
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO. 10, OCTOBER 2014 1757

SAR Image Categorization Using Parametric
and Nonparametric Approaches Within

a Dual Tree CWT
Peter Planinšič, Member, IEEE, Jagmal Singh, and Dušan Gleich, Member, IEEE

Abstract—This letter presents synthetic aperture radar (SAR)
image classification based on feature descriptors within the dis-
crete wavelet transform (DWT) domain using parametric and
nonparametric features. The DWT enables an efficient multireso-
lution description of SAR images due to its geometric and stochas-
tic features. A 2-D DWT, a real 2-D oriented dual tree wavelet
transform (2-D RODTWT) and an oriented dual tree complex
wavelet transform (2-D ODTCWT) were used for the estimation of
subband features. First and second moments, entropy, coding gain,
and fractal dimension were used for the nonparametric approach.
A parametric approach considers a Gauss Markov Random Field
model for feature extraction. A database with 2000 images repre-
senting 20 different classes with 100 images per class was used for
classification efficiency assessment. Several SAR scenes were di-
vided into small patches with dimension of 200 × 200 pixels. 10%
and 20% of the test images per class were used during the learning
stage. Supervised learning using a support vector machine was
used for all experiments. The experimental results showed that
the proposed methods had superior performances compared with
(GLCM) and log comulants of Fourier transform. Amongst the
proposed methods, the nonparametric features within oriented
dual tree complex wavelet transform gave the best results for
classes when categorizing SAR images.

Index Terms—Data mining, feature extraction, image texture
analysis, support vector machines (SVMs), wavelet transforms.

I. INTRODUCTION

THERE are two main approaches for scene description
and classification called parametric and nonparametric

approaches. Parametric approaches use theoretical scene mod-
els [1], [2], the parameters of which are estimated from the
available data under given model assumption. Nonparametric
approaches use objective parameters which are estimated from
original or transformed data [3], [4]. In [3] feature descriptors
(first- and second-order statistical moments, Spectral Centroid,
Spectral Flux, Spectral Rolloff, Cepstral Coefficients) for syn-
thetic aperture radar (SAR) image patches were computed
within the Fourier domain. The nonparametric feature based
classification methods are also well-known within optical and
remote sensing communities [5] and content-based image re-
trieval in multimedia [6]. The feature descriptor, based on log
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comulants of Fourier coefficients [4] were also applied to the
same database and those results have been used in this letter
for comparison purposes. The dictionary learning approaches to
the image filtering was proposed within a compressed sensing
community [7]–[9].

This letter proposes the use of parametric and nonparametric
feature descriptors within different types of discrete wavelet
transformations for patch-scene classification. The features for
categorization obtained in this letter were compared with those
features obtained with the Gray Level Co-occurrence Matrix
(GLCM) of SAR-patches [10], the feature descriptors in the
Fourier domain [3] and the log comulants of Fourier coeffi-
cients [4]. The Support Vector Machine (SVM) classifier [11]
was used for supervised learning in all experiments.

II. DUAL TREE COMPLEX WAVELET TRANSFORM

Wavelets constructed using complex filter banks during im-
age processing were originally proposed in [12] within the
framework of the Daubechies orthogonal filters banks and
later generalized to complex wavelet transform (CWT) [13].
CWT is a complex-valued extension to the standard real-valued
discrete wavelet transform (DWT). CWT has an analytical
wavelet function, by which the imaginary part is the Hilbert
transform of the real part. By the implementation of CWT
with finite impulse response filters, this condition is fulfilled
approximately. In contradiction to classical DWT it does not
suffer from aliasing and oscillations, provides a high degree of
shift-invariance magnitude and orientation in two and higher
dimensions, which are the properties desired for pattern and
texture classification and recognition. It exhibits redundancy
2d (where d is the dimension of the signal being transformed),
which is significantly lower than undecimated DWT.

This letter uses the dual-tree approach for complex wavelet
transform (DTCWT), which calculates the complex transform
of a signal using two separate real DWT-decompositions (tree a
and tree b). If the filters used in tree a are specifically designed
differently from those in tree b then it is possible for one DWT
to produce the real coefficients and the other the imaginary.
More exactly, to really achieve the desired analytical properties,
the filters in the trees are interchanged at each decomposition
level and during the first stage any perfect reconstruction filters
can be used within each tree. In two dimensions, 6 orientations
are obtained by using 2-D real oriented dual tree wavelet
transform (2-D RODTWT) and 12 orientations by using 2-D
ODTCWT. The details regarding the implementing a DTCWT
can be found in [13].
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Fig. 1. (a) Subbands Sj,i obtained at each level using separable 2D-DWT.
(b) Wavelet coefficients forming a first-order GMRF.

III. FEATURE DESCRIPTORS WITHIN DISCRETE

WAVELET TRANSFORM

Scene classes from SAR image patches can be determined
using different descriptors (feature vectors). Descriptors within
wavelet domain are very appropriate and a natural choice due to
the multi-resolution properties of wavelet transform and on the
other hand deterministic or stochastic self-similarity properties
of many natural and urban amplitude SAR-image’s scenes. The
image is deterministic, if it is invariant to dilatations and com-
pression and it is stochastic self-similar, if it is statistically in-
variant for dilatations and compression [14]. Different wavelet
transforms can be used from continuous (CWT) to discrete
wavelet transform (DWT) [15] and discrete wavelet packets
transform (DWPT) [16]. DWPT can be considered as the gen-
eralization of DWT, where also the detail wavelet coefficients
are further decomposed with low-pass and high-pass filters. It
was found in [17] that the DWPT tree for amplitude SAR-
images reduces to a DWT (Laplacian pyramid) using Shannon’s
Entropy criteria for any decision on further decomposition. For
this reason and for the computational efficiency we decided
to use feature descriptors within discrete wavelet transform
domain. As it will be shown later, TerraSAR-X images with
their high resolution properties enable classification of scenes
which on bigger regions and globally look similar or almost
equal. The classification efficiency is improved by using feature
vectors with descriptors within DWT-domain.

A. Nonparametric Feature Extraction

The nonparametric feature extraction is performed using an
image patch of M ×N = 200× 200 pixels. Three scenarios
were considered using: DWT, real oriented dual tree WT
(RODTWT) and oriented dual tree complex wavelet transform
(ODTCWT). Descriptors were evaluated for each subband of
the wavelet transform with j decomposition levels. The patch
with dimension M ×N pixels is characterized by the feature
vector, with descriptors for all subbands Sj,i. Subband Sj,1

is obtained by low-pass filtering in horizontal and vertical
directions (LL), subband Sj,2 by low-pass filtering in horizontal
and high-pass filtering in the vertical direction (LH), subband
Sj,3 by high-pass filtering in both direction (HH), and subband
Sj,4 by high-pass filtering in horizontal and low-pass filtering in
the vertical direction (HL). Subbands are depicted in Fig. 1(a).

A feature vector within wavelet transform consists of sub-
bands variances δ2j,i, mean values μj,i, L2-norm ‖Sj,i‖2 and
L1-norm ‖Sj,i‖1, entropy, coding gain and fractal dimension.

Thus, the variance of subbband Sj,i with dimension Nj ×
Mj is given by

δ2j,i =
1

Mj ·Nj

Mj−1∑
m=0

Nj−1∑
n=0

(Sj,i[m,n]− μj,i)
2 (1)

where Sj,i[m,n] represents a wavelet coefficient with indexes
m, n and μj is the subband mean given by

μj,i =
1

Mj ·Nj

Mj−1∑
m=0

Nj−1∑
n=0

Sj,i[m,n]. (2)

The second-order norm is given by

‖Sj,i‖2 =
1

Mj ·Nj

Mj−1∑
m=0

Nj−1∑
n=0

|Sj,i[m,n]|2 (3)

and the first-order norm is given by

‖Sj,i‖1 =
1

Mj ·Nj

Mj−1∑
m=0

Nj−1∑
n=0

|Sj,i[m,n]|1 . (4)

From the information point of view, the entropy of subband
is the measure of information contained within the subband.
There are many types of entropy, however we decided on the
most common Shannon’s’ entropy given by

Ej,i =
∑
k

pk log2(1/pk) (5)

where pk is the probability of the pixels with value Sk occurring
within subband Sj,i.

Another important descriptor is patch smoothness; it can be
estimated using a wavelet spectrum (variances versus scale)
flatness, which can be further estimated using coding gain. A
coding gain of the patch can be calculated from the variances
of subbands within the DWT-domain using the expression:

cg =

J∏
j=1

3∏
i=1

αj.i · σ2
j,i

J∏
j=1

3∏
i=1

(
σ2
j,i

)αj,i

(6)

where aj,i < 1 is the relative area of the subband with sub-
scripts j, i. Note, that the sum of all relative areas is equal
to one. A Rate-Distortion (R-D) based categorization can be
obtained by using coding gain cg or directly by measuring the
R-D-slope using DWT-based lossy compression.

Fractal dimension is also a very important descriptor of self
similarity for a patch scene with stochastic or deterministic
geometrical self-similar structures. Wavelet-based analysis was
shown to be very natural for mathematical description and
calculation of fractal dimensions and was therefore included in
our research. In this letter, the fractal dimension was estimated
using variances of detail subbands. The variance δ3j of detailed
subband Sj,3 namely obey a power law of the scale j and
can therefore be used to calculate the Hurst parameter H [18]
given by

σ2
j,3 =

K

(2j)2H+2
=

K

(2j)β
(7)

where the constant K depends on the type of used wavelet
function ψ3

j (t). H can be calculated from the slope of the linear
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curve obtained by plotting the logarithm of detailed subband
variances versus scale j, given by

log2 σ
2
j,3 = β · j +K. (8)

The fractal dimension D is related to the Hurst parameter H
by the expression [18]

D = Ed+ 1−H (9)

where Ed is the Euclid geometrical dimension, for images
being equal to 2.

B. Parametric Feature Extraction

The proposed method models an image using a Gauss-Markov
Random Field (GMRF) model, which can be defined as a gen-
eralized Gauss-Markov random field within wavelet transform
[20]:

p(xi|θ) =
νη(ν, σx)

2Γ(1/ν)

× exp

⎛
⎝−

⎡
⎣η(ν, σx)

∣∣∣∣∣∣xi −
∑
j∈ζ

θj

(
xj
i + xj′

i

)∣∣∣∣∣∣
⎤
⎦
ν⎞
⎠ (10)

where ν is the shape factor, σx is a standard deviation of ap-
proximated image model, Γ(.) represents Gamma function, xi

represents the observed wavelet coefficient and η(.) is given by

η(ν, σx) = σ−1
x

√
Γ(3/ν)

Γ(1/ν)
. (11)

The parameter θ represents the texture parameter of the
GMRF and is usually iteratively estimated using the second-
order Bayesian inference. The GMRF characterizes the spatial
statistical dependencies of 2-D data by a symmetric set called
the neighbor set or neighborhood system. The sites within the
2-D lattice Ω are related to one another via a neighborhood
system. The neighborhood system in Ω is defined as N =
{Ns|∀s ∈ Ω}, where Ns is the set of sites neighboring s.
The neighboring set for a first-order MRF is defined as
N = {(0,−1), (0, 1), (−1, 0), (1, 0)} and for a second-
order N = {(0,−1), (0, 1), (−1, 0), (1, 0), (−1, 1), (1,−1),
(−1,−1), (1, 1)} and Ns = {s+ r, r ∈ N}. The clique of the
neighbor set Ns is defined as a subset of sites in Ω. It consists of
either a single site or a pair of neighboring sites, and so on. The
type of clique is determined by its size, shape, and orientation.
We consider the second and higher orders using two-pixel
cliques consisting of two facing neighbors’ xs+r and xs−r.

The image model is characterized using a variance and
texture parameter θ, which represents a generalized GMRF
model within a neighborhood ζ. The formation of neighboring
pixels is shown in Fig. 1(b). Inter-subband and intra-subband
relations were used to define six cliques in the following way.
Two cliques are formed around the observed wavelet coefficient
at a subband level, and four cliques are considered from the cor-
responding subbands at the same decomposition level, as shown
in Fig. 1(b). The unknown parameters θ and σ2

x can be estimated
using the least square estimate [21], [22], as given here

θ =(GTG)
−1
GTX (12)

σ2
x =

1

GN −GM

(
XTX−XTG(GTG)

−1
GTX

)
(13)

Fig. 2. Examples of the SAR image patches (of size 200 × 200 pixels)
in different object/texture categories. The image patches have been obtained
from SLC VHR Spotlight TerraSAR-X images from different areas in order to
include the diversity of objects/textures when analyzing feature descriptors.

where X represents the observed coefficients within a window
of 3 × 3 pixels and G consists of neighboring coefficients
attributed to each coefficient xi within a window of 3 × 3
pixels. The matrix G has a size of GN ×GM elements. An
element Gi of a vector G can be written as

GT
i =

[
x1
i + x1′

i , x2
i + x2′

i , x1
i+1 + x1′

i+1, x
2
i+1

+ x2′

i+1, x
1
i+2 + x1′

i+2, x
2
i+2 + x2′

i+2

]
. (14)

The value x represents an observed wavelet coefficient.

IV. EXPERIMENTAL RESULTS

A. Database

A database of 2000 patches was generated within an image
size of 200×200 pixels using SLC VHR Spotlight TerraSAR-X
images. Each patch covered approximately 200 m2 of ground.
This size can be generally used to define a particular category,
as it is large enough to contain the contextual information
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needed to define an object’s structure in the case of HR yet
also suitable for texture computation of homogeneous areas.
The presented experimental database was compriseed 20 well-
defined object/texture categories with 100 patches in each
category. Care was taken to generate a database with diverse
textures. Examples of one patch from each category are shown
in Fig. 2. These categories include land-cover topologies (C01-
Grassland, C02- Forest, C03-Mixed vegetation, C04-Vegetation
and a water channel, and C18-Sandy plains), urban areas with a
particular texture (C05-Urban-01, C06-Urban-02, C07-Urban-
03, and C08-Urban-04), urban and natural water channels (C09-
Urban water-channel and C10-Natural water-channel), regions
with strong scatterers along with the surfaces exhibiting spec-
ular reflection (C11-Urban coastline and C12-Aircraft stands),
regions with very strong scatterers with multiple bounces (C13-
Skyscrapers and C14-Industrial complex), and other special
categories like C15-Airstrip, C16-Highway, and C17-Train
tracks. Two categories from the sea-water region (C19-Buoy in
Sea and C20-Ambiguities) were also considered. This database
was generated manually, thus, it could be used as a ground truth
for the assessment of various algorithms.

B. Assessment

The second-order statistics of the amplitude SAR image
patches were computed using GLCMs, extracting 12 textural
features and used for a comparative assessment. This imple-
mentation allowed four options for the orientation (0., 45.,
90., and 135.). Each GLCM feature descriptor was formed
with 12 parameters computed based on the normalized matrix:
mean, variance, entropy, angular second moment, energy, cor-
relation, maximum probability, contrast, homogeneity, dissim-
ilarity, cluster shade, and cluster prominence. This provided a
GLCM feature descriptor of length 48. A spectral descriptor
based on the Fourier spectra was computed specifically: first-
kind statistical moments, spectral centroid within range and az-
imuth, spectral flux within range and azimuth, spectral rolloff,
and the mean and variance of the first five cepstral coefficients
[3]. This provided a spectral feature descriptor of length 17.

The same feature descriptors were used for different types
of wavelet transforms. A descriptor d, which consisted of
features 1–5, 9 was given by

dj =
[
δ2j,i, μj,i, ‖Sj,i‖2, ‖Sj,i‖1, Ej,i, Dj

]
(15)

where j represented the decomposition level and i belonged to
the horizontal, vertical or diagonal details of wavelet decom-
position. The coding gain was estimated for a whole image
and was added as a single parameter at the end of a feature
vector. 3 levels of dyadic decomposition were used (j = 3),
therefore, d had 3 · ((5 · 3) + 1) + 1 = 49 features for a DWT
scenario, 3 · ((5 · 6) + 2) + 1 = 97 features for RODTWT sce-
nario and 3 · ((5 · 12) + 4) + 1 = 193 ODTCWT transforms,
respectively.

Tables I and II show the efficiency of the proposed methods
using nonparametric and parametric approaches. The efficiency
of the class recognition is measured as a percentage of the
recognized images within a specific class using 10% and 20%
images for the learning stages. Table I reports the results for
nonparametric features obtained with different wavelet trans-
forms: dyadic discrete wavelet transform (DWT), real dual
tree oriented wavelet transform (RODTWT) and oriented dual

TABLE I
ACCURACY OF CLASS RECOGNITION IN PERCENTAGE FOR

NONPARAMETRIC FEATURES USING 10% AND 20%
OF IMAGES FOR LEARNING STAGE

tree complex wavelet transform (ODTCWT). Features obtained
within different types of wavelet transform were computed in
the same manner, but they varied in the total number of fea-
tures. The average recognition rates for the wavelet transform
based methods were generally better compared to the GLCM
method [10] and log comulants [4] of the Fractional Fourier
transform methods. The DWT-based patch categorization
achieved 84% of recognition rate for the used database, when
10% of data were used at the learning stage and 91.1% when
20% of data were used at the learning stage. All classes had very
similar recognition rates (approximately between 80 and 90%).
Classes C2 and C13 had lower recognition rates. The RODTWT
improved the recognition rate and achieved 86 and 96% of
recognition when 10 and 20% of images were used for the
learning stages, respectively. The ODTCWT was more sensitive
to the orientations, had more subbands, which could better de-
correlate energy, and it achieved 92 and 97% of recognition rate
when 10 and 20% of the images were used during the learning
stages, respectively. Table II shows the recognition rates of the
parametric features within different wavelet transform domains
using GMRF, computed using a linear model. Over-all the
recognition rate was smaller when the parametric features were
used. The best recognition rate was 87.8% with ODTCWT
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TABLE II
ACCURACY OF CLASS RECOGNITION IN PERCENTAGE FOR

PARAMETRIC GMRF FEATURES USING 10% AND 20%
OF IMAGES FOR LEARNING STAGE

because this transform was the most sensitive to the orientations
within the image and as well as the GMRF can exploit those
properties. The GMRF model is usually used to characterize
textures and for those small patches was not the more appro-
priate method. The GMRF parameters were estimated using a
sliding window of 64 × 64 pixels within wavelet transform and
the texture parameters were averaged for each subband. Each
subband had a texture parameter of model order 4, which was
represented with 10 parameters. A miss classification occurred
within classes C1–C4 and class C20 was confused with classes
C13, C15, and C16–C19, when 10% of data was used for both
parametric and nonparametric approaches.

Self-similar features within SAR images represent scenes
with forest, landscape, see clutters, some symmetric ur-
ban areas, etc. which are represented with categories C02-
Forest, C04-Vegetation and water-channel, C07-Urban-03,
C08-Urban-04, and C19-Buoy in Sea, within the proposed
database, shown in Fig. 2.

V. CONCLUSION

This letter presented a comparison between the parametric
and nonparametric approaches for SAR image categorization
using different types of 2-D discrete wavelet transforms: dyadic

discrete wavelet transform, real oriented dual tree wavelet trans-
form and oriented dual tree complex wavelet transform. The
nonparametric features within the presented types of wavelet
transforms better characterize the features of the image patches
in comparison with the parametric features, which used a
texture GMRF model. From among them the nonparametric
features obtained within the oriented dual tree complex wavelet
transform gave the best results.
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