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Characterization of a Benchmark Database
for Myoelectric Movement Classification
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Claudio Castellini, Henning Müller, and Barbara Caputo

Abstract—In this paper, we characterize the NINAPRO database
and its use as a benchmark for hand prosthesis evaluation. The
database is a publicly available resource that aims to support
research on advanced myoelectric hand prostheses. The database
is obtained by jointly recording surface electromyography signals
from the forearm and kinematics of the hand and wrist while
subjects perform a predefined set of actions and postures. Besides
describing the acquisition protocol, overall features of the datasets
and the processing procedures in detail, we present benchmark
classification results using a variety of feature representations
and classifiers. Our comparison shows that simple feature rep-
resentations such as mean absolute value and waveform length
can achieve similar performance to the computationally more
demanding marginal discrete wavelet transform. With respect
to classification methods, the nonlinear support vector machine
was found to be the only method consistently achieving high
performance regardless of the type of feature representation.
Furthermore, statistical analysis of these results shows that classi-
fication accuracy is negatively correlated with the subject’s Body
Mass Index. The analysis and the results described in this paper
aim to be a strong baseline for the NINAPRO database. Thanks
to the NINAPRO database (and the characterization described
in this paper), the scientific community has the opportunity to
converge to a common position on hand movement recognition by
surface electromyography, a field capable to strongly affect hand
prosthesis capabilities.

Index Terms—Electromyography, machine learning, pros-
thetics, publicly available databases.

I. INTRODUCTION

S INCE the 1960s, pattern recognition algorithms have been
applied on surface electromyography (sEMG) signals

to control simple prosthetic grippers with a single degree of
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freedom (DOF) [1], [2]. The principal goal of this research was
to predict the intent of an amputee and to use this to control a
dexterous, self-powered hand prosthesis. An amputee should
be able to dexterously control the prosthesis just by desiring to
do so in a natural way. Still, 45 years later this goal has not yet
been reached, since one quarter to one third of the amputees
reject self-powered prostheses. Low reliability, trouble with
maintenance, and low dexterity are some of the problems that
lead to this situation [3], [4].
A major obstacle towards the goal of natural prosthesis use

is the lack of a standard benchmark for sEMG-based control of
hand prostheses. To the best of our knowledge, all studies in this
field have been performed using proprietary data and are lim-
ited to groups that possess the equipment, expertise, and man-
power to acquire the necessary data. As a consequence, the spe-
cific application domain is not widely accessible for researchers
of other fields, such as machine learning or signal processing.
Moreover, the scale of acquisition is often limited to the min-
imum required to verify a specific scientific hypothesis — this
usually means a dozen intact subjects or a few amputees. Last
but not least, there is no standard for experimental setups and
protocols (e.g., the set of movements, electrode placement), nor
are there standardized databases available for research. This is in
contrast to several other research communities, where wide ac-
ceptance of common, publicly available benchmark databases
has considerably pushed progress and helped to identify open
challenges. This has been the case for the fields of computer vi-
sion (e.g., PASCAL [5], CALTECH 256 [6], SUN [7]), robotics
(e.g., Radish [8], RGB-D SLAM [9]), medical information re-
trieval (e.g., ImageCLEF [10]), as well asmany others. This lack
of standard benchmarks decreases the reliability of research re-
sults and reduces the possibility that new techniques can be ap-
plied successfully in commercial applications. The diversity in
experimental setups and protocols makes it infeasible to com-
pare results among different studies, making it hard to evaluate
whether certain approaches are actually to be preferred over
others. We believe that the time is ripe for the biorobotics com-
munity to have such a benchmark.
First, we present the first Non-Invasive Adaptive Prosthetics

(NINAPRO) database in detail, which was succinctly introduced
by [11]. The database is presented jointly with the acquisition
setup and protocol, data processing routines, and characteris-
tics of the subjects involved in the data acquisition. The ac-
tual data consists of sEMG and kinematic signals of the wrist
and hand gathered from 27 intact subjects performing 52 hand
movements. These movements were selected from the relevant
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Fig. 1. Placement of the electrodes. A: sEMG electrodes placed on finger ex-
tensor muscles (A1: equally spaced electrodes; A2: spare electrode). B: sEMG
electrodes placed on finger flexor muscles (B1: equally spaced electrodes; B2:
spare electrode). C: All the sensors positioned on the arm (C1: equally spaced
electrodes; C2: Spare electrode; C3: Inclinometer; C4: CyberGlove II).

literature and standard rehabilitation practice guidelines. Col-
lection of the database is a continuous and ongoing effort, and
additional acquisitions from intact as well as amputated subjects
will be added also in the future.
Second, we characterize the NINAPRO database, with overall

characteristics of the datasets and with an extensive benchmark
comparison using a large variety of popular feature extraction
and classification methods. This benchmark evaluation is in-
tended as a strong reference that facilitates and gives direction
to future experiments on the database. Nonetheless, the eval-
uation is also useful in its own right, since it allows to assess
whether popular approaches are able to scale to 52 movement
classes. For instance, the computationally simple linear discrim-
inant analysis has shown excellent performance in a number of
studies [12]–[14]. Whether this method performs equally well
in a large-scale setting is an open question; more advanced non-
linear classifiers may be required to cope with the increased
problem complexity. Finally, we apply statistical analysis to de-
termine which of a subject’s properties affect classification ac-
curacy and how to potentially take these additional parameters
into account. Insight on these points are relevant from a clinical
point of view, as they provide an a priori estimate on the success
or even acceptance of a myoelectric prosthesis for a specific pa-
tient.
The analysis and the results described in this paper are an

example of what can be done with the NINAPRO database and
they are aimed to lay the foundations for comparative analyses
by research groups interested in the topic.
A detailed description of the acquisition setup and protocol

follows in Section II. Data processing routines will subsequently
be presented in Section III, which includes a principled rela-
beling strategy to correct erroneous labels. Section IV presents
a description of overall features of the dataset, a benchmark
evaluation on the database and a multiple regression analysis
to investigate which subject properties affect classification ac-
curacy. Conclusions and future work are subsequently covered
in Section V.

II. BUILDING THE NINAPRO DATABASE

A. Acquisition Setup

TheNINAPRO database described in this paper combines kine-
matic hand and wrist data acquired using a CyberGlove and an
inclinometer with muscular activity data acquired using Otto
Bock sEMG electrodes. All devices are certified according to
medical and electric safety standards in the United States and
the European Union.
1) Surface Electromyography: The muscular activity is

gathered using 10 active double-differential OttoBock My-
oBock 13E200 sEMG electrodes 1, which provide an amplified,
bandpass-filtered, and root mean square (rms) rectified version
of the raw sEMG signal. The electrodes’ amplification is set to
5. Particular care was taken in deciding the placement of the
electrodes on the forearm. Choosing the right positions of the
electrodes is usually regarded as a crucial step and several at-
tempts have been made at targeting forearm muscles on healthy
subjects [2], [15] as well as on amputees [16]. However, early
research on pattern recognition for sEMG [17], [18] (recently
confirmed in [19]) proved that targeted placement of electrodes
is not required when doing posture classification, since pattern
recognition techniques can compensate for suboptimal place-
ment and may even take advantage of muscle cross-talk.
Eight electrodes are uniformly placed around the forearm

using an elastic band, at a constant distance from the
radio-humeral joint just below the elbow. Two additional
electrodes are placed on the large flexor and extensor muscles
of the forearm (see Fig. 1). This positioning of the electrodes
also gives the opportunity to improve classification results by
applying linear and nonlinear spatial registration algorithms, as
described in Atzori et al. [20].
2) Kinematics: The kinematic configuration of the hand is

measured using a 22-sensor CyberGlove II dataglove2, shown
in the right panel of Fig. 1. The CyberGlove is a light fabric,
elastic glove, onto which 22 strain gauges are sewn. The sewing
sheaths are chosen carefully by the manufacturer, so that the
gauges exhibit a resistance that is proportionally related to the
angles between pairs of hand joints of interest. The device re-
turns 22 8-bit values proportional to these angles for an average
resolution of less than 1 depending on the size of the subject’s
hand, carefully wearing the glove and the angular range of the
considered joint. We record raw sensor values rather than es-
timated joint angles, the reason being that reliable calibration
of the glove is prohibitively time-consuming. Most machine
learning techniques are invariant to linear scaling of the data
and calibration is in these cases unnecessary; moreover this de-
cision gives more data processing freedom to the final users of
the data. If desired, exact joint angles can be obtained by cali-
brating the glove a posteriori for a given subject.
In addition to the CyberGlove, a standard commercially avail-

able two-axis Kübler IS40 inclinometer3 is fixed onto the sub-
ject’s wrist to measure the wrist orientation. The inclinometer
has a range of 120 and a resolution of less than 0.15 .

1Otto Bock HealthCare GmbH, http://www.ottobock.com/
2CyberGlove Systems LLC, http://www.cyberglovesystems.com/
3Fritz Kübler GmbH, http://www.kuebler.com/
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3) Signal Acquisition: Data from the electrodes and the in-
clinometer are acquired at a constant interval of 100 Hz using
a standard National Instruments DAQ card (NI-DAQ PCMCIA
6024E, 12-bit resolution). Kinematic data from the CyberGlove
are recorded over a Bluetooth-tunneled serial port at slightly less
than 25 Hz. Each data sample provided per device is associ-
ated with an accurate timestamp (using Windows Performance
Counters) and directly written to mass storage.

B. Data Acquisition

Preceding the experiment, each subject is requested to give
informed consent and to fill in a brief questionnaire concerning
clinical data. These data include age, gender, height, weight, fit-
ness, laterality, and self-reported health status. The first version
of the database contains data of 27 intact subjects (20M/7F, 25/2
right-/left-handed, age ).
In the case of amputees, we also note the date, type and

reason of the amputation, information about the use of pros-
theses (cosmetic, body-powered, self-powered, etc.) along with
the (dis)advantages and consequences of their usage, type and
degree of phantom limb sensation and pain and DASH (dis-
ability of the arm, shoulder, and hand) score [21]. Moreover,
we take pictures of the arm with and without the acquisition
setup to permit a posteriori quality control.
After finalizing the forms, the subject is asked to sit com-

fortably on an adjustable chair in front of a table with a large
monitor. Intact subjects wear the sEMG electrodes, dataglove,
and inclinometer on the right arm. Amputees wear the sEMG
electrodes on the amputated arm while the dataglove and the
inclinometer are worn on the intact limb. While intact subjects
execute the experiments with a monolateral imitation method
(using the right hand), amputated subjects use a bilateral imi-
tation procedure. This difference is determined by the fact that
amputees can in principle not provide ground truth, because the
absence of the limb makes it impossible to gather kinematic
and/or force data from it. Therefore, there is an ongoing debate
in the community about how to get a sensible ground truth in
this case. In general, monolateral visual imitation and bilateral
imitation have been proposed [19], [22]. We decided to choose
monolateral imitation for the intact subjects (which permits to
get a natural repetition of the movements) and bilateral imitation
for amputated subjects (which permits to obtain a ground truth)
in order to maximize the ground truth obtained by both groups.
The imitation stimulus is visual. A movie of the movement that
the subject repeats is displayed on the screen of a laptop and the
subject is asked to repeat it as naturally as possible.
First, the subjects have to perform a training sequence that

involves three repetitions of a selection of movements in order
to get accustomed to the protocol. Then, the real data acquisition
starts and the subjects have to repeat the 52movements 10 times.
The number of repetitions was chosen in order to be consistent
with the state of the art [23], [24], [19] and to avoid fatigue in the
subjects. Eachmovement repetition lasts 5 s and is followed by 3
s of rest. The movements were selected from the hand taxonomy
and robotics literature (see, e.g., [25]–[28]). The experiment is
divided into three exercises (Table I and Fig. 2).
1) 12 basic movements of the fingers (flexions and exten-
sions).

TABLE I
SYNTHETIC DESCRIPTIONS OF THE 52 MOVEMENTS INCLUDED IN THE
ACQUISITION PROTOCOL, ALONG WITH A REFERENCE, IF AVAILABLE

2) Eight isometric and isotonic hand configurations and
nine basic movements of the wrist (adduction/abduction,
flexion/extension, and pronation/supination).

3) 23 grasping and functional movements—in this case, ev-
eryday objects are presented to the subject for grasping, in
order to mimic a daily-life action.

The exercises last respectively 16, 23, and 31 min. Subjects
are allowed short breaks between exercises to avoid muscle
fatigue, such that the total duration of the experiment is around
100 min (including preparatory steps and training). The se-
quence of movements is not randomized in order to induce
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Fig. 2. The 52 movements included in the acquisition protocol. (a) Basic movements of the fingers (flexions and extensions). (b) Isometric, isotonic hand config-
urations (“hand postures”). (c) Basic movements of the wrist. (d) Grasping and functional movements.

unconscious movement repetitions into the subjects. The rep-
etitions of each movement were performed in a block, and
the order of the blocks was the same across participants. This
setting permitted to reduce the number of movement repetition
errors in comparison to randomized protocols. The experiment
received the approval of Ethics Commission of the Canton of
Valais (Switzerland), where all acquisitions were performed.
Finally, the data of each subject are stored anonymously in

a database and made available on a website4. For each subject
and each exercise, three data files are stored in plain ASCII
format, containing the signals from 1) the electrodes and the
inclinometer, 2) the cyberglove, and 3) the video stimulus. The
data are arranged in a line, consisting of a timestamp plus the
sensor values.

III. DATA PROCESSING

The acquisition software described in the previous section
stores individual modalities to separate files. Most practical
applications, however, require further processing of the data.
These processing steps include synchronization of the kine-
matic and sEMG streams with the stimulus, removal of noise
by filtering the data, and finally correcting mislabeled samples
using a relabeling strategy. The described processing steps are
the result of initial experiments and intended specifically to
support the analyses in Section IV.

A. Synchronization and Filtering

Synchronization of the input modalities is relatively straight-
forward with the NINAPRO database, since an accurate time-
stamp is assigned to each data point with respect to a single ref-

4The database can be accessed at http://ninapro.hevs.ch. Supporting files for
the acquisition setup and protocol (e.g., software and stimulus videos) can be
obtained on an individual basis by contacting the authors.

erence time based on the CPU’s (invariant) timestamp counter.
The difference in sampling rates is eliminated by linearly inter-
polating all the data streams to the highest recording frequency
(i.e., 100 Hz for the sEMG stream). The following processing
step is to low-pass filter the sEMG signals at a cutoff frequency
of 5 Hz using a zero-phase second-order Butterworth filter. This
low cutoff frequency is justified in our setting, since the rms
filtering onboard the Otto Bock electrodes drastically changes
the spectral properties of the signal. In contrast, for raw sEMG
recordings the relevant spectral domain is typically reported as
approximately between 15 to 500 Hz.

B. Relabeling

Human reaction times and attention spans inevitably cause
some misalignment between the stimulus video and the actual
movement as performed by the subject. An example of this mis-
alignment is shown in the left panel of Fig. 3, which overlays the
movement label imposed by the video (marked as “movement”)
on top of the sEMG activity. In this case, the subject finishes the
movement well before the video ends. A considerable number of
samples near the end are erroneously marked as posture, while
the subject in fact already returned to the rest position. To reduce
this label “noise,” we devise an offline relabeling algorithm that
constrains movement labels to those samples in which there is
increased sEMG activity.
Similar to the onset detection approach by Staude [31], we

first remove irrelevant autoregressive components by whitening
the rectified signals using a multivariate model [32]. In
our case, an order of was found to perform adequately.
Detection of sEMG activity is restricted to the original video
window extended with an additional 100 samples at the end to
allow subjects to finish a movement with up to 1 s of delay.
The resulting feasible movement window (see Fig. 3, center)



ATZORI et al.: CHARACTERIZATION OF A BENCHMARK DATABASE FOR MYOELECTRIC MOVEMENT CLASSIFICATION 77

Fig. 3. Illustration of the relabeling process consisting of whitening the rectified sEMG signal and optimization of the GLR within the feasible window. Shaded
area indicates time windows labeled as a nonrest movement. For clarity the figure displays only three out of 10 electrodes.

of length is then divided into rest–movement–rest segments
marked by change points and .
The optimal change points are found by maximizing the gen-

eralized likelihood ratio (GLR) between the rest model and
movement model . The corresponding objective function can
be written as

(1)

Simple exhaustive search is adequate for finding optimal and
, while and are optimized by a maximum likelihood es-

timate of a multivariate Gaussian distribution over the corre-
sponding window segments.
To improve segmentation on noisy data, we also impose a

minimum duration for both the rest (i.e., ) and move-
ment window segments (i.e., ).Moreover, the rea-
sonable assumption that sEMG activity is higher during move-
ments than during rest is explicitly enforced by requiring the
sample variance to be higher during movements (i.e.,
). This simple condition is effective at preventing erroneous

outcomes in cases where a feasible window is lacking a clear ini-
tial rest. Finally, we impose a prior distribution on any sample
belonging either to rest or movement (i.e., random variables
and ). This prior is chosen uniformly as for

, and due to mutual exclusivity
. The effect of this prior is that the algorithm will iden-

tify slightly larger movement windows, which helps to ensure
that the entire sEMG activity is captured in the movement seg-
ment.

IV. ANALYSIS

In order to characterize the database, we present an anal-
ysis of the variability of the signal and a classification bench-
mark obtained using various feature extraction and classifica-
tion methods as a strong baseline. These results are not only
intended as a reference for future work, but also to investigate
whether the methods can actually scale to this large number of
movement classes. Smith et al. [33] have found that both accu-
rate identification of movements as well as low prediction delay
are important factors that determine online controllability. To
increase controllability and acceptance, it is therefore necessary
to establish approaches that maximize movement classification

accuracy. Finally, the comparatively large number of subjects in
the database allow us to subsequently determine the influence of
the subjects’ properties on classification accuracy.

A. Signal Variability

Many factors can affect the sEMG signal, including anatom-
ical characteristics, fatigue and detection-system parameters
[34], [35]. These factors contribute to create the recorded signal
itself, and therefore they can influence classification accuracy.
To ensure the quality of the NINAPRO data, we evaluate the
variability of the signal across subjects, movements and move-
ment repetitions. We consider both the mean amplitude of the
sEMG signal as well as the mean amplitude of the data glove
sensors (as an estimate of the hand motion range) (Figs. 4–6).
No evident conclusions come from Fig. 4. The correlation
between the average movement motion range and the sEMG
amplitude (Fig. 5) is 0.73, in accordance with the relationship
between the two variables. Finally, we observe a decreasing
trend through the 10 repetitions of each movement in both
the sEMG amplitude and in the hand motion range (Fig. 6),
which is obfuscated by the high standard deviations of the
data. Analyzing each subject separately by linear regression, a
significant dependence of the signal amplitude by
the repetition is obtained in 63% of cases considering the range
of motion, and in 22% of cases considering the amplitude of
the sEMG.

B. Classification Benchmark

Successful classification of movements from sEMG signals
depends to a large extent on the type of feature representa-
tions and classifiers. To ensure that we establish a strong perfor-
mance, we consider a variety of popular feature extraction and
classification methods. Besides producing a direct quantitative
comparison of these methods this benchmark also investigates
whether current state-of-the-art methods can indeed reach satis-
factory performance levels in this challenging setting.
1) Methods and Experimental Setup: Feature representations

used on sEMG signals can roughly be divided in three cate-
gories, namely representations in the time domain, in the fre-
quency domain, and finally representations that relate to both
time and frequency domains [36], [4]. Among these, represen-
tations in the time domain have traditionally been popular for
sEMG signals, due to ease of computation and since they re-
duce a processing window to a scalar value. As representatives
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Fig. 4. Variability across subjects of SEMG (a) and data glove (b) average am-
plitude.

of these simple time domain features we consider the mean ab-
solute value (MAV)5, the variance (VAR), and the waveform
length (WL). A potential shortcoming of these methods is that
the drastic reduction to a scalar value leads to a loss of infor-
mation. As alternative representations that preserve more infor-
mation we therefore also include the sEMG histogram (HIST)
and cepstral coefficients (CC). The latter method applies a log-
arithm on the spectral coefficients and subsequently maps the
data back into the time domain by means of an inverse Fourier
transform.
Frequency-domain features are commonly based on the

Fourier transform, of which we consider the short-time Fourier
transform (STFT) variant. An alternative representation that
has recently gained popularity is the discrete wavelet transform
(DWT). This transformation decomposes the signal in terms
of a basis function (i.e., the wavelet) at different resolutions,
resulting in a high-dimensional frequency-time representa-
tion Lucas et al. [37], however, have demonstrated that for
sEMG-based classification it is sufficient to preserve only the
marginals of each level of the decomposition, thereby ignoring
the time components of the decomposition and drastically
reducing the dimensionality of the feature representation. In
the following, this variant is referred to as marginal discrete
wavelet transform (mDWT).
In contrast to feature extraction methods, only a relatively

limited set of classification methods have been employed for

5Due to rectification onboard the Otto Bock electrodes, the MAV features are
in our case closely related to rms features.

Fig. 5. Variability across movements of SEMG (a) and data glove (b) average
amplitude.

Fig. 6. Variability of SEMG and data glove average amplitude across move-
ment repetitions. (The standard deviation of each data point is over the ordinate
axis limits).

myoelectric movement classification. The classifiers consid-
ered here have all been used in related work and range from
traditional statistical methods to more recent machine learning
techniques. As simple methods we consider the well-known
linear discriminant analysis (LDA), -nearest neighbors
( -NN), and a linear variant of the more recent support vector
machine (SVM). These methods are in contrast to more pow-
erful, nonlinear classifiers. We consider the two most popular
nonlinear methods, namely the multi-layer perceptron (MLP)
(i.e., an artificial neural network) and the SVM with a radial
basis function (RBF) kernel. The motivation for considering
both linear and nonlinear methods is to verify whether the
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TABLE II
FEATURE AND CLASSIFIER CONFIGURATIONS

additional capacity of nonlinear classifiers is in fact required to
obtain satisfactory performance. Table II shows a summary of
the considered feature types and classifiers, and their respective
configurations. Further details on the experimental setup can
be found in the work of Kuzborskij et al. [38].
2) Data Processing and Split: In accordance with the clas-

sification strategy by Englehart and Hudgins [39], the filtered
signals are segmented into a continuous stream of windows.
We consider a sliding window with an increment of 10 ms (i.e.,
a window for every sample) and window lengths of 100, 200,
and 400 ms . The features listed in Table II are then extracted
from each individual window in this stream, while the move-
ment label is defined as the movement type at the moment of
the most recent sample within a window. The features extracted
from the windows together with the corresponding movement
labels then become samples for the classifier. The total number
of the samples collected in this manner for a single subject is
approximately .
This total set of classification samples is subsequently

split into train and test sets based on movement repetitions;
repetitions are used for training, while the repeti-
tions are dedicated to testing. Furthermore, the
training set is regularly subsampled at a factor of 10 for compu-
tational reasons. After this split and subsampling of the training
set, we have roughly training samples and test
samples. Since each movement repetition is preceded by a
rest, these sets consist for (slightly more than) 50% of samples
belonging to the rest posture. The duration of the 52 nonrest
movements does not vary much (even after relabeling), so that
each movement is responsible for almost 1% of the samples.
3) Results: Fig. 7 presents the classification accuracies on

the complete set of 53 movements (the rest stae is included as
additional “movement”) for all feasible combinations of fea-
ture type, classifier, and window lengths. In our setting, the
accuracy refers to the ratio of test samples (or windows) that
were classified correctly. Interestingly, several feature represen-
tations achieve a similar accuracy of around 76%, indicating that
simpler features such as MAV do not necessarily perform worse
than advanced variants such as mDWT. Furthermore, the non-
linear SVM and MLP classifiers achieve similar maximum per-
formance given an appropriate feature representation, although
only SVM consistently achieves high performance when com-
bined with most of the feature representations. The linear classi-
fiers, on the other hand, perform poorly. Even though LDA has

often been found adequate for small-scale posture classification
[40], [12], [13], our results demonstrates that linear classifiers
in fact do not scale to a large number of postures. Finally, the
optimal window length is dependent on both the classifier and
the feature representation, although in the majority of the cases
a longer window length of 400 ms is preferable.
The classification accuracies in Fig. 7 are encouraging,

considering the large number of movements. An accuracy of
76%, however, would almost surely not be acceptable from the
perspective of an actual end-user. Nonetheless, the scalar classi-
fication score obfuscates the fact that misclassifications are not
evenly distributed over the duration of the movement. Fig. 8,
which relates classification errors with the time normalized
for movement duration, demonstrates that misclassifications
are primarily concentrated during the movement onset and
offset. This is not surprising, since movements are continuous
trajectories that transition gradually from one to another in
contrast to the abrupt changes of the discrete movement labels.
Consequently, a drop in accuracy occurs primarily during these
transitory periods, since the change in movement is not yet
clearly evident from the input sEMG signals. Misclassifica-
tions during these phases are best characterized as a delay in
predicting the correct class, rather than incorrectly classifying
one movement as another. Besides classification accuracy, also
prediction delays have been identified as an important factor
that affects online controllability [33].
This is illustrated in Fig. 9, which visualizes 10 repetitions

of a subset of four movements (i.e., those used by Castellini et
al. [15] plus the rest posture) for a single subject in the first two
principal components6. When concentrating solely on the center
of the movements (indicated by markers), then they appear rea-
sonably well separated. However, the trajectories overlap signif-
icantly on the transition from rest to movement and vice versa,
causing a reduction of separability and hence misclassifications.
This is relevant since 1) it demonstrates that accuracy is best
improved by better distinguishing rest from movements during
the transitory phases, and 2) some related studies enforce sepa-
rability by solely considering the center segment of the move-
ment trajectory. A consequence of the latter is that these studies
overestimate classification accuracy.

C. Statistical Analysis

The scalar average classification accuracy obfuscates how
the accuracy is distributed over both subjects and movements.
It is however feasible that certain subjects perform consider-
ably worse than others (e.g., see the observations in [41]), or
that certain movements are harder to discriminate than others.
Fig. 10 shows the distribution of the classification accuracy over
subjects and movements. In order to eliminate sensitivity to a
particular classifier or feature extraction method, the reported
accuracy is the average accuracy over all combinations of the
SVM and MLP classifiers with MAV, mDWT, HIST, and WL
features based on window lengths of 100, 200, and 400 ms.
All combinations were found to perform similarly (see Fig. 7).
In case of subjects, there are no apparent outliers and the dis-
tribution does not significantly deviate from normality (

6More precisely, these postures are extracted using (PCA) over the entire
dataset when using MAV features with a window length of 200 ms.
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Fig. 7. Accuracies on the 53-class classification problem for combinations of learning method, feature representation and window length. Each bar represents
method classification accuracy with respect to feature representation and window length, while lines atop the bar are one standard deviation of accuracy. Classifiers
are grouped by feature representations and labeled by colors. Window lengths of 100, 200, and 400 ms are shown in increasing order and increasing opacity. LDA
results are missing in case of the high dimensional STFT, CC, and HIST features due to nonsingularity of the covariance matrix.

Fig. 8. Classification accuracy averaged over the 52 nonrest movements with
respect to normalized movement duration for kernel SVM with MAV features
and windows of 100, 200, and 400 ms. This figure is representative for other
combinations of classifiers and feature types.

Fig. 9. Trajectories within the two principal components of all 10 repetitions
for an example subset of three movements and the rest posture taken from a
single subject. Samples in the temporal center of the trajectory are indicated
with markers.

, Shapiro–Wilk test). When considering the distribution
over movements in Fig. 10(b), on the other hand, we observe a
single outlier with very high performance, which corresponds
to the rest posture. While the onset and offset of nonrest move-
ments are often misclassified as rest, the rest posture itself is
in fact nearly always correctly classified. This is helped by the
fact that rest posture accounts for more than 50% of all samples,

causing the classifiers to be biased towards correctly classifying
this specific class.
Even though the distribution over subjects is statistically not

distinguishable from a normal distribution, this does not neces-
sarily imply that all subjects are random samples from a single
probability distribution. It is likely that certain properties of the
subjects affect classification accuracy. Such a relation between
a subject’s characteristics and classification accuracy is rele-
vant in a clinical setting, as it helps to anticipate the success
rate or satisfaction of a prospective user of an active prosthesis.
Table III lists the average accuracy for the total set of all subjects
and for the subsets based on information in the questionnaire.
The results in Table III allow several interesting observations.

Multiple regression analysis using the subject gender, laterality,
age, and the well-known (BMI)

as independent variables confirms that classification accuracy
decreases significantly with increasing BMI ( , Stu-
dent’s t test), as demonstrated in Fig. 11. On the other hand, ac-
curacy was not found to depend significantly on either gender

, laterality , or age .
The negative relation between BMI and classification accu-

racy should not come as a surprise, since it is known that the adi-
pose layer in the skin acts as an insulator [42, Ch. 3]. As a result,
the amplitude and signal-to-noise ratio of the myoelectric sig-
nals decrease, while cross-talk between muscles increases [34].
Both effects decrease the quality of the signals. Our analysis
suggests that this signal deterioration also leads to significantly
worse classification accuracy.

V. CONCLUSION AND DISCUSSION

This paper describes the first NINAPRO database in detail and
characterizes it with global analyses and benchmark classifi-
cation results. The NINAPRO database aims at forming a stan-
dard benchmarking resource for the biorobotics community. At
the moment of writing it is the only publicly available data-
base relating sEMG to hand movements, it contains a much
larger number of subjects and of hand movements with respect
to related work. The dataset consists of muscular activity gath-
ered in controlled conditions using Otto Bock sEMG electrodes
and kinematic data gathered using a CyberGlove and an incli-
nometer. Particular care was taken as far as electrode placement,
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Fig. 10. Histogram of the classification accuracies over (a) subjects and (b) movements. Solid line indicates a normal distribution fitted to the data.

TABLE III
AVERAGED CLASSIFICATION ACCURACY WITH RESPECT

TO SUBJECT PROPERTIES

Fig. 11. Classification accuracy versus the BMI for all 27 subjects as well as
the predictions by the linear regressor. Small variations in the predictions are
due to differences in the other independent variables among the subjects.

device calibration and data acquisition and synchronization are
concerned. So far data is available for 27 intact subjects per-
forming 10 successive repetitions of 52 hand, wrist, and forearm
movements of interest. These movements were selected via a
careful examination of the literature and standard rehabilita-
tion guidelines. The timings, repetitions, and durations of the
stimuli were verified. The stimuli themselves were instructed

using short movies that the subjects were asked to imitate. This
makes the protocol extremely simple, stress- and fatigue-free
for the subjects.
Linear regression analysis of signal variability among move-

ment repetitions highlights that 63% of the subjects decrease the
range of movement significantly while repeating a
movement and that 22% of the subjects reduce their muscular
activity significantly . This result can be related to
neuromuscular adaptation to the movement and it needs to be
studied in order to evaluate its effect on movement classifica-
tion.
A benchmark evaluation using a variety of popular feature

extraction and classification methods in a continuous prediction
setting reveals that the best performing methods achieve an ac-
curacy of around 76%. In contrast to related work, we found
that the nonlinear SVM and MLP classifiers perform consid-
erably better than the linear SVM and LDA. Furthermore, the
SVM with RBF kernel is to be preferred over the MLP clas-
sifier, as it showed similarly high performance for five out of
seven feature representations. This result also implies that rela-
tively simple features as MAV can perform just as well as more
advanced mDWT or STFT features, provided that they are com-
bined with an appropriate classifier.
The distribution of classification accuracy over both subjects

and movements demonstrates that there are no outliers in case
of subjects, while there is a single outlier with very high per-
formance in the case of movements. This outlier corresponds to
the rest posture. Aided by the fact that it accounts for more than
60% of the analyzed samples, the rest contributes to obfuscate
the average accuracy of the other movements. A quantitative
estimate of the influence of rest on the average classification ac-
curacy is given by the 25% difference between the mean of the
Gaussian fit computed for the subject distribution [Fig. 10(a)]
and the mean of the movement distribution [Fig. 10(b)]. The
resting position is often included as a separate movement in lit-
erature, so this difference can affect other results reported in
the literature as well. The Ninapro database gives the oppor-
tunity to research groups to compare their classification results
on the same database and we strongly recommend the users do
describe the analyzed movement setting (rest included) in detail
in order to make the results comparable.
Anatomical characteristics (including e.g., fat, limb mus-

cular mass, hairiness, and BMI), characteristics of the hand
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movement patterns, fatigue, physical parameters and detec-
tion-system parameters contribute to determine the sEMG
signal [34], [35], while data processing factors (e.g., filtering,
windowing, window timepoint, and feature selection) deter-
mine how the characteristics of the signal are evaluated during
the classification process. All of these factors can potentially
affect the classification accuracy. However, in this paper we
show how some of them have effects on the data classification.
First, our investigation demonstrates that misclassifications
occur primarily during the movement onset and offset. The
explanation for this phenomenon is that the sEMG signals
are not yet (or not anymore) sufficiently discriminative in
these transitory phases between movement and rest. This re-
sult implies that studies that ignore these phases are likely to
overestimate true performance, and that efforts on improving
movement classification in a realistic setting are best directed
towards these ambiguous phases of the movements. Second,
multiple regression analysis of the classification accuracy with
respect to several subject properties indicates that accuracy
decreases significantly with an increasing BMI of the subject.
While earlier studies have demonstrated that the adipose layer
(estimated here using BMI) has a negative impact on the quality
of the sEMG signal, our analysis suggests that this degradation
also affects movement classification accuracy. In contrast, the
accuracy was not found to depend significantly on subject
gender, age, or laterality.
The analysis and the results described in this paper have the

goal tobeabenchmark for the scientificcommunity regarding the
results on the NINAPRO database and an example of how it can be
used. All the research groups in the field now have the opportu-
nity to work on this resource and they can exploit the possibility
to compare their results on the exactly same basis. Therefore, the
NINAPRO database gives the scientific community the opportu-
nity to converge to a common position on handmovement recog-
nition by surface electromyography sEMG. We sincerely hope
that this opportunitywill be exploited and that itwill contribute to
improve the capabilities of future hand prostheses.

A. Future Work

1) Growth of the Database: In this paper we describe the first
available NINAPRO database, which includes 27 intact subjects.
New data sets are currently being acquired in order to increase
the number of subjects and in order to include also hand am-
putated subjects. Moreover, we encourage the addition of new
datasets by other research groups using the same protocol in
order to increase the overall number of subjects: the acquisition
protocol can be reproduced easily and we will evaluate any data
submission before publishing it on the Ninapro website7.
2) Improvements to the Setup: The classification results in

Section IV-B indicated that more advanced feature representa-
tions such as mDWT did not yield improvements over the sim-
pler MAV or WL features. One possible explanation is that the
rectification step on the Otto Bock electrodes is removing in-
formation that could potentially be exploited by advanced fea-
ture extraction methods. To eliminate this possibility, we are mi-
grating the acquisition setup to a set of Delsys Trigno Wireless

7http://ninapro.hevs.ch/

text electrodes. As opposed to the rectified and filtered signals
from the Otto Bock electrodes, the Trigno electrodes return the
raw sEMG signal at 2 kHz sampling rate. Furthermore, these
electrodes are wireless (thus less restrictive for subjects) and
also contain a three-axis accelerometer. The latter will allow us
to investigate to which extent accelerometry can aid movement
classification.
Second, it is of interest to also gather force data while per-

forming the actions of interest, rather than kinematic data only.
This has a double motivation: 1) sEMG can be naturally associ-
ated with graded forces as well as with movements and postures
(see, e.g., [2], [43]); 2) the use of regression rather than classifi-
cation could increase the dexterity of the control, shifting from
a finite set of predetermined postures to an infinite manifold of
hand configurations.We plan to employ the Finger-Force Linear
Sensor (FFLS), a synergistic finger-force measurement device
[44]. Adaptation and calibration of the new devices is already
done. We plan to include data obtained using it in the next data-
base release.
3) Further Considerations: The experience obtained with

the acquisition protocol and setup using intact subjects will
prove useful in the next phase of acquisitions from amputated
persons. Movement recognition from amputees is typically
more difficult, since muscle activity decreases due to lack of use
and since muscles may be damaged due to trauma or surgical
intervention. The availability of data recorded from amputees
is however crucial to perform experiments on movement clas-
sification that accurately reflects real-world conditions.
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