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Abstract. In this paper we discuss the usage of finite differences for the computation
of the flux Jacobian in the framework of a discrete adjoint or time-linearised flow solver,
in particular the associated choice of an appropriate step size. For comparison, we apply
algorithmic differentiation to obtain an exact flux Jacobian. It turns out that the results
depend strongly on the choice of the slope limiter. A careful choice of this function
is crucial for computations with exact flux linearisations as well as for finite difference
approximations.

1 INTRODUCTION

For many applications of computational fluid dynamics, adjoint and linear methods
nowadays play an important role. The adjoint method [1, 2] is for example used to
efficiently compute sensitivities for large numbers of free parameters, e.g. for optimisation
problems (see e.g. [3]). Time-linearised methods can be used as an efficient approximation
to unsteady simulations for applications e.g. in aeroelasticity and aeroacoustics.

There are two basic approaches for the development of adjoint methods. Either, ad-
joint differential equations can be derived and then discretised and solved (“continuous
adjoint”), or the adjoint equations can be derived from the discretised flow equations
(“discrete adjoint”). A discussion of both approaches can be found for example in [4].
In this work we focus on discrete adjoint methods. One advantage of these is that it is
easier to obtain an adjoint solver which is consistent with the underlying nonlinear solver,
which is an important issue for the accuracy of the adjoint sensitivities.

A central ingredient for the development of discrete adjoint flow solvers is the com-
putation of the flux Jacobian, i.e. the derivatives of the numerical flux functions with
respect to the flow variables, which can be obtained in different ways. An overview and
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discussion of various differentiation methods is given in [5]. In principle it is possible to
differentiate the flux functions analytically “by hand”, but this is a very challenging task
[6]. Alternatively, finite differences can be used to obtain the derivatives in a “black-box”
manner. The main problem with this approach is the choice of an appropriate step size
for the finite differences. It should be small to minimise the approximation error but it
must not be too small in order to avoid cancellation errors. Another possibility is to use
of algorithmic (sometimes also called automatic) differentiation (AD) [7]. This has been
done e.g. by Mader et al. [8, 9] and Courty et al. [10].

Within the flow solver TRACE, adjoint [11, 12] and time-linearised [13, 14] methods
have been developed since 2006 using the discrete approach. Since an analytical differ-
entiation “by hand” would be impratical for an industrially used, complex flow solver,
which is constantly developed, finite differences are used for the computation of the flux
Jacobian. Additionally we have now, based on the work described in [15], implemented a
version which makes use of algorithmic differentiation.

We discuss both variants in section 2.2. Before, in section 2.1 we summarise important
properties of the underlying nonlinear solver. In particular we discuss the implementation
and properties of various limiter functions. In section 3 we present numerical examples
where we apply these limiter functions in combination with different linearisation methods,
i.e. algorithmic differentiation and finite differences with different step sizes. Finally, in
section 4 we summarise our results and draw some conclusions.

2 THEORY

The flow solver TRACE has been constantly developed for more than twenty years
and offers many different solver modes and features for the simulation of turbomachinery
flows [16, 17]. We discuss here briefly those features which are relevant for the current
study.

2.1 Nonlinear flow solver

TRACE is a hybrid-grid cell-centered finite volume solver. In the steady nonlinear
mode, the Reynolds-averaged Navier–Stokes equations are solved using a time-marching
algorithm. Time integration and spatial discretisation are separated. Since the adjoint
solver is so far only available on structured grids, we concentrate on the spatial discreti-
sation for structured grids.

The convective fluxes at the cell interfaces are approximated using the Roe scheme [18].
The so-called Roe-averaged variables are computed from left and right states qL

i+ 1
2

, qR
i+ 1

2

.

Using MUSCL extrapolation [19], these are given by

qL
i+ 1

2
= qi + 1

4
[(1− κ)(qi − qi−1) + (1 + κ)(qi+1 − qi)] =: qi + 1

2
∆qL (1)

qR
i+ 1

2
= qi+1 − 1

4
[(1 + κ)(qi+1 − qi) + (1− κ)(qi+2 − qi+1)] =: qi+1 − 1

2
∆qR (2)

respectively, compare e.g. [20, 21].
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To avoid oscillations in the numerical solutions, the corrections ∆qL,∆qR are modified
by multiplying the state differences by appropriate slope limiters:

q̃L
i+ 1

2
= qi + 1

2
∆̃q

L

= qi + 1
4

[
(1− κ)ϕ

(
r+
i− 1

2

)
(qi − qi−1) + (1 + κ)ϕ

(
r−
i+ 1

2

)
(qi+1 − qi)

]
(3)

q̃R
i+ 1

2
= qi+1 − 1

2
∆̃q

R

= qi+1 − 1
4

[
(1 + κ)ϕ

(
r+
i+ 1

2

)
(qi+1 − qi) + (1− κ)ϕ

(
r−
i+ 3

2

)
(qi+2 − qi+1)

]
, (4)

where we use the following ratios of differences:

r+
i+ 1

2

=
qi+2 − qi+1

qi+1 − qi
, r−

i+ 1
2

=
qi − qi−1
qi+1 − qi

, r+
i− 1

2

=
qi+1 − qi
qi − qi−1

, r−
i+ 3

2

=
qi+1 − qi
qi+2 − qi+1

. (5)

Considering for the moment only the left state, we can rearrange

∆̃q
L

= 1
2

[
(1− κ)ϕ

(
r+
i− 1

2

)
+ (1 + κ)ϕ

(
1

r+
i− 1

2

)
r+
i− 1

2

]
(qi − qi−1). (6)

If the limiter function ϕ has the symmetry property

ϕ

(
1

r

)
=
ϕ(r)

r
(7)

equation (6) simplifies to ∆̃q
L

= ϕ
(
r+
i− 1

2

)
(qi− qi−1), i.e. the correction is independent of

κ and we have
q̃L
i+ 1

2
= qi + 1

2
ϕ
(
r+
i− 1

2

)
(qi − qi−1). (8)

Analogous transformations can be applied for qR
i+ 1

2

.

We consider the following choices for the limiter function ϕ which fulfill the symmetry
condition (7):

Minmod ϕ(r) = minmod(1, r) =


0 r < 0

r 0 ≤ r ≤ 1

1 r > 1

van Albada ϕ(r) =

0 r < 0
r2 + r

r2 + 1
r ≥ 0

van Leer ϕ(r) =
r + |r|
1 + |r|

=

{
0 r < 0
2r
1+r

r ≥ 0
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All these limiters also have the so-called TVD (total variation diminishing) property [21].
Another possible symmetry property for limiter functions is

ϕ

(
1

r

)
= ϕ(r) (9)

(which applies in particular to constant functions, i.e. if no limiter is used). Then (6) can
be written as

∆̃q
L

= 1
2

[
(1− κ) + (1 + κ)r+

i− 1
2

]
ϕ
(
r+
i− 1

2

)
(qi − qi−1) (10)

= 1
2

[(1− κ)(qi − qi−1) + (1 + κ)(qi+1 − qi)]ϕ
(
r+
i− 1

2

)
. (11)

One possible function with this property is

ϕ(r) =
2r

r2 + 1
, (12)

cf. for example [20]. This function does not behave well if both the numerator and
the denominator of r approach zero. This can be changed if the limiter function is
reformulated in terms of these differences δq+, δq− and an additional constant is added to
numerator and denominator of the resulting function:

ϕ(δq+, δq−) =
2δq+δq− + εvA

(δq+)2 + (δq−)2 + εvA
. (13)

Such a limiter formulation is used for example by Anderson et al. [22] and Benetschik and
Gallus [23]. We use in this study a further modification by applying (13) to (δq+)2, (δq−)2.
We refer to this as a “van Albada type” limiter. Note that this limiter function does not
vanish if δq+ and δq− have different signs, so in particular it does not have the TVD
property. Enforcing the TVD property would prevent the differentiability near zero [23].

All other limiters are implemented as stated above, except that the denominator of
the ratio r is prevented from becoming exactly zero by adding an offset of 10−8 (with
appropriate sign). Equations (3) and (4) are implemented componentwise for primitive
variables in absolute frame of reference.

2.2 Discrete linearised and adjoint solver

We consider the linearisation of the discrete equation R(q, x) = 0, where q denotes as
before the flow state (solution) and x represents the computational grid. The residual in
cell i is given by

Ri = V −1i

∑
σ∈∂i

Fσ − Si, (14)
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where Vi denotes the cell volume, σ runs over the faces of cell i and Fσ represents the
numerical flux through the face σ, which depends of course on the employed discretisa-
tion scheme. Si stands here for the rotational source terms which appear since the flow
equations are formulated in the relative frame of reference.

The Jacobian ∂R
∂q

therefore consists of two contributions, the flux Jacobian and the
source term Jacobian. While the latter can be relatively easily derived and implemented
for rotational source terms, the former would be very difficult to treat explicitly. There-
fore, in the current implementation the derivatives of the fluxes are approximated by finite
differences. Different levels of accuracy can be chosen for the finite differences, we discuss
here only the (default) case of second order central differences, i.e. we have for each flow
component qj:

∂Fσ

∂qji
≈ F (q + δqji )− F (q − δqji )

2δqji
. (15)

The perturbation amplitude δqji is determined as

δqji = (|qji |+ µ)ε (16)

where µ and ε are parameters which have to be chosen appropriately. The perturbation
is basically proportional to the magnitude of the respective flow component with the step
size ε as proportionality factor, while the threshold µ prevents the perturbation from
becoming too small for very small flow components.

As a benchmark to assess the accuracy of the finite differences we apply algorithmic
differentiation to obtain an exact version of the flux Jacobian. For this we use the AD
tool ADOL-C [24], which employs the operator overloading technique, in forward mode
and simply replace the finite differences in the computation of the flux Jacobian by algo-
rithmically differentiated routines. For technical details on the usage of AD in TRACE
we refer to [15]. The rest of the solver remains unchanged, in particular we use the same
solution algorithm – a preconditioned GMRes algorithm with restarts – for the resulting
linear equation system as in the finite difference case.

3 APPLICATION

3.1 Numerical test case: wave propagation

The linear solver is used to simulate the propagation of an acoustic wave through an
annular duct. In this case the steady state at which the flow equations are linearised is
just a constant flow state. The frequency of the wave can be varied to simulate different
grid resolutions (in relation to the wave length). We use four different frequencies, namely
1250 Hz, 2500 Hz, 5000 Hz, and 10000 Hz. An example of the resulting solutions is shown
in Fig. 1.

Ideally, the wave should pass the duct unchanged, but in practice the numerical solution
introduces a certain amount of dissipation, i.e. the amplitude of the waves decreases
towards the end of the duct. This numerical dissipation rate is given by
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D = 1−
(
|∆pout|
|∆pmax|

)λ
l

, (17)

where λ is the wave length and l the length of the duct.
We vary the step size for the finite differences between 10−1 and 10−4, which is still large

enough to avoid cancellation effects. To keep the number of computations manageable, we
do not vary the size of the threshold µ independently, but set always µ = ε. The results
are compared to those obtained using algorithmic differentiation. Moreover, different
limiter setups are used. For comparison, we also carried out a simulation with first order
spatial accuracy. In this case the differentiation method does not influence the results.

Exemplary results are shown in Figures 2 and 3. In Fig. 2 we compare the various
differentiation methods for selected limiters, while in Fig. 3 we keep the differentiation
fixed and vary the limiter.

We see that if no limiter is used, the numerical dissipation shows a second order decay,
and it is relatively independent of the differentiation parameters. Only for ε = 10−1 a
small deviation can be observed. In contrast, when using the Minmod limiter, the dissi-
pation values are the same as in the first order case for all finite difference computations.
Algorithmic differentiation yields only slightly better results, which are still far from bee-
ing second order accurate. The limiters van Albada and van Leer show a very similar
behaviour (compare Fig. 3).

For the case of finite differences, this can be explained as follows: Since the state q
at which the Jacobian is computed is constant, i.e. qi = q̄ for all i, if we evaluate the
extrapolated states qL

i+ 1
2

, qR
i+ 1

2

starting from a state in which only one component in one

cell is perturbed by ∆qji , the correction terms ∆̃q
L
, ∆̃q

R
in eqns. (3), (4) are always zero

(since either r ≤ 0 and therefore ϕ(r) = 0, or the state difference is zero) and so the
extrapolation reduces to a first order scheme.

Figure 1: Solution produced by the linear solver for the propagation of a wave with a frequency of
5000 Hz using the following setting: second order spatial discretisation, van Albada type limiter with
εvA = 10−4, step size ε = 10−2 for finite differences.
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Figure 2: Comparison of numerical dissipation curves using different differentiation methods for four
limiter settings: limiter off (top left), Minmod (top right), van Albada type with εvA = 10−4 (bottom
left) , van Albada type with εvA = 10−8 (bottom right). For comparison, the first order curve is also
shown in each plot.

The van Albada type limiter yields always the second order curve if algorithmic dif-
ferentiation is used, while for finite differences the behaviour depends on the value of the
constant εvA. For εvA = 10−4 only the largest step size ε = 10−1 leads to worse results
(see bottom left plot in Fig. 2), for εvA = 10−8 a step size of (at most) ε = 10−3 is needed
to keep the second order decay. An analysis shows that the relevant quantity is the ratio
ε4

εvA
. If this is small (about 10−2 or smaller), the finite differences are very similar to the

case where no limiter is used, if it is large (about 102 or greater), the extrapolation scheme
reduces effectively to first order.
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Figure 3: Comparison of numerical dissipation curves using different limiters for exact differentiation
(left) and finite differences with step size 10−2 (right). The van Albada type limiter is here used with
εvA = 10−4.

3.2 Adjoint sensitivities for a compressor rotor

As a second test case we use a one-stage turbomachinery configuration, the Darmstadt
Transonic Compressor with the baseline rotor geometry (Rotor 1) [25], see Fig. 4. The
considered operating point is at a rotor velocity of 20,000 rounds per minute and a mass
flow of approximately 16.3 kg/s. The resulting pre-shock Mach number is about 1.5.

Figure 4: Computational model of the Darmstadt Transonic Compressor.

We use mass flow at the exit as objective functional and compute sensitivities with
respect to small variations of the stagger angle at eight different radial heights, as described
in [12]. For simplicity we keep the numerical setup for the solution of the linear equation
system fixed, using ILU as preconditioner and a restart interval of 120 for the GMRes
algorithm. We study the same combinations of limiters and differentiation parameters as
in the previous section, except that the smallest value for εvA which we consider here is
10−6. To compare the different setups, we look at the computed sensitivities as well as
the residuals of the GMRes solver (see figures 5 and 6).

As before, we note that if no limiter is used, the convergence behaviour as well as the
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Figure 5: Comparison of convergence behaviour (left) and sensitivities (right) using different differ-
entiation methods for three limiter settings: limiter off (top), Minmod (mid), van Albada type with
εvA = 10−4 (bottom).
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Figure 6: Comparison of convergence behaviour (left) and sensitivities (right) using different limiters
for exact differentiation (top) and finite differences with step size 10−2 (bottom).

sensitivities depend hardly on the differentiation method. The van Albada type limiter
behaves quite similarly, except that the differences between ε = 10−1 and the other
cases are a bit larger. But it can also be seen that for all differentiation methods the
convergence is much faster than without limiter. The results for the Minmod limiter
depend more strongly on the differentiation method. In particular, for finite differences
with step size 10−4 and for algorithmic differentiation the GMRes algorithm does not
converge any more. Therefore, the computed sensitivities are of no use in these cases.

Figure 6 shows that the other limiters (van Albada, van Leer), and also the van Albada
type limiter with εvA < 10−4 have similar problems in the case of exact differentiation.
In principle, the same applies to the finite difference results, although the minimal step
size for which the computation converges at all depends on the choice of the limiter. For
the cases with convergence problems, different combinations of preconditioner and restart
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interval, e.g. ILU with increased level of fill-in and restart interval 300, did not improve
the convergence behaviour significantly.

We also see in Fig. 6 that for a given differentiation method the resulting sensitivities
depend – in some cases very strongly – on the limiter used, even if all solutions are
converged equally well. This is of course not very surprising, since also the steady and
the adjoint solution change considerably when a different limiter is used. The very large
deviation for the first parameter in the case where no limiter is used is due to significant
differences in the adjoint solution near the hub, which do not have a counterpart in the
steady solution and have to be further investigated.

4 CONCLUSION

We have shown that it is possible to construct the flux Jacobian for a discrete adjoint
or linear solver using finite differences, but the choice of the limiter function is a very
critical point for any discrete linearisation. On the other hand, if no limiter is used, the
convergence of the nonlinear and the linear/adjoint solvers becomes considerably slower.
For a scheme without limiter as well as for an appropriate choice of the limiter function
(van Albada type), the computations based on finite differences become nearly identical
to those with the “exact” flux Jacobian (computed using algorithmically differentiated
routines) if the step size is chosen sufficiently small. In the examples considered, “suffi-
ciently small” means in the order of 10−3 to 10−4, and already for a step size of 10−2 the
resulting sensitivities and numerical dissipation rates are very close to the AD reference.
However, for many choices of the limiter functions, in particular for all considered TVD
limiters, the behaviour of the linearization is problematic. For the “numerical dissipation”
test case the accuracy reduces to first order in these cases. For the compressor test case,
the linear system based on the exact linearisation or finite differences with small step size
becomes very stiff so that the GMRes algorithm does not converge any more or only very
slowly. The reason for this has to be studied in more detail. We have also seen that the
behaviour of the van Albada type limiter is very sensitive with respect to the choice of
the constant εvA.
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[15] M. Sagebaum, E. Özkaya, and N. R. Gauger, “Challenges in the automatic differentiation
of an industrial CFD solver,” in Evolutionary and Deterministic Methods for Design, Op-
timization and Control with Application to Industrial and Societal Problems (EUROGEN
2013), 2013.

12



Anna Engels-Putzka, Jan Backhaus and Christian Frey

[16] D. Nürnberger, F. Eulitz, S. Schmitt, and A. Zachcial, “Recent progress in the numerical
simulation of unsteady viscous multistage turbomachinery flow,” in ISABE 2001-1081,
Sept. 2001.
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