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Fusion of remote sensing data from multiple sensors has been remarkably increased for
classification. This is because, additional sources may provide more information, and
fusion of different information can produce a better understanding of the observed site.
In the field of data fusion, fusion of light detection and ranging (LIDAR) and optical
remote sensing data for land cover classification has attracted more attention. This
paper addressed the use of a decision fusion methodology for the combination of
hyperspectral and LIDAR data in land cover classification. The proposed method
applied a support vector machine (SVM)-based classifier fusion system for fusion of
hyperspectral and LIDAR data in the decision level. First, feature spaces are extracted
on LIDAR and hyperspectral data. Then, SVM classifiers are applied on each feature
data. After producing multiple of classifiers, Naive Bayes as a classifier fusion method
combines the results of SVM classifiers form two data sets. A co-registered hyper-
spectral and LIDAR data set from Houston, USA, was available to examine the effect
of the proposed decision fusion methodology. Experimental results show that the
proposed data fusion method improved the classification accuracy and kappa coeffi-
cient in comparison to the single data sets. The results revealed that the overall
accuracies of SVM classification on hyperspectral and LIDAR data separately are
88% and 58% while our decision fusion methodology receive the accuracy up to 91%.
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Introduction

Data and sensor fusion methods emerged as a powerful methodology for improving the
classification performance. Based on the existing different airborne and spaceborne
remote sensing sensors, a wide spectrum of data can be available for the same observed
site. For many applications, the information provided by individual sensors are incom-
plete, inconsistent or imprecise. Multiple sensors may provide complementary data, and
fusion of information from different sensors can produce a better understanding of the
observed site, which is not possible with single sensor (Pohl and Van genderen 1998,
Simone et al. 2002, Du et al. 2013).

Fusion on remote sensing data can be performed at the signal, pixel, feature and
decision levels. At signal level fusion, signals from different sensors are combined to
create a new signal with a better signal-to-noise ratio. Pixel-level fusion fuses information
from different images on a pixel-by-pixel basis to improve the performance of image
processing tasks, such as segmentation. Feature-level fusion fuses features extracted from
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different images. At feature-level fusion, features are extracted from multiple images, then
combined into a concatenated feature vector and classified using a standard classifier.
Decision-level fusion fuses information at a higher level of abstraction. Based on the data
from each sensor, a preliminary classification is performed. Fusion then fuses the outputs
from the preliminary classifications. Ability to fuse different types of data from different
sensors, independence to errors in data registration step and accurate fusion methods
could be mentioned as the benefits of decision-level fusion methods rather than other level
fusion (Yun 2004, Dong et al. 2009, Du et al. 2013).

During the last decade, the number of sensors and satellites has been growing steadily,
and the coverage of the earth in space, time and the electromagnetic spectrum is increas-
ing fast. Because of these advances, sensor fusion become a research hot spot in remote
sensing and has been extensively applied to many areas.

Airborne light detection and ranging (LIDAR) provides accurate height information
for the objects on the earth, which makes LIDAR become more and more popular in
terrain and land survey. On the other hand, hyperspectral imaging is a relatively new
technique in remote sensing that acquires hundreds of spectral channels. The rich spectral
information of hyperspectral images increases the capability to distinguish different
physical materials, leading to the potential of a more accurate image classification. A
promising and challenging approach is to fuse these data in the information-extraction
procedure (Dalponte et al. 2008, Swatantran et al. 2011). Hyperspectral images provide a
detailed description of the spectral signatures of classes, whereas LIDAR data give
detailed information about the height but no information on the spectral signatures. A
sensor fusion approach can integrate characteristics from hyperspectral and LIDAR data
to improve the classification accuracy.

This paper describes our approach for fusion of hyperspectral and LIDAR data based
on a decision fusion system. Feature extraction strategies were applied on two data sets to
generate more features. Then, support vector machine (SVM) was utilised as a supervised
classification strategy on the feature spaces of each data set. Finally, a decision fusion
strategy based on Bayesian theory fused all resulted classifiers from LIDAR and hyper-
spectral data.

Literature review

Decision-level fusion consists of merging information at a higher level of abstraction,
combines the results from multiple algorithms to yield a final fused decision. Input images
are processed individually for information extraction. The obtained information is then
combined using decision fusion methods. Decision-level fusion was chosen against pixel-
level fusion and feature-level fusion in the three-level fusion hierarchy, because of its
feasibility, lower computational complexity and robustness to the removal or addition of
individual data sources.

An extensive literature is available on the decision fusion approaches. As one of the
most important techniques in decision fusion, voting has been applied in different
applications. In voting-based fusion, the class assigned by a classifier is considered as
a vote for that class. Applications of majority voting techniques to combine classifiers
can be found in Lam and Suen (1997), Rahman and Fairhurst (2000) and Lin et al.
(2003). A comprehensive review of majority voting and its variants for combining
multiple classifiers in character recognition has been presented in Rahman et al.
(2002) and Kuncheva (2004).
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In weighted version of voting method, usually a weight is assigned to each classifier.
Detailed discussion of weighted voting can be found in Littlestone and Warmuth (1994).
Benediktsson and Kanellopoulos (1999) used a weighting-based approach to combine the
classification results from multiple neural networks and statistical models. The weights of
the individual classifier reflected the reliability of the sources and were optimised in order
to improve the combined classification accuracy during training. Tsoumakas et al. (2005)
combined weighted voting with the classifier selection step so that only the results from a
subset of the classifiers were used for fusion. Such selective fusion was shown to be a
generalisation of weighted voting.

In addition, Bayesian decision fusion strategy has been successfully applied in diverse
fields ranging from pattern recognition (handwritten digit/character recognition and image
recognition), to medical diagnosis and machine fault diagnosis (fault diagnosis in trans-
former and induction motor). Zheng et al. (2005) used Bayesian-based fusion to integrate
results from different image processing approaches for diagnosing diseases. McArthur
et al. (2004) combined k-means clustering, back-propagation neural network and user-
written rules based on Bayesian approach to diagnose faults in a power transformer.
Dempster–Shafer-based fusion has also been widely used in various fields. Parikh et al.
(2001, 2003) used the Dempster–Shafer evidence theory to combine the outputs of
multiple primary classifiers to improve overall classification performance. The effective-
ness of this approach was demonstrated for detecting failures in a diesel engine cooling
system. There are several other decision fusion strategies including behaviour knowledge
space (Huang and Suen 1993, 1995) which uses a lookup table that lists the most common
correct classes for every possible class combinations given by the classifiers, decision
templates (Kuncheva et al. 2001) which compute a similarity measure between the current
decision profile of the unknown instance and the average decision profiles of instances
from each class. A detailed overview of various decision fusion strategies is available in
Kuncheva (2004).

With the development of the remote sensing imaging technology, application of
decision fusion approaches for fusion of images from different sensors is becoming
more and more widespread in remote sensing.

Recently, new researches focus on decision fusion strategies to overcome the weak-
nesses of single remote sensing sensors (Simone et al. 2002, Hsu and Burke 2003). As
hyperspectral images provide a detailed description of the spectral signatures of classes
without any height information, fusion of this data with LIDAR data may improve
classification results. Dalponte et al. (2008) investigate the potentialities of the joint use
of hyperspectral and LIDAR data, combined with advanced classification techniques
based on SVM, for forest classification. Two recent researches related to the decision
fusion of hyperspectral and LIDAR data are published by Zhao et al. (2013) and Uhlmann
et al. (2013). First, Zhao et al. (2013) applied four features: minimum noise fraction,
principal component analysis, normalised difference vegetation index (NDVI) and grey-
level co-occurrence matrix (GLCM) on hyperspectral data. Then three classifiers: max-
imum likelihood classifier, SVM and multinomial log regression were applied on features
of hyperspectral data. On LIDAR data, they separated ground points and non-ground
points by Axelsson filter and applied three mentioned classifiers on LIDAR data. Finally,
they fused all classifiers with majority voting. Second, Uhlmann et al. (2013) extracted
some features from hyperspectral data. Then they combined each of the single features
with the original hyperspectral bands and LIDAR data into five additional feature sets. In
classification step, they used SVM with polynomial kernel to classify each feature sets.
Finally, they applied majority voting to fuse classification maps of classifiers. In
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comparison to these two last researches, the proposed method of this paper tries to use
SVM with radial basis function (RBF) rather than polynomial kernel, Bayesian fusion
rather than simple voting strategy and more spectral feature on hyperspectral data to
improve the classification accuracy.

This paper presents a decision fusion method for fusion of hyperspectral and LIDAR data
based on a multiple SVM system. The proposed method tries to establish a classifier fusion
system to fuse hyperspectral and LIDAR data. In this way, classification results benefit from
spectral information of hyperspectral data and height information of LIDAR data.

Proposed fusion method on hyperspectral and LIDAR data

A SVM-based classifier fusion system for fusion of hyperspectral and LIDAR data is
presented in Figure 1. First, feature extraction phase is applied on two data sets to generate
feature spaces. Second, the proposed methodology applies a SVM classifier for classifica-
tion of each feature space which is produced in the previous step. Finally, a classifier
fusion method is used to fuse the SVM classification results which are applied in previous
steps on hyperspectral and LIDAR data. The resulting classifier is generally more accurate
than any of the individual classifiers that make up the ensemble of classifiers (Ruta and
Gabrys 2000, Kuncheva 2004).

Phase 1: feature extraction on LIDAR and hyperspectral data

The main step of classification process on LIDAR and hyperspectral data is extraction of
features from data sets. These features must contain useful information to discriminate
between different objects. The features on LIDAR data are listed in Table 1.

Texture descriptors can be measured based on the grey value relationships between
each pixel and its neighbouring pixels in a local window or in the global image. GLCMs
are one of the earliest techniques used for image texture analysis defined by Haralick et al.
(1973). Furthermore, variance operators are one of the useful statistical methods for

Classifier fusion system on hyperspectral and LIDAR data
Hyperspectral

Feature extraction

Lidar

Classifier fusion
(Naive Bayes method)

Final classes

Support vector machine (SVM)

Figure 1. Flowchart of the proposed fusion method on hyperspectral and LIDAR data.
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texture analysis based on the differences between the pixels in a local neighbouring
window. Semi-variogram as a geo-statistical operator is also in the family of variance
operators. The operation of semi-variogram is based on the directional distances between
each pixel and its neighbouring pixels in a local window (Chica-Olmo and Abarca-
Hernández 2004).

Also, in Table 1 roughness, relief, slope and aspect are measures of the topography of
a surface. Furthermore, some of the spectral features on hyperspectral data are presented
in Table 2.

Phase 2: support vector machine as classification method

One of the most popular classification methods are SVMs defined by Vapnik (1998), a
large margin-based classifier with a good generalisation capacity in the small-size training
set problem with high-dimensional input space. SVMs discriminate two classes by fitting
an optimal linear separating hyperplane to the training samples of two classes in a

Table 1. Different features on LIDAR data.

Name Formulation

Texture features Entropy
Ent ¼ P

N�1

i;j¼0
Pi;j � ð� lnPi;jÞ

Correlation corr ¼ P
N�1

i;j¼0
½ði� μiÞðj� μjÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2i Þðσ2j
q

Þ�

Contrast Cont ¼ P
N

i;j¼0
Pijði� jÞ2

GLCM Mean Mean i ¼ P
N�1

i;j¼0
i� Pði; jÞ

Standard
deviation

variance i ¼ P
N�1

i;j¼0
Pði; jÞ � ði�Mean iÞ2

Homogeneity H ¼ P
N�1

i;j¼0
Pi;j

1þði�jÞ2

Dissimilarity Diss ¼ P
N�1

ij¼0
Pij i� jj j

Second moment M ¼ P
N�1

ij
P2ij

Variogram Semi-variogram γkðhÞ ¼ 1
2nðhÞ
PnðhÞ
i¼1
fDNkðxiÞ � DNkðxi þ hÞg2Þ

Radogram γkðhÞ ¼ 1
2nðhÞ
PnðkÞ
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DNkðxiÞ � DNkðxi þ hÞj jp

Madogram γkðhÞ ¼ 1
2nðhÞ
PnðkÞ
i¼1

DNkðxiÞ � DNkðxi þ hÞj j
Topography
features

Slope
Aspect
Relief
Roughness Ra ¼ 1=N :

PN
n¼1

hnj j
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multidimensional feature space. The optimisation problem being solved is based on
structural risk minimisation and aims to maximise the margins between the optimal
separating hyperplane and the closest training samples – the so-called ‘support vectors’.
A detailed description on the general concept of SVM is given by Burges (1998) and
Schölkopf and Smola (2002). It is worth underlining that the kernel-based implementation
of SVMs involves the problem of the selection of multiple parameters, including the
kernel parameters (e.g., parameters for the Gaussian and polynomial kernels) and the
regularisation parameter C.

In our proposed method, the kernel of each individual classifier is adjusted according
to the corresponding feature space properties. This paper utilised one-against-one multi-
class SVM with RBF kernel (RBF is one of the most popular kernel function for SVM
classifier) as base classifier.

Table 2. Different spectral features on hyperspectral data.

Name Formulation

Normalised difference vegetation index NDVI ¼ ðρNIR � ρREDÞ=ðρNIR � ρREDÞ
Simple Ratio SR ¼ ρNIR � ρRED

Enhanced vegetation index EVI ¼ 2:5ð ρNIR�ρRED
ρNIRþ6ρRED�7:5ρBLUEþ1Þ

Atmospherically resistant vegetation index ARVI ¼ ρNIR�ð2ρRED�ρBLUEÞ
ρNIRþð2ρRED�ρBLUEÞ

Sum green index Mean of 500–600 nm of spectrum

Red-edge normalised difference vegetation index NDVI705 ¼ ðρ750 � ρ705Þ=ðρ750 þ ρ705Þ
Modified red-edge simple ratio index mSR705 ¼ ðρ750 � ρ445Þ=ðρ705 � ρ445Þ
Modified red-edge normalised difference
vegetation index

mNDVI750 ¼ ðρ750 � ρ705Þ=ðρ750 þ ρ705 � 2ρ445Þ

Vogelmann red-edge index 1 VOG1 ¼ ρ740=ρ720

Vogelmann red-edge index 2 VOG2 ¼ ðρ734 � ρ747Þ=ðρ715 þ ρ726Þ
Red-edge position index
Photochemical reflectance index PRI ¼ ðρ531 � ρ570Þ=ðρ531 þ ρ570Þ
Structure insensitive pigment index red green
ratio index

SIPI ¼ ðρ800 � ρ445Þ=ðρ800 þ ρ680Þ

Plant senescence reflectance index PSRI ¼ ðρ680 � ρ500Þ=ρ750
Carotenoid reflectance index 1 CRI1 ¼ ð1=ρ510Þ � ð1=ρ550Þ
Carotenoid reflectance index 2 CRI2 ¼ ð1=ρ510Þ � ð1=ρ700Þ
Anthocyanin reflectance index 1 ARI1 ¼ ð1=ρ550Þ � ð1=ρ700Þ
Anthocyanin reflectance index 2 ARI2 ¼ ρ800½ð1=ρ550Þ � ð1=ρ700Þ�
Water band index WBI ¼ ρ900=ρ970
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Kðx; x0 Þ ¼ expð�λ x� x
0�� ��2Þ (1)

Grid search is a well-known technique for model selection which performs exhaustive
search and selects a set of parameters values with the best fitness (Hsu et al. 2010).

Phase 3: classifier fusion

After feature extraction on hyperspectral and LIDAR data, SVM classifiers are separately
applied on each feature space. Then results of single classifiers are fused through a multiple
classifier system (MCS). MCS or classifier fusion is successfully applied on various types of
data to improve single classifiers results. Classifier fusion can improve classification accuracy
in comparison to a single classifier by combining results of classification algorithms on
different data sets. The possible ways of combining the outputs of classifiers in a MCS
depend on what information can be obtained from the individual members. Two types of
classifier outputs (crisp/fuzzy) produced two types of classifier fusion methods. Our proposed
method applied SVM as crisp classifier consequently we applied one of the crisp classifier
fusion methods (Naïve Bayes (NB)) (Kuncheva 2004).

NB is a statistical classifier fusion method that can be used for fusing the outputs of
individual classifiers. The essence of NB is based on the Bayesian theory (Ruta and
Gabrys 2000, Kuncheva 2004) as follows:

pðS=wkÞ ¼ pðs1; s2; . . . ; sL=wkÞ ¼
YL
i¼1

pðsi=wkÞ (2)

Denoted by pðsjÞ the probability that jth classifier labels x in class sj 2 Ω. (L is the
number of classifier and c is the number of classes, where s ¼ ½s1; . . . ; sL� denotes the
vector with the label output of the ensemble). Then the posterior probability needed to
label x is as follows:

pðwk=SÞ ¼ pðwkÞpðS=wkÞ
pðSÞ ¼

pðwkÞ
QL
i¼1

pðSi=wkÞ
pðSÞ ; k ¼ 1; . . . ; c (3)

The denominator does not depend on wk and can be ignored, so the final support for class
wk is as follows:

μkðxÞ / pðwkÞ
YL
i¼1

pðsi=wkÞ (4)

where μk is the final support for kth class. Maximum value of μ appoints winner class for
x sample.

The practical implementation of the NB method on a data set with cardinality N is
explained below. For each classifier, a c� c confusion matrix CMi is calculated by testing
the data set (Kuncheva 2004). The (k, s)th entry of this matrix, cmi

k;s is the number of
elements of the data set whose true class label is wk and is assigned by the classifier to
class ws. By Ns we denote the total number of elements of data set from class ws. Taking
cmi

k;si
=Nk as an estimate of the posterior probability, and Nk=N as an estimate of the prior
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probability, the final support for class wk is Equation (5). The maximum membership rule
ðμÞ will label x in wk class.

μkðxÞ /
1

NL�1
k

YL
i¼1

cmi
k;si

(5)

The Bayes classifier has been found to be surprisingly accurate and efficient in many
experimental studies (Xu et al. 1992, Kuncheva 2004).

Experimental settings

Data sets

In this section, we present the application of the proposed general fusion scheme to the
improvement of classification results on urban areas. The proposed approach was applied
on two data sets. A hyperspectral image and a LIDAR-derived digital surface model
(DSM); both with spatial resolution of 2.5 m have been utilised to evaluate the proposed
method (Figure 2). The hyperspectral image has 144 spectral bands. The data sets have
captured over the University of Houston campus and the neighbouring urban area and
have been acquired by the National Science Foundation (NSF)-funded Centre for
Airborne Laser Mapping (NCALM). Ground truth of this data set also was provided by
NCALM:

From the 15 different land cover classes available in the original ground truth; some of
these classes have been merged (residential and commercial classes were merged to produce
Building class as 3D objects. Also road, highway and railroad were merged to produce road
class; similarly Parking lot 1 and 2 were merged to produce Parking class). Available nine
land cover classes were used to generate training and test data sets (Table 3).

Results

The first step of the presented methodology was designed to produce feature spaces on
hyperspectral and LIDAR data independently. In case of LIDAR data, all of the textural
and topographical features in Table 1 were applied on data to generate feature space.
Figure 3 illustrates some of these features on LIDAR data.

Figure 2. Data sets, (a) LIDAR-derived DSM and (b) hyperspectral data over Houston campus.
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The feature space on hyperspectral data, which is listed in Table 2, produced more
spectral information on this data. Some of these features are presented in Figure 4.

After feature extraction, for the task of data classification, one-against-one SVM is
applied on hyperspectral and LIDAR data. Proposed strategy applies grid search as the
model selection of SVM classifier. The search range for C is [2–2, 210], and [2–10, 22] for γ.

Table 3. Houston University lands cover classes and available reference samples.

ID Class name Reference number

1 Grass-Healthy 198
2 Grass-Stressed 190
3 Grass-Synthetic 192
4 Tree 188
5 Soil 186
6 Water 182
7 Building 387
8 Road 565
9 Parking 376

Figure 3. Some features on LIDAR data: (a) roughness, (b) aspect, (c) GLCM (std) and (d)
variogram.
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After classification of LIDAR and hyperspectral data, NB is applied as classifier
fusion approaches on the outputs of classifiers.

In order to show the merits of the proposed methodology, this paper implements a
SVM on integration of hyperspectral and LIDAR data. In simple integration method,
LIDAR data and features on it are applied as additional bands of hyperspectral data. In
this way, we try to compare the results of classifier fusion method to simple integration of
these two data sets.

Table 4 and Figure 5 represent the overall accuracy (OA) and kappa coefficient of
different classification strategies on hyperspectral and LIDAR data. Based on these
results, proposed classifier fusion on hyperspectral and LIDAR data improves the results
of independent classifiers on each data set independently. It can be observed that fusion
strategy exhibited the best accuracy, with an OA of 91.2%, which improved the accuracy
of SVM on LIDAR and hyperspectral data up to 32.6% and 2.5%, respectively.
Furthermore, classifier fusion based on NB outperforms simple integration of hyperspec-
tral and LIDAR data in terms of classification accuracy. The reasonable cause of these
results is that height information of LIDAR data and spectral information of hyperspectral
data together could improve classification accuracy.

Figure 4. Some features on hyperspectral data: (a) NDVI, (b) red-edge normalised difference
vegetation index and (c) water band index.

Table 4. Results of different classification strategies.

Measure LIDAR Hyperspectral Integration Classifier fusion

OA 58.554 88.69 89.4 91.2
Kappa 51.86 86.83 87.2 89.8
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Figure 6 demonstrates the accuracies of different classification strategies for all nine
classes of data sets. The analysis of Figure 6 shows that for most of classes, fusion
strategy performs better than single classifiers and integration method. Finally, Figure 7
demonstrates the classification map of classifier fusion strategy on hyperspectral and
LIDAR data.

Conclusion

In this paper, the performance of a decision fusion system for fusion of hyperspectral and
LIDAR imageries is assessed. After definition of feature spaces on LIDAR and

Figure 5. Comparison of classification results.
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Figure 7. Classification map of proposed SVM based classifier fusion on hyperspectral and
LIDAR data.

206 B. Bigdeli et al.

D
ow

nl
oa

de
d 

by
 [D

LR
-B

ib
lio

th
ek

en
] a

t 0
9:

23
 3

0 
A

ug
us

t 2
01

4 



hyperspectral data, SVM classifiers were applied independently on hyperspectral and
LIDAR data. Finally, a decision fusion method based on Bayesian theory was applied
to fuse classifiers of hyperspectral and LIDAR data.

The main important aim of the proposed method is related to the effectiveness of
fusion of hyperspectral and LIDAR data in decision level. Because of the complexities of
hyperspectral and LIDAR data, previous researches on pixel-level fusion or simple
integration of these two data sets could not overcome classification of these data sets’
drawbacks. Rather than previous researches, our proposed method applied a classifier
fusion to fuse decisions of hyperspectral and LIDAR data. Also, the proposed method
utilised a powerful classifier fusion method based on Bayesian theory that shows more
improvement in terms of classification accuracy. Hyperspectral images provide a detailed
description of the spectral signatures of classes but no information on the height of ground
covers, whereas LIDAR data give detailed information about the height but no informa-
tion on the spectral signatures. Consequently, the elevation information of LIDAR was
very effective for the separation of species with similar spectral signatures but different
mean heights. Also the spectral information of hyperspectral data was very effective for
discrimination of similar elevation classes but different spectral information. The usability
of the measurement set-up was assessed by a co-registered hyperspectral and LIDAR data.
Based on the results, we conclude that fusion of classifiers on these two data could
improve classification accuracy.

This paper applied decision fusion strategy based on SVM as crisp classification
method while in remote sensing, each pixel form different satellites might represent
several kilometres of land. Consequently, fuzzy classification systems might be more
efficient than traditional crisp classifiers. Further studies could focus on the fuzzy
classification of hyperspectral and LIDAR data and decision fusion methods on fuzzy
classifiers, such as fuzzy integral and decision template.
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