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Abstract— Small UAVs flying in narrow passages require
robustness to turbulence caused by self-induced vortices. Aerial
manipulation introduces modeling errors due to payload and
parameter changes. When large external forces are applied,
small helicopters must fly at orientations far outside hover
conditions. The compensation of such uncertainties can be
achieved through disturbance observation (DO). An onboard
IMU makes the platform well-suited for acceleration-based DO.
In this paper, we evaluate a cascaded attitude and position
tracking controller for a quadrotor. Quaternions are used for
attitude control to allow large orientation angles. We investigate
attitude tracking by the boundary-layer integral sliding mode
control coupled with acceleration-based DO. The position
controller generates singularity-free quaternion and angular
velocity signals. The presented controller is experimentally
verified and compared to PID and backstepping controllers
for trajectory tracking and hovering in turbulent conditions.
Compensation of large external forces in the horizontal plane
is shown through a stable 45◦ hover.

I. INTRODUCTION

A. Motivation

Autonomous Unmanned Aerial Vehicles (UAVs) have seen
a large rise in the number of applications in recent years.
The fully autonomous execution of inspection and aerial
manipulation tasks requires UAVs to operate in a wide va-
riety of unknown environmental conditions, including wind
gusts and vortices, and under uncertain or changing system
parameters. Unknown environment forces can arise when a
UAV is in contact with a static environment. If large external
forces are present, large attitude angles are required for their
compensation.

To compensate general uncertainties, disturbance observa-
tion (DO) can be utilized. Acceleration-based disturbance ob-
servation is well-suited for small UAVs because acceleration
measurements are provided by the Inertial Measurement Unit
(IMU). Attitude control typically runs at high update rate
(1 kHz in our case), so angular acceleration can be computed
from the angular velocity by finite differences. A benefit
of a DO over robust control is that it can directly estimate
external forces from the system model. The estimate can also
be used for environment interaction if no applicable sensors
are available.

In our approach, we adopt a well-established method for
disturbance observation [1], [2]. We use the system model to
estimate the disturbance from the acceleration signal. In this
way, stable response is obtained even in environment interac-
tion applications. We investigate the boundary-layer integral
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(a) Hovering in a 3 m/s turbulent
wind stream, generated by a fan
with 70 cm diameter

(b) Hovering with a constant side
force produced by a suspended
6 N weight

Fig. 1: Experimental setups for hovering tests with external distur-
bance investigated in this paper.

sliding mode controller [3] with disturbance observation in
the attitude tracking context. The boundary layer solution is
a well-established method to eliminate chattering, where the
controller behaves locally like a linear controller.

For our quadrotor UAV, we adopt a cascaded controller
structure. The inner quaternion-based attitude controller is
based on established methods [4], [5] and is suitable for large
orientation angles. The outer Cartesian position controller
converts a desired control force to a quaternion and angular
velocity reference in a singularity-free way. The angular
velocity is generated directly from the feedback signal, hence
we do not rely on a trajectory feedforward signal. We
show that using a DO in the attitude controller improves
position controller performance in turbulent wind conditions.
The improvement is also shown when the DO is used in
the position controller. Influence of external disturbances is
investigated as depicted in Fig. 1.

B. Related work

Cascaded PID [6], LQR [7] and feedback linearization
controllers [8] provide adequate trajectory following per-
formance about hover conditions. Outside hover conditions,
attitude control can be done using geometric representations
of the attitude error, for example by using rotation matrices
[9] or quaternions [4]. Some of the techniques used for
dealing with uncertainties are backstepping [10], sliding
mode [11] control, H∞ control [12], model predictive control
[13], and adaptive control [14], [15].

Explicit estimation of the uncertainties has previously been
shown to improve flight performance. For this, sliding mode
disturbance observers [16], [17] have been used. However,
higher-order sliding modes are computationally expensive
for embedded systems due to noninteger powers. The distur-
bance estimate must be filtered to avoid chattering, thereby
sacrifing robustness. Adaptive Integral Backstepping Control,
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which estimates and compensates model uncertainties, has
also been applied to quadrotors [18], [19]. The controller
has been shown to be effective for varying system inertia.
Due to the large number of parameters it is not easy to tune.
In [20] a two-dimensional wind disturbance is estimated and
compensated. Extended state observers have been applied for
helicopter disturbance observation in [21], [22], in the active
disturbance rejection control (ADRC). Kalman-filter-based
disturbance observation has been shown for quadrotors [15]
for near-hover conditions.

Acceleration-based DO has been shown to improve track-
ing performance of various systems, such as a tilt-wing
quadrotor [23] and underwater vehicles [24]. In [25], the
authors show performance improvement when using a dis-
turbance observer for quadrotor attitude control. Significant
improvements have not been shown when applied to position
control. Investigation of disturbance observers in quadrotors
has also been done in [26], [27], [28]. However, here only
near-hover conditions were investigated. Experiments are
limited, only showing attitude control. Euler angles were
used for attitude representation. In this paper, we apply
the DO to a quaternion-based attitude controller and show
significant performance improvements in position control, as
well as compensation of large external forces.

In the paper, we first present the system model before
developing the attitude and position tracking controllers.
Presentation of the simulation and experimental results is
followed by the conclusion.

II. SYSTEM MODEL

A. Kinematics

In this paper, we consider three coordinate frames: the
non-moving inertial frame I , the body-fixed frame B, and
the desired frame D. The goal of the attitude tracking
controller is to align frame B with frame D. Unit quaternions
are used for the singularity-free attitude representation. The
quaternion q = [η εT ]T consists of the scalar part η and the
vector part ε. To prevent notational ambiguity with vectors,
we denote quaternions with an underbar. Unit quaternion atti-
tude representation is related to the angle-axis representation
through the half of the rotation angle:

η = cos ϕ2 , ε = k sin ϕ
2 (1)

where k is the rotation axis, and ϕ the rotation angle. The
norm of a unit quaternion is always unity such that ‖q‖ =

(qTq)1/2 = 1. The conjugate of a unit quaternion q∗ =
[η − εT ]T represents inverse rotation. The rotation matrix
R(q) can be obtained by using the Euler-Rodriguez formula
[5]. The kinematic differential equation of a unit quaternion
is

q̇ = 1
2U(q)ω = 1

2

[
−εT

ηI3×3 + S(ε)

]
ω (2)

where the skew-symmetric matrix operator S(·) = −ST (·)
is defined such that S(a) b = a× b and ω = [p q r]T is the
body angular velocity.
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Fig. 2: The considered quadrotor UAV with position r and attitude
q
bi

is controlled by four propellers that generate thrusts Fi and
torques Qi, i = 1...4. The propellers are located in one plane, at
distance L from the center of gravity.

B. Dynamics

The state of a quadrotor in free flight, shown in Fig. 2,
can be described by its position in the inertial frame r =
[x y z]T and attitude q

bi
. The attitude control torques τ =

[τx τy τz]
T are provided by the four propellers, together

with the total propeller thrust T . The time-varying matched
model uncertainties and external disturbances are represented
in the terms hf and hτ . Its dynamics can then be described
by the translational and rotational acceleration r̈ and ω̇,
respectively, as

mr̈(t) =
(
mg − T (t)RT

bi(t)
)
zi + hf (t)

Jω̇(t) = τ (t) + S(Jω(t))ω(t) + hτ (t)
(3)

where m and J are the quadrotor mass and moment of
inertia, which are assumed constant. Here, zi = [0 0 1]T

represents the unit vector in the inertial z-direction, and g
is the acceleration of gravity. Hence, the first term in the
position dynamics is the quadrotor weight, and the second
term is the total thrust transformed into the inertial frame.
The rotation matrix Rbi = R(q

bi
) transforms a vector

from frame I to frame B. For notational simplicity, time-
dependency will be assumed throughout the paper, and the
suffix (t) dropped where applicable. Note that here we
assume that the drag forces and torques can be lumped in
the terms hf and hτ , respectively.

The quadrotor is a nonholonomic system, having four
control inputs and six degrees of freedom. Therefore, only
four states can be independently controlled. In this paper we
control the position r and angle about the inertial z-axis.
We adopt a cascaded controller scheme, depicted in Fig. 3,
where we first design a robust attitude tracking controller
which will track a desired attitude q

di
. The attitude controller

calculates the required torques τ to track the desired attitude.
The position controller generates a virtual force input f =
TRdizi to obtain the desired attitude q

di
and thrust T from

geometric considerations.
A simplified actuation model is used where the quadrotors’

four rotors are located in the same plane as the center of
gravity, at arm length L in the principal axes directions, and
are numbered in the positive z-axis sense starting at 1 on
the positive x-axis, as depicted in Fig. 2. A simplified model
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Fig. 3: Block diagram of the complete controller structure

for the rotor thrust Fi = kFω
2
i and drag torque Qi = kQω

2
i

of the rotor i is adopted, where kF and kQ are the thrust
and torque coefficients, respectively, and drag torque is in
the direction opposite of the rotor angular velocity ωi, The
control allocation problem can be formulated as u = BΩ,
where u are the desired forces and torques in the body frame,
B is the control allocation matrix, and Ω are the squares of
the propeller angular velocities. For the quadrotor depicted
in Fig. 2 it can be formulated as

τx
τy
τz
T

 =


0 −kFL 0 kFL

kFL 0 −kFL 0
−kQ kQ −kQ kQ
kF kF kF kF



ω2

1

ω2
2

ω2
3

ω2
4

 (4)

where the body x- and y- forces have been omitted as
they are always zero. The required angular velocities can
be obtained as Ω = B−1u, and for this model, the solution
can be obtained analytically.

III. ATTITUDE TRACKING CONTROL

A. Attitude error and stabilization

The attitude error q̃ between the desired attitude q
di

and
the body attitude q

bi
is defined geometrically [5], [9], and

is equivalent to R̃ = R(q̃) = RT
diRbi. The error represents

the rotation from frame D to frame B. Using quaternion
multiplication it can be defined as

q̃ = q
db

= q∗
di
⊗ q

bi

q̃ =

[
η̃
ε̃

]
=

[
ηdi εTdi
−εdi ηdiI3×3 − S(εdi)

] [
ηbi
εbi

]
(5)

where ⊗ represents quaternion multiplication. The angular
velocity error transforms the desired angular velocity from
the D-frame to the B-frame and is defined as

ω̃ = ω − R̃T
ωd, ˙̃ω = ω̇ − R̃T

ω̇d − ˙̃RTωd (6)

where Ṙ = RS(ω) is the time derivative of the rotation
matrix.

To better explain quaternion attitude control, let us first
consider the attitude stabilization problem without model un-
certainties. Consider the Lyapunov function candidate (LFC)

V = 1
2ω

TJω + 2cH(η̃) (7)

where the inertia J is constant, c is positive and H(η̃) is
the quaternion error function. Because the error is a unit
quaternion, the error function must be a Lipschitz function
defined on the range [-1, 1] and vanish at ±1, since η̃ = ±1
represents aligned B and D frames. Several common choices

for H(η̃) can be found in [5]. After expansion, the derivative
of the LFC is

V̇ = ωT [τ + S(Jω)ω + hτ ]− cωT ẽ

where ẽ = −∂H∂η̃ ε̃ has been introduced. By assuming hτ = 0
and taking the control law τ = −Kvω−cẽ with gain Kv ≥
03×3, and using the skew-symmetry property of the Coriolis
term in the dynamics, V̇ becomes negative semidefinite

V̇ = −ωTKvω < 0, ∀ω 6= 0

The equilibrium points depend on the chosen potential func-
tion of the quaternion error. Due to the structure of the
SO(3) group, at least two equilibrium points exist In this
paper, we choose H(η̃) = ε̃T ε̃ , which gives ẽ = 2η̃ε̃
is similar to angle-axis feedback but does not suffer from
singularities at zero error. When using this error function, the
asymptotically stable equilibrium points are η̃ = ±1, and an
unstable equilibrium point exists at η̃ = 0. The function has
been chosen because it is continuous and is stable at both
signs of η̃.

B. Robust attitude tracking control

Define the desired attitude error dynamics to be

˙̃ω +Kv ˙̃e+ cẽ = 0 (8)

where instead of the angular velocity error, we have taken
the time derivative of the geometric attitude error. For control
design we take an ideal model without disturbances to be
followed

J0ω̇0 = τ 0 + S(J0ω0)ω0 (9)

In integral sliding mode controller design, the tracking (slid-
ing) variable is expanded by a model-based integral term z
which is designed such that sliding mode starts from the first
time instant. By defining the sliding variable s to be

s = s0 + z, s0 = ω̃ +Kvẽ (10)

from the sliding condition ṡ = 0, one obtains

ż = −ṡ0 = − ˙̃ω0 −Kv ˙̃e, z(0) = −s0(0) (11)

where the ideal error dynamics ˙̃ω0 is obtained from the
nominal model (9), using (6). The actual error dynamics can
be obtained from (3).

˙̃ω0 = J−1
0 τ 0 + J−1

0 S(J0ω)ω − R̃T
ω̇d − ˙̃RTωd

˙̃ω = J−1τ + J−1S(Jω)ω + J−1hτ − R̃
T
ω̇d − ˙̃RTωd

(12)

The control law τ consists of a nominal control τ 0 and
a robust control τ 1. The nominal control law is obtained
such that the nominal model (9) follows the desired error
dynamics (8). The robust control is determined from the
stability analysis.

τ = τ 0 + τ 1

τ 0 = J0

(
R̃
T
ω̇d + ˙̃RTωd −Kv ˙̃e− cẽ

)
− S(J0ω)ω

(13)



The derivative of the sliding variable (10) is then

ṡ = ṡ0 + ż = ζ1 + ζ2τ 0 + J−1τ 1 + J−1hτ

ζ1 = J−1S(Jω)ω − J−1
0 S(J0ω)ω

ζ2 = J−1 − J−1
0

(14)

The disturbance hτ can be approximated from the discrete-
time formulation of the dynamics (3). We assume a small
sampling time ts � 1, so that hτ,k for t = k ts can be
considered constant between time steps:

hτ,k ≈ hτ,k−1 = J0ω̇k−1−τ k−1−S(Jωk−1)ωk−1 (15)

This measurement will include both modeling errors and
external disturbance. If a more accurate model of external
forces are available, e.g. a drag model, it can be directly
included in (15) to improve the estimation. The acceleration
signal is typically noisy, especially if it comes from dif-
ferentiating a velocity measurement. To improve robustness
and reduce sensitivity to noise, the disturbance estimation is
lowpass-filtered. Let us define the estimation error as

h̃τ = hτ − ĥτ (16)

Next we take the Lyapunov function

V = 1
2s
TJs+ 1

2 h̃
T

τ Γ−1h̃τ (17)

whose derivative is

V̇ = sTJ
(
ζ1 + ζ2τ 0

)
+sT τ 1 +sThτ + h̃

T

τ Γ−1(ḣτ − ˙̂
hτ )

(18)
By choosing the robust control law τ 1 and disturbance
estimation dynamics to be

τ 1 = −Kwsgn(s)− ĥτ , ˙̂
hτ = Γh̃τ + ρsgn(h̃τ ) (19)

the derivative of the Lyapunov function becomes

V̇ = sTJ
(
ζ1 + ζ2τ 0

)
− sTKwsgn(s)− sT h̃τ

− h̃
T

τ h̃τ + h̃
T

τ Γ−1
(
ḣτ − ρsign(h̃τ )

) (20)

For (20) to be negative definite, it must hold that

Kw >
1

γ
‖ζ1 + ζ2τ 0 + J−1h̃τ‖, γ < λmin(J−1)

ρ > sup‖ḣτ‖
(21)

where it is assumed that hτ is Lipschitzian. It can be seen
that the sliding gain Kw depends on the modeling error
ζ1 + ζ2τ 0 as well as the disturbance estimation error h̃τ .
If the disturbance had not been estimated, the gain would
also have to be larger than the maximum amplitude of the
external disturbance, as well as the modeling errors. Thus,
by incorporating an explicit disturbance estimator into the
controller, the sliding gain can be smaller, which leads to
improved robustness. The gain ρ in the disturbance estimator
compensates for the rate of change of the disturbance. If ρ
is taken zero, the sliding gain has to be higher in order to
compensate the disturbance component ḣτ . The equivalent
control, or averaged motion, of the sliding mode term is

τ 1,eq = J
(
ζ1 + ζ2τ 0

)
+ h̃τ (22)

Quadrotor

Jω̇ − S(Jω)ωΓ
s+Γ

K

hτ

ωτ

τ0

−
ĥτ

τ1s

Fig. 4: Block diagram of the attitude controller and disturbance
observer.

Since using a signum function in the control leads to chatter-
ing, we adopt a boundary-layer approach, which is equivalent
to a lowpass-filtered signal of the signum function. By taking

τ 1 = −Kwsat (s/ε)− ĥτ (23)

with a small constant ε > 0, the system will behave as in
(20) outside the boundary layer. The system will therefore
not converge asymptotically to the tracking variable, but to
an ε-vicinity thereof. Inside the boundary layer we can define
an equivalent gain K = Kw/ε and set ρ = 0 to obtain

V̇ = sTJ
(
ζ1 + ζ2τ 0

)
+ h̃

T

τ Γ−1ḣτ −W

W = sTKs+ sT h̃τ + h̃
T

τ Γh̃τ

≥ λmin {K} ‖s‖2 + ‖s‖‖h̃τ‖+ λmin {Γ} ‖h̃τ‖2
(24)

and the condition for its positive definiteness of W is

4λmin {K}λmin {Γ} > 1 (25)

hence the system must be sufficiently damped inside the
boundary layer to compensate the estimation error dynamics.
An upper limit on K is imposed by the propeller dynamics
and sensor noise. The Lyapunov function inside the boundary
layer will not be negative definite, but will be dominated by
the model and estimation errors. The error dynamics inside
the boundary layer in case of J 6= J0 can be obtained as

˙̃ω + J−1J0Kvω̃ + J−1J0cẽ = ζ1 − J
−1h̃τ

˙̂
hτ + Γĥτ = Γh̃τ

(26)

which shows that the error dynamics inside the boundary
layer is excited by the disturbance estimation error.

The boundary-layer integral sliding mode controller be-
haves like a saturated PID controller, therefore an anti-
windup method must be applied, as shown in [29]. Therein,
during saturation of the sliding mode term in τ 1, the sliding
surface is reset such that z = −s0 and ż = 0. Furthermore,
saturated control inputs are used for disturbance observation,
as depicted in Fig. 4.

IV. POSITION TRACKING CONTROL

The position controller is designed to track a desired
position rd = [xd yd zd]

T , velocity ṙd and acceleration r̈d.
The angle ψ about the inertial z-axis remains free to be
controlled. This is achieved by designing a controller in the
inertial frame which calculates an inertial control force. The
force is then used to generate an attitude and thrust reference
for the underlying attitude controller.
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A. Virtual control force

The design closely follows that of the attitude controller,
therefore most details are omitted. The controller calculates
a required force in the inertial frame based on the desired
error dynamics

¨̃r +Kv,p ˙̃r +Kp,pr̃ = 0 (27)

where r̃ = r − rd is the position error. We follow the ideal
disturbance-free dynamics based on (3)

m0r̈0 = (m0g − TRbi) zi (28)

where m0 is the nominal mass. A quaternion reference
attitude is then generated that aligns the thrust vector with
the desired control force. Equivalent to the attitude controller,
the position control input f = f0 +f1 consists of a nominal
control f0, based on (28) and (27), and a robust control f1

such that

f0 = m0

(
r̈d −Kv,p ˙̃r −Kp,pr̃

)
f1 = −ĥf −Kf sat(sp/εp)

(29)

where r̈d includes the gravity compensation term. The dis-
turbance hf in the inertial frame is obtained by

˙̂
hf = Γf

(
m0r̈ −m0gzi − f − ĥf

)
(30)

By using the same integral sliding mode design process as
in the attitude controller, the sliding variable is obtained to
be

sp = ˙̃r +Kv,pr̃ +

∫
Kp,pr̃ dt− ˙̃r(0)−Kv,pr̃(0) (31)

Hence, the controller behaves locally as a PID controller. The
thrust is equal to the norm of the desired force, i.e. T = ‖f‖.

B. Attitude reference generation

The attitude reference can be obtained from f through two
transformations, depicted in Fig. 5. The thrust transformation
q
f

aligns the zf -axis to the desired thrust vector, and is
obtained from an angle-axis representation. The yaw trans-
formation q

ψ
rotates about the inertial z-axis by angle ψ. The

thrust vector points in the negative zi direction in hover, so a
rotation axis k can be obtained as the cross product between

the desired inertial force and the negative zi vector. The
transformation between axes zi and zf can be obtained by
normalizing the non-unit quaternion q

f
= [ηf εf ]T

ηf = −zTi f +

√
1 + fTf , εf = −zi × f (32)

The reference quaternion q
di

from the position controller is
then obtained by transforming the yaw coordinate system by
the thrust transform:

q
di

= q0
f
⊗ q

ψ
, q

ψ
=
[
cos ψ2 , 0, 0, sin ψ

2

]T
(33)

The transformation is free of singularities. Here, the yaw
transform represents the angle about the inertial z-axis, and
not the Euler yaw angle.

Also commanding an angular velocity improves attitude
tracking performance. The angular velocity command can
be generated by discretizing the kinematics of the rotation
matrix and calculating delta rotations of the position con-
troller between two time steps. The angular velocity at time
step k is then

ωd,k = ∨
(
RT
bi,k−1Rbi,k

)
t−1
s (34)

where ts is the sampling time of the position controller, and
∨(·) is the inverse of the skew-symmetric matrix operator,
which extracts a vector from the matrix S(·). In this way,
angular velocity is generated from the feedback signal, rather
than the feedforward signal from a precomputed trajectory.

V. RESULTS

In this section, we first show the behavior of the controller
with disturbance observation when model uncertainties are
applied in simulation. The transient response is compared to
a PID controller and influence of the integral term is shown.
Three sets of experiments are presented, where four con-
trollers are compared – PID, Adaptive Integral Backstepping
Controller (AIBC), Integral Sliding Mode with Disturbance
Observation (ISM+DO) and PD with disturbance observation
(PD+DO). First, we compare hovering performance with and
without turbulent wind influence across position and attitude
controllers. Second, we show trajectory tracking between
waypoints, where large angles must be applied. Lastly, we
show behavior of the disturbance observation method when
a constant force in the inertial frame is applied, and compare
the response with the AIBC. For presentation clarity, we
show the ZYX Euler angles, while quaternions are used for
control.

For a fair comparison, all controllers have been tuned to
have the same local closed-loop gains as a standard PID
controller fPID,x = m0(ẍd −Kv,x

˙̃x −Kp,xx̃ −Ki,x

∫
x̃dτ)

with gains Kv,p = 2ωc, Kv,p = ω2
c , Ki,p = 1

4ωc. This
applies for the sliding mode boundary layer and AIBC
controller. Disturbance observers were tuned separately. The
AIBC position controller was implemented as three decou-
pled controllers of the form from [18], [19] as

fx = m0

(
ẍd − (1− c21 + λ)x̃− (c1 + c2) ˙̃x+ c1λξx − ĥx

)
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where ξx =
∫
x̃dτ for the x-axis and equivalent for other

axes, with the disturbance estimation as ˙̂
hx = γė. Since the

mass is constant and is not adapted in other controllers, the
adaptation has not been implemented for the AIBC.

A. Simulation results

The simulation model includes sensor noise, propeller
modeling and actuator discretization. Angular accelerations
are obtained through finite-difference differentiation. Fig. 6
shows the step position disturbance response for different
controllers, which is applied between 1 s and 8 s, with an
ISM+DO attitude controller. The PD+DO approach shows
faster convergence than the PID controller. The combined
ISM+DO scheme inside the boundary layer has a faster
response and a smaller absolute error, however the transient
has an undershoot due to integrator influence.

Next we show the response to time-varying disturbances in
Fig. 7. The quadrotor is commanded to hover at a constant
position, while time-varying disturbances are applied, as a
torque about the x-axis (roll), and a force in the inertial y-
axis. The force is counteracted by changing the roll angle,
and is thereby coupled with the torque disturbance. It can be
seen that the disturbance is counteracted very closely despite
being time-varying. The slow component is identified by
the acceleration-based disturbance estimator, while the faster
component is counteracted through the integral sliding mode

term Ks. A chirp torque disturbance with varying amplitude
can be compensated, even though the lowpass disturbance
estimate has a considerable phase delay. The system is in the
boundary layer, and the sliding variable s goes to zero once
the constant disturbance is counteracted by the disturbance
estimate. Position and attitude are of course coupled, as a
change in the attitude due to the disturbance causes a change
in position, so the quadrotor must fly back to the hover
position. Note that here the disturbance amplitude is larger
than the quadrotor weight, so the roll angle must be held at
60 degrees in hover.

B. Experimental validation

The experiments are carried out using an AscTec Hum-
mingbird that runs the quaternion attitude controller with dis-
turbance observer onboard at 1 kHz. A strapdown algorithm
integrates the onboard gyros to obtain the attitude estimate
that is used for the control. The attitude drift is corrected
from motion tracking measurements. Position and attitude
measurement are provided by an A.R.T. motion tracking
system at 60 Hz. The position controller runs in Simulink,
and sends attitude and thrust reference commands to the
quadrotor via a wireless XBee link. The angular acceleration
is obtained onboard by numerically differentiating the gyro
signals. Translational velocity and acceleration are obtained
by differentiating and filtering raw position measurements
from the motion tracking system, hence a small delay is
introduced.

We first investigate the influence of a disturbance observer
in hover conditions. All experiments have been carried out
with the same hardware and under same conditions. Since
it is common to use a PD attitude controller on the Hum-
mingbird platform, we compare the quaternion controller in
PD form and with disturbance observation. The quadrotor
parameters are not ideally known, so modeling errors exists.
Therefore, as no external disturbances are present, these will
dominate the error dynamics. Fig. 8.a. shows box plots for
the four position controllers and attitude controllers with and
without disturbance observation. It can be seen that only us-
ing a disturbance observer in the attitude controller improves
performance in the horizontal plane. It does significantly not
influence altitude control. In hover, the ISM controller is
always inside the boundary layer, so the integral term adds a
low frequency component that spreads the error distribution
when combined with the disturbance observer.

Next, we analyse the influence of turbulent wind on hov-
ering performance. The setup is depicted in Fig. 1.a. The fan
generates a turbulent wind stream with a velocity of 3 m/s,
resulting in a ∼15◦ hover. Fig. 8.b. shows very consistent
performance of the PD+DO position control approach when
combined with the attitude disturbance observer. It can be
seen that the PD attitude controller performs much worse in
turbulent conditions. It can be concluded that the position
controller performance can be significantly improved in
turbulent wind conditions by simply adding a disturbance
observer to the attitude controller. Adding a disturbance
observer to the position control loop further improves per-
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Fig. 8: Hovering performance using different position and attitude controllers. Controller parameters were constant through the experiments.
The attitude controller was tuned as ωc,a = 12 rad/s and Γa = 8. All position controllers had ωc,p = 1.5 rad/s, and the mass was constant
at m = m0 = 0.63 kg. Position DO parameters were Γp = diag{[3 3 1.5]} and AIBC γ = diag{[4 4 2]}.
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Fig. 9: Position and velocity tracking during aggressive waypoint
trajectory tracking. The maximum commanded velocity was 2 m/s.
Due to overshoot, the max. reached velocity was 3 m/s. The roll and
pitch angles reach up to 50◦, and the commanded angular velocity
reaches the limit of 250◦/s. Yaw tracking remains good throughout
the flights. The roll angle and angular velocity are not shown.

formance. However, the ISM integral term does not further
improve the hovering performance.

Fig. 9 shows position and velocity tracking errors for a
trajectory tracking experiment. The velocity and acceleration
were generated by filtering the position between waypoints.
Here, the maximal reference velocity was about 2 m/s. The
ISM+DO controller shows fast and very oscillatory behavior.
It can be seen that the PD+DO controller shows the fastest
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Fig. 10: Position, pitch and disturbance estimate in the suspended
weight experiment with PD+DO ( ), ISM+DO ( ) and AIBC
( ) controllers. The left column shows transients when the force
is applied to the quadrotor, and the right column when it is released.
For the DO-based approaches, the quadrotor hovers at about 45◦

in equilibrium. The AIBC does not correctly identify the external
force, as the weight falls to the ground. Position DO parameters
were Γp = diag{[7 1.5 1.5]} and AIBC γ = diag{[8 3 2]}.

convergence of the position error, however it also shows large
velocity overshoot. This is due to lumping the unmodeled
drag force in the disturbance. Here, performance can be
improved by modeling the velocity-dependent drag forces.
The obtained pitch angle and commanded angular velocity
show that the angles reach 45◦, The onboard gyros are
rated to 300◦/s, so the commanded signal is limited to avoid
sensor saturation. This leads to lower tracking performance
in periods of high acceleration.

Lastly, we compare the transient response to a step dis-
turbance in the inertial x-direction. The setup is shown
in Fig. 1.b. A weight of 6 N (610 g) is suspended and
bound to the quadrotor with a string. The quadrotor, with
a mass of 630 g, is then commanded to hover and the weight
is dropped. This produces a constant horizontal force in
the x-direction on the quadrotor. Fig. 10 shows that the



DO identifies the weight quickly. The quantitative error
indicates errors in modeling of the quadrotor thrust. The
hover position is reached quickly. The ISM+DO approach
shows faster convergence of the error to zero, as shown in
simulations. In equilibrium, the quadrotor hovers at approx.
45◦. Importantly, releasing the weight does not cause an
overshoot. The velocity-based disturbance observation of the
AIBC does not correctly identify this disturbance, since the
weight falls to the ground and the quadrotor velocity reaches
zero. Therefore, the disturbance estimate converges to a
constant value. The integral term is too slow to drive the error
to zero. Hence, the DO-based approach is well suited for
applications where relatively large external forces are present
because these are estimated directly from the acceleration.

VI. CONCLUSION

We have developed a geometric attitude controller based
on quaternion feedback that is robust to external disturbances
and modeling errors. We have investigated the combina-
tion of acceleration-based DO and integral sliding mode
(ISM+DO). It is shown through experiments that this ap-
proach can improve performance of all position controller.
Our position controller generates reference quaternions in a
singularity-free way.

We have compared the presented approach to PID and
AIBC controllers through extensive experiments on a quadro-
tor platform. The results show that the presented approach
can improve position controller performance in all conditions
despite using a very simple quadrotor model. We also show
compensation of a large external force, where the quadrotor
hovers well outside of standard hover conditions. The integral
backstepping controller fails in this experiment. We have
found the presented controllers straightforward to tune, as
the number of parameters is small. Position tracking perfor-
mance can be improved by including a velocity-dependent
drag model in the controller.

In the future we will investigate combining the presented
controller with on-line parameter estimation. A more accu-
rate system model would result in improved performance
of the controller. Furthermore, combining the disturbance
observation method with an external force-torque sensor
would allow the decoupling of external forces and model
errors when the UAV is interacting with the environment,
thus broadening its range of applications.
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