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Abstract

Nowadays, novel types of robotic systems are able to adjust in addition to an actively
controlled impedance a passive intrinsic impedance, namely stiffness. Thus, similar to
the human these robots are able to interact in an uncertain environment and change their
compliance with respect to whatever is required by the task. In teleoperation, the electro-
mechanical system which energetically connects an operator to a remote environment is
often designed to be analogous to a light and rigid bar. If this is achieved, the force feed-
back is often regarded to be more faithful. However, the ability of impedance adaptability
is not used here. In a recent work we have shown the benefits from an approach with force
feedback that is able to additionally command human stiffness in 1 DoF using sEMG. The
goal of this master thesis is to extend the prior work towards a multi-dimensional ap-
proach.
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1. Introduction

1.1. Motivation

From the beginning of technology era humans had desire to interact and explore the world
not only around them but also the places far away like in the sea or space where it is dif-
ficult to reach due to limitations in physical conditions of human. Tele-operation systems
have been developed to elongate the human arm to unlimited space, satisfying their de-
mands of better interacting with the world, better servicing, and more than ever making
life better. Care-o-bot 3 which you can see in Fig. 1.1a is an assistant robot which is be-

(a) The Care-o Robot [1] (b) MiroSurge Robotic system in DLR [19]

Figure 1.1.: Tele-manipulation applications

ing developed at Fraunhofer institute. This robot when necessary will be tele-operated to
better assist old people in their house. MIRO [19] in Fig. 1.1b is a surgical robotic system
that the operator control every deliberate movement of tele-surgery. DEOS is another on-
going research project in German Aerospace Center which is served in the space to grasp
broken satellites as can be seen in Fig. 1.2. In such interactive applications, all the tasks
to a certain extend require human in the control loop due to unknown and unstructured
environment where robots themselves cannot handle by pre-programming. The question
would be which properties such those systems should have. Firstly, it is intuitive that in
order to effectively interact with the unknown environment the humans have to sense it to
a certain extent like visual sensing or feeling of interaction with the environment in force
or torque level. Secondly, how the human control the interaction in an efficient way. Those
requirements originated the bilateral tele-operation architecture that enables human to re-
motely sense and remotely act. In other words, it is like bringing the remote environment to
the human and bringing human to the remote environment through bilateral tele-operation
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1. Introduction

Figure 1.2.: The simulation of DEOS project [6]

system. Up to now the interaction aspect in bilateral tele-operation is only restricted in con-
trolling the velocity or the position of the remote devices. That means technically the
human/operator in some ways commands the position or velocity to the operated device.
However the requirement of tele-operation in some special tasks is far more complicated.
The project DEOS at DLR is about controlling a robot to catch broken satellites in space.
Such deliberate tasks need carefully controlling the interaction and stabilizing the coupling
system. In order to figure out an efficient way of controlling interaction, the movement in
nature deserves a much careful consideration.

Nature has its own magic and powerful way to create unliving and living things and
make them adapting and nourishing from time to time. Water, air, trees, animals and
humans, etc ... all possess amazing properties to adapt themselves to their environment.
From motion control point of view, it can be seen that mechanical properties of things have
various characteristics. Water and air with extreme flexibility and fluidity are able to move
harmoniously and autonomously according to their environment. They use their own in-
trinsic properties in combination with external force such as gravity to move. But turning
to movements in animals we can observe that their movements are done somewhat pur-
posely with regulation from their brain. A typical example of coordination and controlling
motions in animal world is the movement of a cat when it is released from a high altitude.
It seems to show us that the intrinsic dynamics is used more to generate such beautiful
smooth movements [33]. The coordination of all parts of the body, gravity and the pur-
pose of moving are harmoniously established. And it will be incomplete if abundance of
human activities such as dancing, walking, swimming, driving a bike, playing piano, mar-
tial art and so on is not taken into account. Humans with high capability of learning can do
much more complicated and difficult tasks. For example, when driving a bicycle on a un-
flat road the driver has to keep his steering stronger in order to counteract the disturbing

2



1.1. Motivation

(a) The falling cat [4] (b) a running cheetah [2]

Figure 1.3.: The animal motions

force caused by the stones on the road. Another typical example is in winter when walk-
ing on a slippy road due to ice the legs are voluntarily controlled stiffer to avoid slipping.
These situations seem to indicate that the humans change the limb stiffness to stabilize the
system. Interestingly, when playing guitar the player can translate his emotion to a way to
handle the strings to produce the emotional sounds. And now it gives rise to a question
which rules are behind those movements and how we can extract those informations and
transfer into tele-operation domains.

Many investigations of mechanical properties of tissue of human limbs have been done
in order to have a deep insight into human movement control. In biomechanics, the me-
chanical properties of muscle and tendon have been studied. The physiologist Archibald
Vivian Hill researched the elasticity and viscosity of muscle and gave out the Hill’s elastic
muscle models [12]. In Zoology, the storage of elastic strain energy in muscle and other
tissues was studied by Alexander [11]. It turned out that tendon is the main sort of stor-
ing elastic energy that helps saving significant amount of energy during movements like
running, jumping and insect flight [11]. In terms of control, many phenomena includ-
ing stretch reflex, spinal reflex and long-latency reflex also have been researched to have
more understanding of neuromuscular system. Mussa Ivaldi [28] had developed a very
well-known method to measure and represent the field of elastic force associated with
the postures in the plane. Consequently the hypothesis of virtual trajectory [22] has been
proposed and applied in the controller design. This resulted in impedance controller im-
plementation in robotics [29]. Most recently, Franklin have investigated the changes of
human arm stiffness due to different disturbance force field [17]. The results showed that
in an unstable environment, the change in joint stiffness is independent of the change in
joint torque while in the stable environment changes in endpoint stiffness were well corre-
lated with changes in joint torque [16]. That means the central nervous system (CNS) can
modulate the impedance of the human arm by co-contraction of selective muscles in order
to compensate for unstable dynamics while generating task-oriented forces. In realization
of human control principles, DLR lightweight robot was developed in order to assist hu-
mans in various applications such as safely physical cooperating in assembly tasks or to

3



1. Introduction

(a) Human driving bicycle
[3]

(b) Ice skating [5]

Figure 1.4.: The human motions

behave in human environment like Justin robot as can be seen in Fig. 1.5. In such inter-

(a) The lightweight robot [7] (b) Justin robot [6]

Figure 1.5.: The interaction control in robots

active and cooperative applications, the controller aspect have been studied in [10] [9] [29].

Along with those researches, surface Electromyography (sEMG) signal was investigated
to extract useful information about arm motion such as the human arm kinematic, the
grasping force or the human stiffness [32] [34] [31]. In [30] Vogel used sEMG signal to de-
code the human arm configuration in order to teleoperate the DLR lightweight robot. In
addition, in [25], Hyun can extract joint stiffness from EMG signals and joint motion data
by using artificial neuron network. The results showed that the sEMG signal becomes one
of realizable means for estimating the human arm motion and human mechanical prop-
erties. Most interestingly, in [8] tele-impedance has been implemented to make the control
of the slave robot more natural as illustrated in figure 1.6a. The Electromyography signals
were used to extract the stiffness to control the lightweight robot. It is quite promising in
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1.2. Thesis structure

(a) EMG-based Teleoperation and manipulation [30] (b) Tele-impedance [8]

Figure 1.6.: EMG-based control

some tasks like pegging in hole or catching a ball that with the tunable impedance from
human the robot can fulfil the task more effectively. But the drawback of the implemented
approach is that the calibration method is at one position while the human arm stiffness
depends highly on the arm configuration. Moreover, the operator has no force feedback
which limits the effectiveness of interacting. In MIRO project in DLR, the reliable bilateral
control loop was developed that gives the operator the sense of interacting force during
telesurgery.

By taking advantageous properties of human neuromuscular system into bilateral tele-
operation, it can be expected that the performance of master-slave tele-operation systems
for unknown environment will be improved. Those properties can be observed through
the surface Electromyography signal that is easy to mount and non-invasive. The human
arm impedance will be measured indirectly from EMG signals in real-time. Then this
impedance will be sent to slave robot. In this fashion the slave robot can imitate the human
operator in terms of mechanical properties at the wrist of the operator after the operator
feel the remote environment through the visual and force feedback and act correspondingly
to the current situation. Based on this idea, the goal of this thesis will be constructed as
following:

• Measuring human arm stiffness in 2D

• Using machine learning to map EMG data and endpoint human arm stiffness

• Teleoperation using human-like impedance controller.

1.2. Thesis structure

The work comprises of 6 chapters. After introduction about the motivation and the goal of
the thesis in chapter 1, chapter 2 describes the theoretical ground for the whole thesis.Then
chapter 3 addresses human arm identification. This chapter includes geometrics, inertial

5



1. Introduction

parameters and endpoint stiffness identification of human arm. Subsequently, in chapter
4 calibration of human arm stiffness and EMG signals will be presented with 2 methods
Least Squares Regression and Regularized Least Squares. Additionally, a simple method to
scale stiffness according to EMG signals is also given. Chapter 5 contains teleoperation
with force feedback. Finally, conclusion and future work are given in chapter 6.
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2. Theoretical background

2.1. Transformation

In design and control of the robotic system, transformation of frame, vector and forces
are of computational importance. In this chapter such kind of transformations will be
presented in details which build the basis for the next chapters.

2.1.1. Homogeneous transformation [14]

Transformation of frames

The transformation from frame {A} to frame {B} is described by the (4×4) homogeneous
transformation matrix ATB which comprises translation and rotation such that:

ATB = [AsB
AnB

AaB
APB] =


sx nx ax Px
sy ny ay Py
sz nz az Pz
0 0 0 1

 , (2.1)

where AsB , AnB and AaB are the unit vectors along the xB , yB and zB projected in frame
{A} while APB is the coordinate of the origin of frame {B} in frame {A}. The matrix ATB
can be interpreted as representing the frame {B} in the frame {A}.

Transformation of vectors

Suppose that BP is the homogeneous coordinates of the point P in frame {B}, then the
homogeneous coordinates of P in frame {A}will be as follows:

AP = AOAP = AOAOB + AOBP = APB + AsB
BPx + AnB

BPy + AaB
BPz = ATB

BP (2.2)

Translational and rotational transformation matrices

Translation a, b and c along axes x, y and z respectively is represented by transformation
matrix Trans(a, b, c). We see that the orientation is not varying. Therefore, the transfor-
mation is described as:

ATB = Trans(a, b, c) =


1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

 . (2.3)

7



2. Theoretical background

Let Rot(x, θ), Rot(y, θ) and Rot(z, θ) be the transformation matrices of a rotation around
x, y and z an angle θ respectively we have:

ATB = Rot(x, θ) =


1 0 0 0
0 Cθ −Sθ 0
0 Sθ Cθ 0
0 0 0 1

 (2.4)

ATB = Rot(y, θ) =


Cθ 0 Sθ 0
0 1 0 0
−Sθ 0 Cθ 0

0 0 0 1

 (2.5)

ATB = Rot(z, θ) =


Cθ −Sθ 0 0
Sθ Cθ 0 0
0 0 1 0
0 0 0 1

 . (2.6)

Properties of homogeneous transformation matrices

In this section some particular properties of homogeneous transformation matrix will be
mentioned. The homogeneous transformation matrix can be divided as:

ATB =


sx nx ax Px
sy ny ay Py
sz nz az Pz
0 0 0 1

 =

(
R P

0 0 0 1

)
, (2.7)

where R is the rotational matrix and column vector P represents the translation.
- Matrix R is orthogonal. That means the inverse of R is equal to its transpose.
- The inverse of ATB is equal to BTA.
- If a frame R0 undergoes k consecutive transformations and if each of them i, (i = 0, ..., k)
is determined in the current frame Ri−1 then the transformation 0Tk will be the following
multiplication:

0Tk =0 T1
1T2

2T3...
k−1Tk. (2.8)

- Let ATB is the transformation from frame {A} to frame {B}. If the frame {B} is subjected
to a transformation T which is determined in the frame {A} then the frame {B} will be
changed to {B′}with

ATB′ = TATB. (2.9)

The above properties will be exploited in the next chapters especially in the chapters re-
garding transformations operation.

2.1.2. Kinematic screw [14]

Definition of a screw

Suppose that we have a vector field V on R3. It is called a screw if there is a point OA and
a vector Ω and the following relation holds for every point OB in R3:

VB = VA + Ω×OAOB, (2.10)

8



2.1. Transformation

where VB is the vector of V at OB and Ω is called the screw of V. For a pair of points OX
and OY we can easily deduce that

VY = VX + Ω×OXOY . (2.11)

Therefore, the vectors VA and Ω determine a screw at an arbitrary point OA, which can be
combined into a single vector (6× 1) (

VA
Ω

)
.

We can see that a vector field of velocity of a rigid body has above characteristics and thus
it defines a so-called kinematic screw. For every point OA on the rigid body, the kinematic
screw at this point is composed of 2 parts. They are translational velocity VA and angular
velocity ω which are defined relatively in a fixed frame {R0}.

Transformation of screws

Suppose that kinematic screw in OA, origin of frame {A}, expressed in frame {A} is de-
scribed as AVA and AωA. In order to compute the kinematic screw in OB , BVB and BωB in
frame B we have the following relation:{

ωB = ωA
VB = VA + ωA × LA,B

, (2.12)

with LA,B is the vector from OA to OB . Therefore, we have following relation:(
VB
ωB

)
=

(
I3 −LA,B
O3 I3

)(
VA
ωA

)
, (2.13)

where I3 andO3 are the (3×3) identity matrix and zero matrix respectively. Projecting this
relation onto frame A, we achieve:(

AVB
AωB

)
=

(
I3 −APB
O3 I3

)(
AVA
AωA

)
, (2.14)

Because BVB = BRA
AVB and BωB = BRA

AωB multiplying 2 sides of Eq. (2.14) with BRA
we deduce that: (

BVB
BωB

)
=

(
BRA −BRAAPB
O3

BRA

)(
AVA
AωA

)
. (2.15)

From above relation the screw transformation from frame {B} to the frame {A} is as fol-
lows:

BTA =

(
BRA −BRAAPB
O3

BRA

)
, (2.16)

9



2. Theoretical background

Representation of forces

The combination of forces and moments acting on a body at a point OA can be reduced to

a wrench
(
fA
mA

)
which is composed of a force fA and a moment mA. We can see that the

vector field of moment is a screw where fA is the screw of the field. Therefore, the wrench
characterizes a screw. We note that(

BmB
BfB

)
=B TA

(
AmA
AfA

)
, (2.17)

where BTA is the screw transformation (6×6) from the frame {B} to the frame {A} defined
as Eq. (2.16). From that we have{

BfB = BRA
AfA

BmB =B RA(AfA ×A PB +A mA)
. (2.18)

And finally we obtain a more practical formula:(
BfB
BmB

)
=

(
BRA 0

BRA ×B PA BRA

)(
AfA
AmA

)
. (2.19)

This transformation will be utilized for force and torque calculation of force feedback in
the chapter tele-operation.

2.2. Cartesian impedance controller

In this section the general Cartesian impedance controller will be described since this con-
troller will be exploited in the chapter teleoperation for design of the slave controller and
in chapter stiffness identification to produce the unstable force field.

2.2.1. Impedance controller concept

By measuring human arm impedance Neville Hogan in [22] has proposed the hypothesis
that the human central nervous system controls the movement by generating the virtual
desired trajectory and modulating the impedance of the arm in order to produce motion.
This idea has been realized as Cartesian impedance controller which has shown certain
advantages. Instead of commanding force or position directly the controller commands
indirectly force and torque through the desired impedance, the desired motion and current
position of the robot. By tuning impedance parameters including stiffness damping and
inertia the controller can generate variable dynamics of the end effector as illustrated in
Fig. 2.1. In this fashion, when interacting with the surrounding environment the controller
can modulate different impedance parameters that satisfy requirements of interaction.
In the book [29], the model describing the motion of the robot is given by:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τext, (2.20)

10



2.2. Cartesian impedance controller

Figure 2.1.: The impedance controller principle [26]

where M(q) is the mass matrix which is symmetric, C(q, q̇) is Coriolis and centrifugal
matrix, g(q) is vector of gravitation and τ and τext are the joint torque and external torque
respectively.

The objective of the Cartesian impedance controller is to obtain the external force that
holds the following dynamical behaviour:

Λd ¨̃x+Dd
˙̃x+Kdx̃ = Fext, (2.21)

where x̃ = x − xd ∈ Rm the difference between the current position x and the desired
position xd of the robot end effector. Λd,Dd andKd are the symmetric and positive defined
matrices of desired inertia, damping and stiffness. In order to realize the controller an
interpolator is required which will generate the desired trajectory that the end effector of
the robot will follow. For example, the interpolator with minimum jerk trajectory can be
utilized.

The relation between task coordinate and joint coordinate is given by x = f(q). With
definition of Jacobian J(q) = ∂f(q)/∂q we obtain the relation between the velocity in task
coordinate and joint velocity as follows:

ẋ = J(q)q̇ , (2.22)

And applying derivative over time on 2 sides of the equation Eq. (2.22) the acceleration in
task coordinate depends on joint velocity and joint acceleration as:

ẍ = J̇(q)q̇ + J(q)q̈ . (2.23)

By assuming that Jacobian matrix is invertible we have

q̇ = J(q)−1x , (2.24)

and
q̈ = J(q)−1ẍ− J(q)−1J̇(q)q̇ . (2.25)

11



2. Theoretical background

Substituting Eq. (2.24) and Eq. (2.25) into equation Eq. (2.20) we achieve the following
equation

Λ(q)ẍ+ µ(q, q̇)ẋ+ J(q)−T g(q) = J(q)−T τ + Fext , (2.26)

with Cartesian inertia matrix

Λ(q) = J(q)−TM(q)J(q)−1 ,

and Cartesian Coriolis and centrifugal matrix

µ(q, q̇) = J(q)−T
(
C(q, q̇)−M(q)J(q)−1J̇(q)

)
J(q)−1 .

Substituting equation Eq. (2.21) into Eq. ( 2.26) the control input Fτ is as follows:

Fτ = J(q)−T τ = Fg(x) + Λ(q)ẍd + µ(q, q̇)ẋ− Λ(q)Λ−1d (Kdx̃+Dd
˙̃x) + (Λ(q)Λ−1d − I)Fext .

(2.27)
But the joint torque is actually applied to control the robot. Therefore, the control input is
given by

τ = J(q)TFτ = g(q) + J(q)T (Λ(q)ẍd + µ(q, q̇)ẋ)−
J(q)TΛ(q)Λ−1d (Dd

˙̃x+Kdx̃J(q)T (Λ(q)Λ−1d − I)Fext .
(2.28)

By choosing the desired inertia Λd equal to Λ(q) we can avoid the force feedback term
Fext that leads to the following control law:

τ = g(q) + J(q)T (Λ(q)ẍd + µ(q, q̇)ẋ−Dd
˙̃x−Kdx̃) . (2.29)

Looking at the control law we can see that it is composed of two important components.
The first one is the gravity compensation which purely support the robot against the grav-
itational force. The second term is for modulating the impedance force which is composed
of three elements that are the inertia force Λ(q)ẍx, the damping force Dd

˙̃x and the elastic
force Kdx̃. In practice, the Coriolis force µ(q, q̇)ẋ can be ignored to reduce computation be-
cause of its small effect in the controller. One problem arises is the occurrence of kinematic
singularity. This issue will be treated in the next section.

2.2.2. Kinematic singularity avoidance

The idea of kinematic singularity avoidance is that we define a measure of singularity.
When this quantity reaches a certain threshold the robot is controlled orthogonally to the
direction of singularity that drives the robot away from the singular position [29]. The
measure of singularity is a function of Jacobian matrix:

mkin(q) =
√
det(J(q)JT (q)) . (2.30)

Looking at this definition of kinematic singularity measure we can see that when kinematic
singularity occurs, i.e detJ(q) = 0, the measure of singularity is equal to zero. In order
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2.2. Cartesian impedance controller

to generate the force that drive the robot orthogonally to the direction of singularity a
singularity avoidance potential is defined as follows:

V m(q) =

{
ks(mkin(q)−m0)

2 mkin ≤ m0

0 mkin > m0
. (2.31)

The equation shows that when the robot approaches the defined area of singularity the
potential of the force field is activated. Therefore, the overall torque that controls the robot
is composed of the one of Cartesian impedance controller and the one caused by this po-
tential:

τ = τc − ∂V m(q)/∂q

= τc −
(

1− m0

mkin(q)

)∂f(q)

∂q

, (2.32)

where τc is the output from Cartesian impedance controller and f(q) is equal to det(J(q)JT (q)).
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3. Human Arm Identification

3.1. Geometrics Identification

3.1.1. The direct geometric model

The geometrics of human arm is modelled by two rigid bodies (the upper arm and the
forearm) with five degree of freedoms (three in the shoulder and two in the elbow). The
form of a rigid body system is considered to be invariant during movement [15] with
following properties:

Figure 3.1.: The human arm model [27]

• The segments are rigid bodies which have invariant form.

• The shoulder joint is a spherical joint which has the center of rotation not moving
relatively to the scapula bone and the upper arm.

• The elbow joint is a skew-oblique joint, the flexion-extension axis is not moving rel-
atively to the humerus bone, the pronation-supination axis is not moving relatively
to the forearm.

In Fig. 3.1 the direct geometric model [27] with three degrees of freedom in the shoul-
der can be attributed to anteversion-retroversionRy(q1), abduction-adductionRx(q2), and
external-internal rotation Rz(q3) of the humerus relative to the scapula and two degrees of
freedom in the elbow joint corresponding to flexion-extension rotationRy(q4) and pronation-
supination rotation Rz(q5) .
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3.1. Geometrics Identification

The direct geometric model defines the location of endpoint as a function of joint coor-
dinates, x = f(q).

T (q) = Ry(q1)Rx(q2)Rz(q3)Dz(a)Ry(q4)Rz(q5)Dx(dx)Dy(dy)Dz(dz) (3.1)

The direct geometric model depends on the geometric parameters a and d = [dxdydz]
T of

the human arm. In order to estimate those geometric parameters, the joint positions must
be identified.

Identification of joint position

Figure 3.2.: The joint identification approach [27]

Figure 3.3.: The placement of marker sets

In this section the joint position identification method in [27] and [15] will be utilized. To
identify the joint position between two links two marker sets must be placed on each link
like in Fig. 3.2 and Fig. 3.3. Each marker set has it own coordinate. The positions and
orientation of these two marker sets will be tracked by Vicon Motion Capture system. The
position of the joint will be calculated with the following formulas:

pS′ = pA + ARTW
AdAS , (3.2)
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3. Human Arm Identification

pS′′ = pB + BRTW
BdBS , (3.3)

where pA and pB ∈ R3×1 are the position vectors from the origin of the world coordinate
{W} to the origins of marker coordinates {A} and {B} expressed in the world coordinate
{W}. ARW and BRW ∈ R3×3 are the rotation matrices of the transformation from coor-
dinate {A} and {B} to the world coordinate {W}. AdAS and BdBS are the vectors from
origins of coordinate {A} and {B} to the joint position S in the marker coordinate {A}
and {B} respectively. Due to the assumption of rigid bodies, those vector are not varying.
AdAS and BdBS are determined in such a way that the integral of the quadratic error

∆pS =
1

N

N∫
0

[(pS′ − pS′′)T ((pS′ − pS′′)]︸ ︷︷ ︸
f(AdAS ,BdBS)

dk (3.4)

will be minimized. Where N is the number of the discrete time k. Substituting Eq. (3.2)
and Eq. (3.3) in Eq. (3.8) results in the cost function depending on the AdAS and BdBS as
follows:

f(AdAS ,
B dBS) = pTApA + pTA

WRA
AdAS − pTApB − pTAWRBBdBS

+AdTAS
ARW pA + AdTAS

AdAS − AdTAS
ARW pB

−AdTASARWWRB
BdBS − pTBpA − pTBWRAAdAS + pTBpB

+pTB
WRB

BdBS − BdTBS
BRW pA − BdTBS

BRW
ARTW

AdAS

+BdTBS
BRW pB + BdTBS

BdBS .

(3.5)

Through partial derivative of f(AdAS ,
B dBS) with respect to AdAS and BdBS we obtain the

gradient:

∂f(AdAS ,
B dBS)

∂AdTAS
= 2ARW pA + 2E3

AdAS − 2ARW pB − 2ARW
WRB

BdBS (3.6)

∂f(AdAS ,
B dBS)

∂BdTBS
= 2BRW pB + 2E3

BdBS − 2BRW pA − 2BRW
WRA

BdAS (3.7)

Setting the gradient to zero and rearranging the terms in matrix notation and integrating
it over time there will be a linear equation:∫ N

0
Ddk.z =

∫ N

0
bdk , (3.8)

where D ∈ R6×6 and z, b ∈ R6×1 as following:

D =

(
E3 −ARWWRB

−BRWARTW E3

)
,

z =

(
AdAS
BdBS

)
,

b =

(
ARW (pB − pA)
BRW (pA − pB)

)
.
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3.1. Geometrics Identification

Solving the Eq. (3.8) we obtain the joint positions AdAS and BdBS with respect to the mark-
ers coordinates {A} and {B}, where the quadratic mean value ∆pS is minimized.

z =

(
ARW (pB − pA)
BRW (pA − pB)

)
=
(∫ N

0
Ddk

)−1(∫ N

0
bdk
)

(3.9)

The method is applied only for two cutting axes. In the case of human arm, we need
three marker {1}, {2} and {3} as shown in Fig. 3.4. Marker set {1} is placed somewhere
near the shoulder, marker sets {2} and {3} are placed on upper arm and forearm respec-
tively. The position of shoulder joint is calculated through 1d1S and 2d2S and the position
of elbow is computed through 2d2E and 2d3E .

Constant parameters

Through the positions of shoulder joint in the marker coordinate {2} 2d2S and the rotation
matrix of the marker coordinate {2} in the world coordinate {W}, RTW the homogeneous
transformation matrix from the world to the shoulder coordinate will be computed as
follows:

WTS =

(
E3 p2 + WR2

2d2S
0 1

)
(3.10)

Therefore the position of the shoulder is known. It is noticed that when the geometrics is
identified the subject has to sit in the way that the rotation matrix of the shoulder coordi-
nate in the world coordinate equals the identity matrix. Otherwise the above calculation
will be wrong.

The length of the upper arm a can be obtained by using Euclidean norm of the sum
vector of 2d2S and 2d2E

a =
∥∥−2d2S +2 d2E

∥∥
2
. (3.11)

The coordinate of the forearm {U} is located at the marker coordinate {3}. The zU is iden-
tical with the rotational axis q5, the positive direction points to the shoulder. yU has the
same direction of yS at the resting position shown in Fig. 3.1, and xU defines the full coor-
dinate. The transformation matrix 3TU from marker coordinate {3} to {U} is determined
as follows:

3TU =

(
URT3 0

0 1

)
, (3.12)

where the rotation matrix UR3 depends on the way of placing marker set {3}. In the
experiment it is given as:

3RU =

 0 0 −1
−1 0 0
0 1 0


The vector d from the elbow to the marker set 3 expressed in the {U} coordinate is com-
puted as:

d = Ud3E = UR3
3d3E , (3.13)
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3. Human Arm Identification

{W}

{3}

{2}

{1}

S

E

{U}

Figure 3.4.: The geometric parameters and the transformations in geometric identification
[27]

with constant parameters d and a from Eq. (3.11) and Eq. (3.13) the direct geometrics of the
arm T (q) defined from Eq.(3.1) for each point of time k can be calculated as a function of
q. On the other hand, we can see that, the direct geometrics of the human arm STU can be
computed through the measured position of marker set 3, WT3 from the camera system as
follows:

STU = WT TS
WT3

UT T3 (3.14)

This value will be used as the desired transformation T (d) of T (q) in the Eq. (3.1) and will
be utilized in inverse geometric model.

3.1.2. The inverse geometric model [27]

The inverse geometric model is the mapping from Cartesian coordinates to the joint coor-
dinates:

q = f−1(x)

In order to calculate inverse geometrics of human arm, the same optimization method
described in [27] is exploited. The joint coordinates are calculated by means of minimizing
the model error which is defined by a cost function:

argmin(f(q)),
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3.1. Geometrics Identification

where the cost function f(q) which measures the difference between the desired trans-
formation matrix and the direct geometrics is a Frobenius norm

f(q) =
∥∥T (q)T−1d − E4

∥∥
F
, (3.15)

where Td is the transformation matrix of the U coordinate to the shoulder coordinate
which is computed as Eq. (3.14) and the T (q) is the direct geometrics calculated according
to the Eq. (3.1).

That is a non-linear and unconstrained optimization problem which can be solved by a
function fminunc in MATLAB Optimization Toolbox. The gradient of the cost function is
given to reduce the computation time of the algorithm. In this way the inverse geometrics
can be computed on-line when the initial values and the geometric information, includ-
ing the length of the upper arm a and force arm d are provided. The local optimum is
unavoidable especially when the arm configuration is at singular positions. However in
other cases the result was good enough.

3.1.3. Experiment setup and result

The star markers are placed on the subject arm as can be seen in Fig. (3.5) and the sub-
ject moves his arm in the space according to the virtual arm movement in the simulation
environment through a predefined set of configurations shown in Table 3.1 and 3.2.

(a) The virtual arm (b) The human arm movement

Figure 3.5.: Geometrics identification setup

Table 3.1.: The start predefined arm configurations
Configurations q1(rad) q2(rad) q3(rad) q4(rad) q5(rad)

Qstart1 0 0 0 0 0
Qstart2 0 0 0 0 0
Qstart3 0 0 0 pi/2 0
Qstart4 0 0 0 pi/2 0
Qstart5 0 0 0 pi/2 0
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3. Human Arm Identification

Table 3.2.: The final predefined arm configurations
Configurations q1(rad) q2(rad) q3(rad) q4(rad) q5(rad)

Qfinal1 pi/2 0 0 0 0
Qfinal1 0 pi/2 0 0 0
Qfinal1 0 0 pi/4 pi/2 0
Qfinal1 0 0 0 0 0
Qfinal1 0 0 0 pi/2 pi/4

Table 3.3.: Joint position identification result
1d1S

2d2S
2d2E

3d3E
x (m) -0.078 -0.219 0.067 -0.198
y (m) -0.554 0.048 -0.021 0.0175
z (m) 0.662 -0.039 -0.026 -0.024

From the result of joint identification in Table 3.3 the constant parameters a and d can
be computed as Eq. (3.11) and (3.13) with a = 0.295m and d = [ dx dy dz ] = [ −0.018m
−0.024m 0.198m ]

The geometric identification of human arm is quite precise with high repeatability of
constant parameters a and d when the subject moves his arm correctly. However during
the arm movement if the subject moves his shoulder or skin where the makers are placed
moves relatively to the arm then the error will be increased. Another possible error comes
from the Vicon camera system when it cannot recognize all the markers at some point of
arm movement or recognize the marker coordinates wrongly. In order to avoid this error
the camera system must be calibrated precisely and the working range of each camera
should cover the movement of the arm during identification phase. The time for this task
lasts approximately 5 minutes.

3.2. Inertial parameter identification

Inertial parameters of human arm are very important for investigation of human arm dy-
namics. However until now in addition to physiological methods, there is no reliable non-
invasive method to do that. In the past, some methods have been considered like using
measurement of human arm volume and using some statistic data from physiology, or
using the human arm dynamics model with assumption that human arm and body are
the system of rigid body. However that assumption is violated because each joint of hu-
man arm is a flexible joint and the body itself is not rigid enough. That causes the force
and torque under the chair when the subject moves his arm not exactly match the dynam-
ics. In this work a simple method will be proposed to identify all those standard inertial
parameters which are used for describing the human arm dynamics.
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3.2. Inertial parameter identification

3.2.1. Formulation of the method

Modelling of the arm inertial parameter

The human arm includes two parts, the upper arm and lower arm. We assume that each
part of the arm has geometry like a cylinder with the length, diameter and the symmetric
density distribution as depicted in Fig. 3.6. According to this assumption, we can have
following inertial parameters of each link:

Figure 3.6.: Link model

1. The mass of the link: m

2. The mass moment: mx = my = 0, mz

3. The moment of inertia: Ix = Iy, Iz , Ixy = Ixz = Iyz = 0

The inertia matrix:

ml2/3 0 0
0 ml2/3 0
0 0 mr2/2


From this model we only need to identify four inertial parameters for each link of the
human arm. Those parameters have the main contribution to the dynamics of the human
arm.

Mathematical formulation

When the subject sits on the chair like in Fig. 3.8 and 3.10 we consider the arm and the body
as three serial links system and we can use the backward Newton- Euler computation [14]
to calculate the force and the torque acting on each joint and the sensor under the chair in
the static case.
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3. Human Arm Identification

Figure 3.7.: Forces and moments on link j [14]

we consider a link j with the origin Oj of its frame Rj is located on its joint axis. External
force on link j, Fj , and moment of external forces on link j about Oj , Mj , are given as
follows: {

Fj = fj − fj+1 +Mjg − fej
Mj = mj −mj+1 − Lj+1 × fj+1 + Sj ×Mjg −mej

. (3.16)

where fj is the force exerted on link j by link j − 1; Mj is the mass of link j; g is the vector
of gravitational acceleration; mj is the moment about Oj exerted on link j by link j − 1;
Lj+1 is the position vector from Oj to Oj+1; Sj is the vector OjGj from Oj to the center of
mass of the link, Gj ; mej and fej are the moment about Oj and the force exerted by link j
on environment. In our consideration, there is no force or moment exerted by link j on the
environment. Therefore, both mej and fej are equal to zero. In the stationary case and we
have Fj = 0 and Mj = 0. Hence, from Eq. (3.16) we deduce that{

fj = fj+1 −Mjg
mj = mj+1 + Lj+1 × fj+1 − Sj ×Mjg

. (3.17)

Applying this calculation we can compute recursively backward the wrench acts the el-
bow joint, the shoulder joint and the last joint located at the sensor frame by initializing
f4 = 0 and m4 = 0.

The force and torque act on the elbow joint:{
f3 = −M3g
m3 = −S3 ×M3g

(3.18)

where M3 is the mass of the forearm. The force and torque act on the shoulder joint:{
f2 = f3 −M2g = −(M2 +M3)g
m2 = m3 + L3 × f3 − S2 ×M2g = −S3 ×M3g − L3 ×M3g − S2 ×M2g

(3.19)

where the M2 is the mass of the upper arm. The force and torque act on the sensor under
the chair:{

f1 = f2 −M1g = −(M1 +M2 +M3)g
m1 = −S3 ×M3g − L3 ×M3g − S2 ×M2g − L2 × (M2 +M3)g + S1 ×M1g

(3.20)
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3.2. Inertial parameter identification

where M1 is the mass of the rest of the human body. Finally, the wrench at the sensor is as
following: {

f = −(M1 +M2 +M3)g
m = −(L2 + L3 + S3)×M3g − (L2 + S2)×M2g − S1 ×M1g

(3.21)

Looking at the relation of the wrench with the mass of upper arm and the lower arm and
their center of mass, by changing the configuration of the arm to predefined positions we
can calculate S3 ×M3g and S2 ×M2g, where S3 is the length of vector S3 and S2 is the
length of vector S2. If we know S3 and S2 the mass of the forearm and upper arm can be
calculated. From those values the other inertial parameters can be calculated.

3.2.2. Experiment setup and result

The subject sits on a chair in such a way that his shoulder and body is fixed relatively with
the chair by using a belt and puts his arm at the different configurations defined in the
table 3.4. The arm configuration will be tracked by the camera system. When the subject

Table 3.4.: The arm configurations for inertial parameter identification
Configurations q1(rad) q2(rad) q3(rad) q4(rad) q5(rad)

1 0 pi/2 0 0 0
2 0 pi/2 0 pi/2 0
3 pi/2 0 0 0 pi/2

puts his arm correctly the recording of the torque under the chair will start.

(a) Configuration 1 (b) Configuration 2

Figure 3.8.: Configurations 1 and 2
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Figure 3.9.: Changes of torque when the subject is moving his arm from configuration 1 to
2

The difference of the moment about the x axis on the sensor is : S3 ×M3g.

Figure 3.10.: Configuration 3
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Figure 3.11.: Changes of torque when the subject is moving his arm from configuration 1
to 3

For configurations 1 and 2 as shown in Fig. 3.8 the changes of measured torque under
the chair is illustrated in Fig. 3.9. The mean value of torque of 500 beginning samples and
500 samples at the end of the file will be extracted to calculate the changes of the torque.

Similarly, the subject moves his arm from configuration 1 to configuration 3 as can be
seen in Fig. 3.8 and 3.10 and the changes in torque about the x axis is shown in Fig. 3.11.
The difference of the moment about x axis on the sensor between configuration 1 and 3 is
: S3×M3g+L3×M3g+S2×M2g where L3 is the length of vector S3, the length of upper
arm.

Table 3.5.: The measured inertial parameters

Inertial Parameters The force arm The upper arm
M (kg) 1.5278 1.6975
mz (kgm) 0.2911 0.2731
Ix, Iy (kgm2) 0.0553 0.0444
Iz (kgm2) 0.00068 0.0014

Using geometric identification of the human arm we can have the length of the upper
arm and the lower arm L3 = a = 0.295m, L4 = dz + ∆z = 0.198 + 0.130 = 0.3280m,
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3. Human Arm Identification

where the ∆z is the distance from the marker 3 to the end of the hand. Alternatively,
we can measure those parameters directly without using a camera system. The radius of
the upper arm and the lower arm will be directly measured Rua = 0.04m, Rla = 0.03m.
Using the data from physiological statistics [13] we can have S3 = 57

100L4 and we assume
that S2 = 57

100L3. From that we can calculate the M2 and M3 and the remaining inertial
parameters. Table 3.5 above shows the result of standard inertial parameters. We can
see that the mass of lower arm and the upper arm are 1.53 kg and 1.70 kg. However the
accuracy of the method highly depends on the posture of the subject when he moves his
arm between different configurations. The subject should only move his arm correctly and
keep the rest of the body the same for all configurations. And even the breath of the subject
can change the measured torque significantly. Therefore the whole measurement should
be done repeatedly 6 times to reduce the mentioned errors. It is noted that this method is
only an approximation of human inertial parameters.

3.2.3. Mass matrix in Cartesian coordinate

The mass matrix is calculated as follows:

1. Calculate the mass matrix in the joint space M(q) .

2. Calculate the mass matrix in the Cartesian space Mx(q) = J(q)−TM(q)J(q)−1 with J
is Jacobian matrix.

3.3. Stiffness identification

3.3.1. Human arm dynamic model in Cartesian coordinate

In this section the dynamic model of the human arm in Cartesian coordinate [26] will be
described and analysed for endpoint stiffness identification. The Lagrange formulation of
human arm motion in joint coordinate is given as follows:

M(q)q̈ + C(q, q̇)q̇ + g(q) + h(q, q̇) = τ , (3.22)

where M(q) is the mass matrix, C(q, q̇) is the Coriolis centrifugal matrix, g(q) is the grav-
itation vector, h(q, q̇) is the torque generated by the muscle, and τ is the external torque
applied to the arm. The dynamic model of the human arm in Cartesian coordinates is
given as

Mx(q)ẍ+ Cx(q, q̇)ẋ+ gx(q) + hx(q, q̇) = F , (3.23)

where

Mx(q) = J(q)−TM(q)J(q)−1

Cx(q, q̇) = J(q)−T
(
C(q, q̇)−M(q)J(q)−1J(q)

)
J(q)−1

gx(q) = J(q)−T g(q)

hx(q, q̇) = J(q)−Th(q, q̇) ,
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3.3. Stiffness identification

with J(q) is the Jacobian matrix of the arm which relates the hand position with the joint
coordinates q of the arm.

We assume a small displacement ∆x of the hand around an equilibrium position x∗. we
have:

x = x∗ + ∆x (3.24)

ẋ = ẋ∗ + ∆ẋ (3.25)

ẍ = ẍ∗ + ∆ẍ = ∆ẍ (3.26)

Mx(x) = Mx|x∗ +
∂Mx

∂x
|x∗∆x (3.27)

Cx(x, ẋ) = Cx|x∗ +
∂Cx
∂x
|x∗∆x+

∂Cx
∂ẋ
|x∗∆ẋ (3.28)

gx(x) = gx|x∗ +
∂gx
∂x
|x∗∆x (3.29)

hx(x, ẋ) = hx|x∗ +
∂hx
∂x
|x∗∆x+

∂hx
∂ẋ
|x∗∆ẋ (3.30)

F = F ∗ + ∆F (3.31)

Substituting all above equations into the Eq. (3.23) and eliminating the very small terms
containing ∆x∆ẍ, ∆x∆ẋ and ∆ẋ∆ẋ the local linearised dynamic model of human arm in
Cartesian coordinate is as follows:

Mx∆ẍ+Dx∆ẋ+Kx∆x = ∆F (3.32)

where

Mx = Mx|x∗

Dx = Cx|x∗ +
∂hx
∂ẋ
|x∗

Kx =
∂gx
∂x
|x∗ +

∂hx
∂x
|x∗

Looking at Equ. (3.32) we can see that the dynamics of the arm depends on Cartesian
impedance which are Cartesian inertia Mx, Cartesian damping Dx and the Cartesian stiff-
ness Kx. From this equation the static stiffness can be measured by perturbing position
of the hand with a small displacement and measuring the static restoring forces before
and after perturbation. This force is equal to the stiffness force because the inertial and the
damping force in the static cases are zero. Therefore, the stiffness coefficient can be derived
by dividing the force by the displacement.
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3.3.2. The experiment setup

Vxworks 1Vxworks 2

LinuxVicon Windows
HMI

Delsys

Figure 3.12.: The overview of the system

The whole system described in Fig. 3.12 consists of 2 real-time operating systems Vxworks.
Vxworks 1 is used for controlling HMI hardware system including 2 lightweight robot
arms while Vxworks 2 is used for collecting EMG data through surface EMG sensors Del-
sys Trigno Wireless System. In addition, this second real-time machine is connected with a
windows operating system which is responsible for operating the Vicon camera system. A
Linux operating system is used for monitoring and tuning parameters and visualizing the
hand positions and perturbation information for subject participating in the experiment. A
healthy subject is seated on a chair with a belt that helps to constrain the subjects shoulder
position as shown in Fig. 3.18a. The subject’s right elbow is supported by a rope attached
to the ceiling that increases the ability of the arm to modulate the arm stiffness in the plane
more flexibly and reduces the muscular fatigue during the experiment. The right forearm
of the subject is inserted in a cuff that will be mounted on the end effector of a lightweight
robot as can be seen in Fig. 3.1. The role of the cuff is to reduce the relative movement be-
tween the wrist and the connecting point due to the elasticity of the skin. The interaction
force and moment between the hand will be recorded by a force torque sensor placed at
the end effector of the robot.
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3.3. Stiffness identification

Stiffness identification

Figure 3.13.: EMG electrode placement [27]

Table 3.6.: EMG electrodes [27]
EMG electrode number Abbreviation Name

1 PMK Pectoralis major clavicular
2 DK Deltoid clavicular
3 BLang Biceps long
4 BRAD Brachioradialis
5 DS Deltoid scapular
6 TLang Triceps long
7 TLat Triceps lateral
8 TM Triceps medial

Firstly, the subject has to place the EMG electrodes on his right arm to certain muscle
groups shown in Fig. 3.13 and Table 3.6. The reason for selecting those muscle groups is
that they mainly contribute to the movement of the arm. For example, the brachioradialis
muscle acts to flex the forearm around the elbow joint. It can also contribute to supination
and pronation of the forearm. Biceps, in addition to flexing and supinating the elbow joint
it can also produce shoulder motion. In this experiment only the muscular activity of long
biceps is measured. Triceps, a three-head muscle which includes long head triceps, lateral
head triceps and medial head triceps is mainly responsible for extension of the elbow joint.
All muscular activities on three subgroups of triceps are also recorded. At the shoulder
joint the deltoid clavicular muscle and the deltoid scapular muscle are responsible for arm
abduction on the frontal plane. This muscle is the antagonistic muscle of the pectoralis
muscle which contributes to the adduction motion of the arm. By co-contracting all those
muscles the stiffness of the arm will be increased to fulfil the task.
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Figure 3.14.: The perturbation profile

In order to measure the human arm stiffness the perturbation of the subject’s hand has to
satisfy some strict requirements:
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3.3. Stiffness identification

1. The perturbation must be fast and stiff enough. But with a lightweight robot the
perturbation cannot be fast enough to exclude all reflexes. In this experiment the time
of perturbation is about 250 ms and the joint position controller is used to control the
robot.

2. The magnitude of perturbation must be small. In this experiment that value is 2 cm.
The reason of this requirement is that the stiffness depends strongly on the config-
uration of the arm. This small displacement guarantees small changes of the arm
configuration and we can assume that the stiffness is the same in the perturbation
region.

3. The perturbation is done randomly in eight directions in the plane. That will avoid
voluntary reaction of the subject.

To realize the perturbation, the lightweight robot uses an interpolator with minimum
jerk trajectory to move the hand of the subject. To move from starting location xs to final
location xf in time d in the plane, the minimum jerk trajectory [21] would be:

x(t) = xs + (xf − xs)(10( td)2 − 15( td)4 + 6( td)5)

In Fig. 3.14 it shows a typical perturbation in y direction with magnitude of 2 cm and
duration of 250 ms

Force fields

The idea of using force fields is to force the subject to do different co-contraction levels that
will be proportional to muscular activities of the arm. It is expected that in order to fulfil a
certain task the muscular activities of the arm will be tuned according to the levels of the
force fields. Two different force fields are used in the experiment, including divergent force
field and velocity force field. They are similar to the force fields used in [16].

1. Divergent force field

This force field is proportional to the distance from the predefined position and the
current position of the hand and has the direction from the predefined position to
the current position of the hand. Mathematically, the force is computed as follows:

Fdivergent = −β.K∆X ,

where β is the level of the force field and ∆X is the deviation of the end effector with
respect to the predefined position. This force field acts like the spring with a negative
stiffness that pushes the subject’s hand away from the predefined position. There-
fore, the subject must do co-contraction to counteract this force. In order to realize
this force field an impedance controller with negative gains in x and y direction is
exploited. However we have to cancel out the damping component in the controller.
Fig. 3.15 shows forces at different locations of the end effector relative to the central
predefined position.

Nevertheless, when the end effector is close to the predefined equilibrium posi-
tion the force is very small that can make the subject release his muscles from co-
contraction. To prevent this phenomenon a velocity force field will be implemented at
the central area to force the subject to keep the co-contraction level.
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3. Human Arm Identification

Figure 3.15.: The divergent force field

2. Velocity force field

Figure 3.16.: The velocity force field [17]

During the control of the hand position the subject has to move his hand to the pre-
defined equilibrium position. The velocity force field is designed in such a way that
will turn away the intended velocity of the subject’s movement. Mathematically, the
force satisfying this purpose is as follows:

Fvelocity = −β.KV

where β is the level of the force field, V is the velocity of the end effector of the
lightweight robot and the gain K is chosen as:

K =

[
13 −18
−18 13

]
.
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3.3. Stiffness identification

Fig. 3.16 shows forces of this force field at different velocities of end effector.

By combining both force fields we can force the subject to keep the certain level of mus-
cular activities by tuning the coefficient β. In this experiment four levels of the force fields
are set and the end point stiffness of the arm is measured with respect to these four levels
of the force field.

The task

Figure 3.17.: The graphical representation to the subjects

There is one screen that displays the current position of the hand depicted as the blue
point and the predefined position represented as the green point like in Fig. 3.17. The
subject has to move its hand to the predefined position while both force fields are active.
When the hand is in the region of 3 mm from the predefined position (the red circle) for
a random time between 1 and 1.5 seconds, the lightweight robot will perturb its hand
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3. Human Arm Identification

randomly in one of eight directions. After that it has to move out the pink circle and relax
his arm muscles and repeat the task. The purpose of this is to make his muscular activity
distinguishable with different levels of the two force fields.

(a) The front of subject (b) The behind of subject

Figure 3.18.: The subject position

The whole procedure

1. Preparation

At the beginning, the subject’s hand is mounted to the cuff as illustrated in Fig. 3.19
and the posture of the subject is shown in Fig. 3.18. Then lightweight robot is set com-
pliantly to find out the good configuration for perturbation. The subject is instructed
to do the task as described in the above section.

Figure 3.19.: The position of the arm in the cuff
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3.3. Stiffness identification

Figure 3.20.: The whole procedure of stiffness measurement

After training for a few perturbations the program will increase the level of double
force fields in order to find out the maximum of the double force fields that the sub-
ject can stabilize successfully. Then the unstable force field will be designed for four
different levels.
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3. Human Arm Identification

Afterwards, the subject is required to be totally relaxed and the program will record
the EMG data of that state for two seconds with the sampling frequency 2 KHz. This
data is used for calculating EMG base noise.

2. Doing experiment

A full experiment with four levels of the force fields, eight directions of perturbations
and five repetitions will be performed. The flow chart of the program is illustrated
in Fig. 3.20. First, the robot moves the hand to the predefined position in the state
MovHome-desired-pos-count-p. Then it goes to the state Moving-out where the subject
has to move his hand out of the pink circle for 0.5 second. When he does that the
state Unstable-Force-Field will be activated at which he has to control his arm against
the force fields to reach the predefined position. Once he successes with controlling
his arm staying in the red circle for a random time between 1 and 1.5 seconds the
state Recording will be activated to start recording the EMG signals, position of the
robot end effector and force torque at the end effector. Then the state Perturbation is
active. After perturbating the arm for 400 ms the program will stop recording and
go back to the state MovHome-desired-pos-count-p. This loop is repeated 160 times
corresponding to 160 perturbations. This phase lasts about 45 minutes.

3.3.3. Data processing

Stiffness calculation

We assume that the dynamics of the hand movement follows a second order model as
described in section 3.27:

M(t)Ẍ(t) +D(t)Ẋ +K(t)(X(t)−X0) = ∆F (t), (3.33)

where X(t) is the hand position vector, and X0 represents the equilibrium position.
M(t), D(t), and K(t) are hand inertia, viscosity and stiffness matrices, respectively. In
order to estimate the endpoint stiffness, the arm is perturbed by a small displacement de-
scribed in section 3.14. In this thesis the static stiffness is considered. We take the time
windows before perturbation and after perturbation in such a way that the velocity and
the acceleration of the hand are smaller than certain thresholds in order to guarantee that
the inertial force and the viscous force are very negligible. Under this condition we simply
have:

Kstatic(X(t)−X0) = ∆F (t) (3.34)

By looking at each perturbation and selecting suitable time windows as shown in Fig. 3.21
the restoring force ∆Fi and the displacement ∆Xi will be extracted. The distance between
two blue dash lines and between two green dask lines in Fig. 3.21 represent the selected
time windows before perturbation and after perturbation. The distance between two black
dash lines of the top plot in Fig. 3.21 shows the displacement of the perturbation while that
of the last plot indicates the difference of the force before and after perturbation. Iterating
for all perturbations a regression matrix W is formed from all displacement and the out-
put y is formed from all restoring forces. Finally, the stiffness parameter is computed as

36



3.3. Stiffness identification

follows:
Kstatic = (W TW )−1W T ∗ y (3.35)
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Figure 3.21.: The perturbation characteristics
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3. Human Arm Identification

3.3.4. Results and discussion

Table 3.7.: The symmetric components of Cartesian stiffness matrix of subject 1

Co-contraction level Stiffness Matrix
K11 (N/m) K12 (N/m) K21 (N/m) K22 (N/m)

1 830 -171 -171 260
2 1041 -200 -200 281
3 1160 -183 -183 380
4 1159 -231 -231 352

Table 3.8.: The anti-symmetric components of Cartesian stiffness matrix of subject 1

Co-contraction level anti-symmetric component
K11 (N/m) K12 (N/m) K21 (N/m) K22 (N/m)

1 0 -54 54 0
2 0 -69 -69 0
3 0 -57 57 0
4 0 -80 80 0

Table 3.9.: The symmetric components of Cartesian stiffness matrix of subject 2

Co-contraction level Stiffness Matrix
K11 (N/m) K12 (N/m) K21 (N/m) K22 (N/m)

1 923 -142 -142 303
2 823 -142 -142 378
3 859 -132 -132 387
4 964 -167 -167 421

Table 3.10.: The anti-symmetric components of Cartesian stiffness matrix of subject 2

Co-contraction level anti-symmetric component
K11 (N/m) K12 (N/m) K21 (N/m) K22 (N/m)

1 0 -84 84 0
2 0 -83 83 0
3 0 -90 90 0
4 0 -52 52 0
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Figure 3.22.: The stiffness ellipses for different co-contraction levels of subject 1

The stiffness matrix calculated will be divided into 2 parts, including symmetric and anti-
symmetric parts similar to [20].

Ksymmetric =
(Kestimated +K ′estimated)

2
(3.36)

Kanti−symmetric =
(Kestimated −K ′estimated)

2
(3.37)

The symmetric matrix represents the elastic force which is related to the conservative
energy which is stored in tendons or in muscles of the arm. The anti-symmetric matrix
represents the the non-conservative energy which is caused by the inter-muscular feed-
back. Fig. 3.22 and 3.23 show the stiffness estimated for different force field levels from 2
different subjects.

Each ellipse shows the restoring force with respect to the displacement of one unit.
Fig. 3.22, 3.23 and 3.24 and Tables 3.7, 3.8, 3.9 and 3.10 indicate the following character-
istics of the arm stiffness:

• The conservative component of the stiffness matrix is much bigger than the non-
conservative one both in size (approximately 10 times). This indicates that the arm
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Figure 3.23.: The stiffness for different co-contraction levels of subject 2

is predominantly spring-like. It is consistent with the result found by Mussa Ivaldi
in [20]. This property can be explained by the elastic property of the tendons and
muscles of the arm. In terms of energy consumption, this property allows saving
energy and releasing it during movement [11]

• The stiffness ellipse increases in size according to the force field level and keeps al-
most the same orientation (Fig. 3.22, Fig. 3.23). It seems that the central nervous
system modulates the stiffness by increasing overall stiffness using co-contraction
of all muscles rather than selecting some of them to counteract the force field. This
strategy is reasonable because the force field is divergent in all directions in the plane
for the first measurement.

• The learning is quite clear in the second measurement in Fig. 3.24 . With the same
setup for the force field levels and the same location of the hand, the later stiffness
is significantly smaller in major direction. This shows that the subject keep the same
level of stiffness in minor direction and reduce the stiffness in major direction to
minimize the metabolic cost. The further investigation of learning process with the
force field is not the scope of this thesis.
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Figure 3.24.: The indication of learning in control stiffness. Four outside ellipses are earlier
stiffness while four inside ellipses are the later stiffness

However we can see that the stiffness of subject 2 at four different levels of force field
is not so differentiable. It can be explained that the subject might apply the quite similar
strategy for different levels of force fields. This is possible because the direction and the
levels of force fields are randomly chosen. For example, it can apply the quite high co-
contraction levels of muscle even if the force field level is small. This can be reduced to a
certain extend by forcing the subject to relax before trying a new task.
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4. Calibration of human arm stiffness and
surface EMG signals

In this chapter processing of EMG signals will be presented. Then the discussion of corre-
lation between EMG data and endpoint stiffness is given. Consequently, two methods of
Least Squares Regression and Regularized Least Squares to estimate the endpoint stiffness on-
line from EMG signals will be described. Finally, a simple practical method of linearisation
of the endpoint stiffness according to the sum of all EMG signals is also mentioned.

4.1. EMG processing

Surface EMG signal is measured by EMG electrode placed on the skin. This signal is su-
perposition of motor unit action potentials. It is noted that this signal is well correlated
with the force the muscle is exerting.
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Figure 4.1.: The raw EMG signal of one channel
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Figure 4.2.: The processed EMG
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4. Calibration of human arm stiffness and surface EMG signals

The raw EMG signals of eight electrodes are recorded before each perturbation. Fig. 4.1
illustrates one example of those signals. It can be seen that the signal has an offset value
which should be subtracted. The following processing steps are applied to raw data:

1. Bandpass filter: Filter the data with bandpass filter with frequency range of [25-500]Hz.
A Butterworth 3rd order filter in Matlab is used to realize this filter. After this step
the offset of the signal is removed as shown in Fig. 4.2 .

2. Averaged rectified value: The signal from the first step is further processed using full
wave rectification. Then Moving average filter is employed. The result is presented in
Fig. 4.2.

3. Mean calculation: Calculate the mean value of the time window 50 ms before pertur-
bation and subtract the base noise.

The EMG data when the subject is totally resting is used to calculate the base noise. This
value is then subtracted for each perturbation.
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Figure 4.3.: The EMG signals (number according to the Table 3.6 at page 28)

After processing the EMG data for each level of the force fields, the result is represented
in Fig. 4.3. The horizontal axis represents electrodes number according to the definition
in Table 3.6 and the columns for each number represent the average EMG signals corre-
sponding four different force field levels. It is shown that the subject used biceps long head,
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4.2. Least Squares Regression

triceps long head and tripcep medial more than other muscle groups in order to stabilize his
hand in the plane. In each muscle group it is quite clear that the muscular activity increases
monotonically to the force field level, except EMG2. Table 4.1 shows the correlation val-
ues between the stiffness elements and EMG signals. We can see that K11 and K22 have
good correlation with EMG signals as indicated by symbol ”*” in the table. For not aster-
isk cell’s Ho can be rejected, that the correlation is not significant. Therefore we assume a
linear model between stiffness elements K11 and K22 and EMG signals (8× 1).

Table 4.1.: The correlation value between stiffness elements and EMG signals
Correlation EMG1 EMG2 EMG3 EMG4 EMG5 EMG6 EMG7 EMG8

K11 0.92 -0.98* 0.99* 0.98* 0.92 0.97* 0.99* 0.99*
K12 0.14 0.24 -0.07 -0.18 -0.13 -0.10 0.01 -0.16
K21 -0.51 0.85 -0.79 -0.86 -0.83 -0.82 -0.73 -0.84
K22 0.88 -0.99* 0.99* 0.99* 0.94 0.98* 0.99* 0.99*

4.2. Least Squares Regression

4.2.1. Concept

We observe a system which generates scalar output y ∈ R from input vector x ∈ Rd. By col-
lecting data in the working range of the system, we obtain a set of data S = {(x1, y1),...,(xN , yN )}.
From this data set we have to find a function f : Rd 7→ R that can predict the output of the
system for any arbitrary input vector x. In the case of linear relation, we have prediction
as follows:

ŷ = wTx, (4.1)

where w is a weight vector in Rd. The mean squared error between prediction output and
actual output is as follows:

MSE =
1

N

N∑
1

(yi − ŷi) =
1

N

N∑
1

(yi − wTxi). (4.2)

We have to find the w value such that the objective function as mean squared error is
minimized. This leads to a convex optimization problem of w as:

arg min
w
MSE(w) =

1

N

N∑
1

(yi − wTxi). (4.3)

By setting the partial derivative of MSE(w) with respect to w equal to zero:

∂MSE(w)

∂w
= 0, (4.4)

we achieve the solution of Eq. (4.3) as follows:

w = (XTX)−1XTY, (4.5)
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4. Calibration of human arm stiffness and surface EMG signals

where

X =


xT1
xT2
...
xTN

 , Y =


y1
y2
...
yN

 .

4.2.2. Application of Least Squares Regression

In this particular problem, mapping EMG signals to the human arm endpoint stiffness, we
have a process with input consisting of 8 EMG signals and output is one of four elements
of the stiffness matrix. With four co-contraction levels we arrange data as follows:

K11 =


K11/coco1

K11/coco2

K11/coco3

K11/coco4

 ,K12 =


K12/coco1

K12/coco2

K12/coco3

K12/coco4

 ,K21 =


K21/coco1

K21/coco2

K21/coco3

K21/coco4

 ,K22 =


K22/coco1

K22/coco2

K22/coco3

K22/coco4

 ,

X =


EMG1/coco1 EMG2/coco1 · · · EMG8/coco1 1

EMG1/coco2 EMG2/coco2 · · · EMG8/coco2 1

EMG1/coco3 EMG2/coco3 · · · EMG8/coco3 1

EMG1/coco4 EMG2/coco4 · · · EMG8/coco4 1



w11 =


w1/11

w2/11

...
w9/11

 , w12 =


w1/12

w2/12

...
w9/12

 , w21 =


w1/21

w2/21

...
w9/21

 , w22 =


w1/22

w2/22

...
w9/22

 ,

WhereKij/cocok is the element (i, j) of the stiffness matrix with respect to the co-contraction
level k,wk/ij is the k-th linear coefficient corresponding to the stiffness elementK(i, j), and
EMGk,cocoi is the k-th EMG element corresponding to co-contraction level i.

Applying Least squares Regression we have:

w11 = (XTX)−1XTK11 (4.6)

w12 = (XTX)−1XTK12 (4.7)

w21 = (XTX)−1XTK21 (4.8)

w22 = (XTX)−1XTK22 (4.9)

Here is one of example of w after calibrating for one subject:

w =


4.2e3 −4.2e3 11e3 −1.1e3 −8.4e3 −4.4e3 4.1e3 −6.8e2 3.1e2
4.4e3 11.2e3 6.7e3 −2.5e3 −8.4e3 −4.7e3 4.8e3 −2.7e3 −2.7e2
5.4e3 11.3e3 6.2e3 −3.1e3 −11.3e3 −6.7e3 5.5e3 −3.3e3 −2.8e2
−3.3e2 −4.3e3 2.0e3 5.9e2 1.0e3 8.4e2 −2.6e2 7.9e2 1.9e2
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4.2. Least Squares Regression

4.2.3. Online estimation of arm stiffness

After calculating w for all elements of the stiffness matrix, the human arm stiffness can be
computed as:


K11

K12

K21

K22

 =


wT11
wT12
wT21
wT11



EMG1

EMG2

...
EMG8

1

 (4.10)
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Figure 4.4.: The processed EMG signals

The subject holds his arm at the calibrated configuration and does cocontraction for sev-
eral seconds and then releases for several seconds. The EMG signals are processed online
according to the following steps:

1. Bandpass filter with frequency range [25-500] Hz

2. Full wave rectifier
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4. Calibration of human arm stiffness and surface EMG signals

3. Moving average filter

4. Lowpass filter with cutoff frequency 1.5 Hz

Fig. 4.4 illustrates the output EMG signals. It can be seen that when the subject does
cocontraction the EMG signals of all muscle increase. And when he releases those signals
decrease respectively.
The corresponding estimated stiffness according to Eq. (4.10) is shown in Fig. 4.5. All the
stiffness elements change according to EMG signals and their variances are relatively high.
Especially, it is quite clear that K11 and K22 increase when EMG signals increase. K21 and
K12 have no correlation with EMG signals as indicated in Table 4.1. Therefore, we cannot
give any conclusion about these elements of the stiffness matrix.

The large variance can be explained by the reason that the w value is significantly large.
When it is multiplied with much varying EMG signals, the resulting stiffness is varying
quite a lot.

4.3. Regularized Least Squares

4.3.1. Concept

Similar to the Least Squares Regression method, the Regularized Least Squares method
adds an regularization term which is proportional to the square of w to the mean squared
error function. That leads to an objective function [18] as follows:

F (w) =
1

2N

N∑
1

(yi − ŷi) +
1

2
λ‖w‖2. (4.11)

Using the same method as mentioned in section 4.2, setting the partial derivative of F (w)
with respect to w equal to zero:

∂F (w)

∂w
= 0, (4.12)

we obtain the solution of Eq. (4.11) as follows:

w = (XTX + λId)
−1XTY, (4.13)

where Id is a d dimension identity matrix and X and Y are defined as in section 4.2. In
comparison to the Least Squares Regression this method introduces the term λId in the
solution that regulates the magnitude of w. When the λ value is large w will be small and
vice versa. By tuning λ we can achieve different w.

4.3.2. Application of Regularized Least Squares

Using the same notation as in section 4.2, the w values for all elements of stiffness matrix
can be computed as follows:

w11 = (XTX + λ11Id)
−1XTK11 (4.14)
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0 10 20 30
0

500

1000

1500
K11

Time (s)

K
1

1
 (

N
/m

)

0 10 20 30
−500

0

500

1000
K12

Time (s)

K
1

2
 (

N
/m

)

0 10 20 30
−500

0

500

1000
K21

Time (s)

K
2
1
 (

N
/m

)

0 10 20 30
0

500

1000

1500
K22

Time (s)

K
2
2
 (

N
/m

)

Figure 4.5.: The estimated stiffness from EMG signals using Least Squares Regression
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4. Calibration of human arm stiffness and surface EMG signals

w12 = (XTX + λ12Id)
−1XTK12 (4.15)

w21 = (XTX + λ21Id)
−1XTK21 (4.16)

w22 = (XTX + λ22Id)
−1XTK22 (4.17)

4.3.3. Online estimation of the arm stiffness

After calculating w value for all elements of the stiffness matrix, the human arm stiffness
can be computed as:


K11

K12

K21

K22

 =


wT11
wT12
wT21
wT11



EMG1

EMG2

...
EMG8

1

 (4.18)

The same EMG signals shown in Fig. 4.4 are used to estimate stiffness

Case 1

λ11 = 0.001, λ12 = 0.001, λ11 = 0.001, λ12 = 0.001
The calculated w:

72 −757 1.9e3 148 333 415 259 242 365
1 22 −13 −4 −6 −5 1 −5 −101
−7 122 −275 −25 −57 −66 −34 −39 −128
29 −299 740 59 134 165 101 96 169


Case 2

λ11 = 0.0005, λ12 = 0.0005, λ21 = 0.0005, λ22 = 0.0005
The calculated w:

117 −1.2e3 3.1e3 239 537 672 422 393 351
3 42 −18 −6 −10 −8 3 −8 −101
−10 204 −444 −40 −95 −109 −54 −64 −126
43 −491 1.2e3 96 218 268 163 156 164


In comparison to the w value in the method Least Squares Regression, the values obtained
by Regularized Least Squares in both cases are much smaller. The estimated stiffness ele-
ments are shown in Fig. 4.6 and Fig. 4.7.

We can see that the stiffness elements are not much varying in comparison to those of
Least Squares Regression method. K21 and K12 is almost not changed when the subject
does co-contraction since w12 and w21 are quite small. K11 and K22 change according to
the EMG signals and always positive. Therefore, those stiffness values can be applied to
the controller of the slave robot.

When λ converges to zero, w value becomes larger and the estimated stiffness varies
a lot. From above analysis the method Regularized Least Squares is chosen to estimate
stiffness with λ11 = 0.001, λ12 = 0.001, λ21 = 0.001, λ22 = 0.001.
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4.3. Regularized Least Squares
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Figure 4.6.: The estimated stiffness from EMG signals using Regularized Least Squares
λ11 = 0.001, λ12 = 0.001, λ21 = 0.001, λ22 = 0.001
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4. Calibration of human arm stiffness and surface EMG signals
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Figure 4.7.: The estimated stiffness from EMG signals using Regularized Least Squares
λ11 = 0.0005, λ12 = 0.0005, λ21 = 0.0005, λ22 = 0.0005
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4.4. Linearisation the stiffness matrix according to the sum of EMG signals

4.4. Linearisation the stiffness matrix according to the sum of
EMG signals

For simplicity, the processed EMG signals is summed up to a single number α which cor-
responds to the co-contraction level that the arm does. The diagonal stiffness matrix in 3D
can be scaled linearly according to this value as follows.

Kx = Kxmin +
α− αmin

αmax − αmin
(Kxmax −Kxmin) (4.19)

Ky = Kymin +
α− αmin

αmax − αmin
(Kymax −Kymin) (4.20)

Kz = Kzmin +
α− αmin

αmax − αmin
(Kzmax −Kzmin) (4.21)

where αmin is the sum of EMG signals when the subject’s arm is totally relaxed and αmax
is the sum of EMG signals when the subject does highest cocontraction as possible. Kxmin,
Kymin, Kzmin, Kxmax, Kymax, Kzmax can be selected as Kxmin = Kymin = Kzmin = 200
(N/m) and Kxmax = Kymax = Kzmax = 2000 (N/m). They are assumed to be the minimal
and maximal stiffness of the subject’s arm in x, y, and z directions. Other off-diagonal
elements in the stiffness matrix are set to zero. The above values can be applied directly
to the controller of the slave robot. This is a very simple method to scale the stiffness of
the slave robot with the EMG signals from human operator. The advantage of this simple
method is that we do not need to measure human stiffness but scale stiffness directly from
EMG signals. In this way, the human operator can vary the endpoint stiffness of the slave
robot by co-contracting the muscle on his arm.
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5. Teleoperation

In this chapter, the model of teleoperation system is given. The main focus is the practical
implementation of EMG based bilateral controller.

5.1. The model of the teleoperation system

The teleoperator consists of a master and a slave robotic system at which the slave robot
tries to imitate the behaviour of the master robot. The human operator controls the slave
robot through master robot in order to fulfil different type of tasks. Basically, in bilateral
teleoperation the master robot sends its position and/or velocity to the slave robot and in
return, the slave robot will send the force feedback to the master robot. In this way, the hu-
man operator can feel the interacting force and torque at the slave side. The teleoperation
system with 2 lightweight robots can be modelled as the following equations [23]:{

Λm(qm)ẍm + µm(qm, q̇m)ẋm + J(qm)−T g(qm) = J(qm)−T τm + Fh
Λs(qs)ẍs + µs(qs, q̇s)ẋs + J(qs)

−T g(qs) = J(qs)
−T τs − Fe

(5.1)

where Fh and Fe are the forces and torques caused by human operator and the environ-
ment respectively. Other notations have the same meanings as Eq. (2.26) but they apply
for master robot and slave robot.
With the EMG based bilateral controller, the behaviour of the slave robot can also be mod-
ulated in a way that the stiffness of the arm of the human operator estimated from EMG
signals will be applied to the controller of the slave robot. This allows the slave robot to
mimic the stiffness of the human arm. Therefore, the human operator can flexibly change
the stiffness of the slave robot to interact effectively with unknown and unstructured en-
vironments.

5.2. Implementation

The EMG based bilateral scheme with force feedback is illustrated in Fig. 5.1 with two
lightweight robots. On the master side, the master robot LBR3 is driven by the force Fh
introduced by the human operator and the force produced by its controller which com-
prises the gravity force and feedback force from the slave robot . On the slave side, the
slave controller takes position error between the position from the master robot as the de-
sired position xm and its current position xs to produce the force Fs. This force, along with
the environmental force Fe drive the slave robot LBR4. The slave controller is Cartesian
impedance controller which takes the stiffness from the EMG-based stiffness estimator.
According to this scheme, the human operator can feel the interactive force between the
environment and the slave robot and transfer his reaction to the controller of the slave
robot in terms of human stiffness and desired position.
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Figure 5.1.: EMG based bilateral controller [24]

5.2.1. Coordinate Transformation in teleoperation

In teleoperation the movement of the slave robot should be made the same as that of the
master robot. In order to realize the teleoperation scheme the coordination transformation
must be considered. The master and slave robots share the same world coordinate {W}.
At the beginning both master and slave robots are at the initial configurations. When the
master robot moves relatively with respect to its initial position the slave robot should
behave the same with respect to its initial position. The desired rotational matrix and
translational vector of the slave robot are calculated.

Rotational matrix

Rmcurrent = ∆Rm.Rminit (5.2)

where ∆Rm is the relative rotational movement of the master tool defined in the world
frame. Rminit and Rmcurrent are the initial rotational matrix and the current rotational matrix
of the master tool respectively. Therefore, the relative rotational movement of the master
tool defined in the world frame is computed as shown below:

∆Rm = Rmcurrent.(R
m
init)

−1 (5.3)

This leads to the desired rotational matrix of the slave robot Rsdessired as follows:

Rsdessired = ∆Rm.Rsinit = Rmcurrent.(R
m
init)

−1.Rsinit (5.4)

where Rsinit is the initial rotational matrix of the slave robot.

Translational vector

pminit + ∆pm = pmcurrent (5.5)
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5. Teleoperation

where ∆pm is the relative translational movement of the master tool defined in the world
frame. pminit and pmcurrent are the initial translational vector and the current translational
vector of the master tool respectively. It is simple to deduce from Eq. (5.5) that

∆pm = (pmcurrent)− pminit (5.6)

psdessired = psinit + ∆pm (5.7)

where psinit is the initial translational vector of the slave robot. The desired rotational ma-
trix Rsdesired and the translational vector psdesired will be the reference to the impedance
controller of the slave robot.

5.2.2. Force feedback

The wrench including force and torque sensed at the slave robot should be made the same
to the master side as well. The wrench measured at the sensor frame {SS} of the slave
robot is transformed to the end effector frame {EE} and then this wrench is transformed
to the tool frame {T} of the slave robot as follows:

EE

(
f
m

)
Slave

=

(
EERSS 0

EERSS .
EEpSS

EERSS

)SS (
f
m

)
Slave

(5.8)

T

(
f
m

)
Slave

=

(
TREE 0

TREE .
EpEE

TREE

)EE (
f
m

)
Slave

(5.9)

After that the wrench in the tool frame of the slave robot is transformed into the world
frame {W}.

W

(
f
m

)
Slave

=

(
WRT 0

0 WRT

)T (
f
m

)
Slave

(5.10)

Finally, this wrench is transformed to the tool frame of the master robot.

T

(
f
m

)
Master

=

(
TRW 0

0 TRW

)W (
f
m

)
Slave

(5.11)

The reason why transformations in Eq. (5.10) and (5.11) are different from what is defined
in Eq. (2.19) is that we only want to transfer exactly the wrench sensed at the tool of the
slave robot to the tool of the master robot. Therefore, the component in the screw trans-
formation containing moment arm is made to be zero as indicated in Eq. (5.10) and (5.11);
otherwise the moment arm can magnify the moment component to a large value due to a
large distance from the origin of the world coordinate to the origins of the tool coordinates
of the master and slave robots.
Then the torque to be applied to the master robot can be determined by multiplying the
wrench in the tool frame with the transpose of the Jacobian matrix JT :

τfeedback = JTKfb
T

(
f
m

)
Master

(5.12)

where Kfb is the force feedback gain. In implementation, this gain is chosen by trial and
error asKfb = [0.5 0.5 0.5 0.2 0.2 0.2]. Therefore, the human operator at the master side can
feel the scaled interaction force at the slave side.
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5.2. Implementation

5.2.3. Controller design for master robot

The model of the master robot in Cartesian coordinate is given by:

Λm(qm)ẍm + µm(qm, q̇m)ẋm + J(qm)−T g(qm) = J(qm)−T τ + Fh (5.13)

where Fh is the external force caused by human operator. Other notations have similar
meanings as Eq. (2.26). The torque computed to control the master robot motors τ com-
prises two terms. The first one is responsible for gravity compensation while the second
one is responsible for force feedback. Therefore, the control law is as follows:

τ = τg + τfeedback, (5.14)

where τfeedback is the feedback torque which is calculated as Eq. (5.12). When this con-
troller is applied to the master robot the human operator can easily move it and feel the
interacting force at the slave side.

5.2.4. Controller design for slave robot

The model of the slave robot in Cartesian coordinate is as follows:

Λs(qs)ẍs + µs(qs, q̇s)ẋs + J(qs)
−T g(qs) = J(qs)

−T τs + Fh. (5.15)

The control law applied to the slave robot is similar to that in Eq. (2.29):

τs = g(qs) + J(qs)
T (Λ(qs)ẍsd + µ(qs, q̇s)ẋs −Dd

˙̃xs −Kdx̃s) (5.16)

The meaning of the notations here is the same as in Eq. (2.29). In implementation of the
above control law, the inertial force and Coriolis and centrifugal force are practically negli-
gible since they have small effects on the controller performance. This leads to a simplified
control law:

τ = g(qs) + J(qs)
T (−Dd

˙̃xs −Kdx̃s) (5.17)

The desired damping gain Dd is set to constant as [25 25 25 2.5 2.5 2.5]. The damping force
can be easily calculated as:

Fdamping = −Dd
˙̃x = −DdJ(qs)q̇s. (5.18)

In order to calculate the stiffness force Fstiffness = Kdx̃s we need a representation of
orientation in the space. Roll-Pitch-Yaw angles is chosen to compute this force. Suppose
that we know the desired transformation matrix T sd and the current transformation T sc
from the tool coordinate to the world coordinate of the slave robot.

T sd =

(
Rsdesired psdesired

0 1

)
(5.19)

T sc =

(
Rscurrent pscurrent

0 1

)
(5.20)

The relative transformation matrix between T sd and T sc is as follows:

∆T s = (T sc )−1T sd (5.21)
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5. Teleoperation

From this transformation matrix we can compute the translational vector (3× 1) and Roll-
Pitch- Yaw angles (α β γ) (3 × 1) which can be combined into a single vector (6 × 1).
The details of the computation can be found in Appendix. This vector represented by x̃
which can be multiplied with the diagonal matrix Kd to produce stiffness force Fstiffness
as follows:

Fstiffness = −Kd.x̃ (5.22)

where Kd is given as:

Kd =



Kx 0 0 0 0 0
0 Ky 0 0 0 0
0 0 Kz 0 0 0
0 0 0 Kα 0 0
0 0 0 0 Kβ 0
0 0 0 0 0 Kγ

 . (5.23)

The above stiffness Kd can vary according to EMG signals using one of two following
methods.

Method 1

Kx = K11; Ky = K22 which are estimated from EMG signals as Eq. (4.18). Other values
Kz , Kα, Kβ , Kγ are constant, Kz = 1000(N/m), Kα = Kβ = Kγ = 18(Nm/rad)

Method 2

Kx, Ky, Kz are computed as in section 4.4. Kα = Kβ = Kγ = 18(Nm/rad).

5.3. Results and discussions

When applying calibration methods to the bilateral teleoperation scheme, methods 2 show
the behaviour as expected. The scaled stiffness varies according to the sum of all EMG
signals as can be seen in the last graph of Fig. 5.2. When the stiffness is too high a saturation
is used to prevent this. The maximum possible scaled stiffness is 2000 (N/m). At the
beginning, two master and slave robots are placed at initial positions. Then the human
operator start doing teleoperation. The relative movement of each robot in X, Y and Z
directions with respect to its initial position is shown in first three graphs in Fig. 5.2. We
can see that the slave robot can follow the movement of the master robot. Additionally,
when the subject releases his arm the scaled stiffness is quite low the position error is
relatively large. On the contrary, once he does co-contraction the scaled stiffness is high.
This leads to quite small position error of the slave robot.
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Figure 5.2.: The behaviour of the slave robot with low and high stiffness scaled from EMG
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6. Conclusion and future works

In this thesis, human arm identification including geometrics, inertial parameters and end-
point stiffness was presented. The geometrics identification is quite repeatable and precise
while the inertial parameter identification is just an approximation of the main inertial pa-
rameters which primarily contribute to the dynamics of human arm. This is due to the
assumptions that each link of human are rigid body with symmetric forms and. A method
of using novel force field to measure endpoint stiffness of human arm in 2D with different
co-contraction levels is implemented. However, it is very difficult to force the subject do
the same co-contraction level with the same force field level. That could make stiffness not
consistent for different perturbations with the same force field level. Further more, during
the experiment, the subject can learn to reduce the metabolic cost. This is another reason
that makes the stiffness measurement varying for the same force field level. Therefore, a
further investigation of measuring human arm stiffness for different co-contraction level
need to be tackled. One possibility to improve the stiffness measurement is combination
of the novel force fields and the measured EMG signals. The perturbation happens only
when the EMG signals of certain muscles in a certain range and the subject fulfils the task.

Consequently, the calibration between endpoint stiffness in 2D and EMG signals is pre-
sented. With good measured data using Regularized Least Squares method stiffness proves
to be estimated quite stably at the calibrated location. Additionally, a simple method to
scale the stiffness according to EMG signals is also discussed. This allows to compute
online endpoint stiffness from EMG signals without mechanical perturbation.

Finally, a bilateral teleoperation scheme using EMG-based impedance controller is im-
plemented. The slave robot is controlled by Cartesian impedance controller which varies
stiffness according to EMG signals from human operator. This allows the human opera-
tor to flexibly change the stiffness of the slave robot to fulfil the requirements of interac-
tion. Further investigation of stability of the bilateral teleoperation scheme with time delay
should be considered.

The main limitation of this thesis is that the calibration works only locally. The cali-
bration should be done for all regions in the workspace of the arm. However, that will
increase the calibration time dramatically. Another possibility to improve is using inverse
geometrics of human arm and combine it with joint stiffness in order to estimate the end-
point stiffness in workspace of human arm in plane. The method can be expanded into 3D
in order not to limit the working range of bilateral teleoperation.
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A. Results of geometric identification

Table A.1.: Joint position identification result 2
1d1S

2d2S
2d2E

3d3E
x (m) -0.066 -0.222 0.067 -0.200
y (m) -0.534 0.0308 -0.025 0.015
z (m) 0.661 -0.032 -0.024 -0.014

Table A.2.: Joint position identification result 3
1d1S

2d2S
2d2E

3d3E
x (m) -0.082 -0.217 0.068 -0.198
y (m) -0.565 0.054 -0.022 0.012
z (m) 0.647 -0.033 -0.031 -0.022

Table A.3.: Joint position identification result 4
1d1S

2d2S
2d2E

3d3E
x (m) 0.079 -0.213 0.070 -0.196
y (m) -0.544 0.038 -0.021 0.013
z (m) 0.639 -0.041 -0.031 -0.024

Table A.4.: Joint position identification result 5
1d1S

2d2S
2d2E

3d3E
x (m) -0.085 -0.220 0.069 -0.197
y (m) -0.557 0.049 -0.021 0.008
z (m) 0.629 -0.042 -0.032 -0.024

Table A.5.: Joint position identification result 6
1d1S

2d2S
2d2E

3d3E
x (m) -0.076 -0.228 0.069 -0.197
y (m) -0.553 0.054 -0.024 0.012
z (m) 0.662 -0.037 -0.019 -0.007
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B. Calculation of Roll-Pitch-Yaw angles from
rotational matrix

R = rot(z, α)rot(y, β)rot(x, γ)

α = atan2(R32, R33)

β = atan2(R21, R11)

γ = atan2(−R31,
√
R2

21 +R2
11)
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