, also a speed increase to 250 kn is
added immediately. According to that prediction a conflict
is predicted at t = 153 s (s. Fig 5). Similarly to the
exact prediction, a speed reduction to 180 kn is added.
However, even if this speed reduction is executed as early
as possible and also overwrites the immediate acceleration,
the conflict is still predicted at t = 181 s. This is a
result of the imprecise prediction. As the conflict cannot



be solved (according to the prediction) it is defined as
unavoidable and no longer detected as problem during
the simulation. As no other problems occurs, the already
generated interaction sequence is suitable. However, the
planned action is just behind the current execution horizon
te. Therefore, the rule PPLAN is detected and the action is
simulated. After the execution, the uncertainty is reset.
Then another planning process starts which considers
prediction uncertainty. However, as the the reference point
changed only slightly, the result is the same: The conflict
cannot be avoided according to the uncertain prediction.
As the sequence guides the aircraft to the runway, no other
problem is detected, and no action is executed after te,
this sequence is the output of the planning process. It
reflects the decrease of throughput caused be prediction
uncertainty.

Table 4. Expected speed clearances with pre-
cise and imprecise predictions.

Precise Imprecise

t Speed t Speed

70 250 kn 70 180 kn
113 180 kn
207 170 kn
263 160 kn

6. CONCLUSION

The aim of this contribution is to extend human operator
planning models based on CPNs to allow more realistic
predictions of human behaviors. It is assumed, that this
can be achieved by integrating imprecise predictions into
the model, as the perceived prediction uncertainty has a
dominant impact on human operator’s decision making
Oberheid et al. [2011]. Beyond that, the developed im-
plementation of uncertainty should be applicable to other
models. Therefore, a concept for the representation of
prediction uncertainty was developed, modeled, realized
in CPN Tools, and applied to an example application.

The integration of prediction uncertainty allows models of
human behavior based on CPNs to make more realistic
predictions. As the realized data types allow both, exact
and uncertain representations, and are accessed by encap-
sulated functions, integration into the existing planning
processes is possible without much additional effort. The
selected approach of modeling uncertainty as a bundle of
rays has the advantage that switching to other interval
distributions is possible and requires implementing only
the corresponding cumulative probability distribution.

The implementation of uncertainty in the example appli-
cation indeed resulted into predictions which can predict
the performance more realistically. However, the results
have to be analyzed in future work. The main question will
be the analysis how exact the interaction sequences based
on uncertain predictions can predict the human behavior.
Therefore, the parameters, in particular the maximum
prediction error, have to be defined. Consequently, it is
necessary to compare the generated interaction sequences
to the measured behavior of human operators.
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Figure 5. Uncertain predictions of the position of U92 and A62 with ghosting assistance and t = 70 s as reference. The
prediction of U92 calculated with an immediate speed increase to 250 kn is indicated with ”‘x”’. The prediction
calculated with an immediate speed decrease to 180 kn is indicated with ”‘+”’. According to the imprecise prediction
with an immediate acceleration, the separation between U92 and A62 is first violated at t = 153 s. If the prediction
is exact, the separation would be violated at t = 166 s. According to the imprecise prediction with an immediate
declaration, the separation is first violated at t = 181 s.


