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1. Introduction. We consider the problem of finding a small number of ex-
tremal eigenvalues and corresponding eigenvectors of a large, sparse matrix A ∈ R

n×n,

Avi = λivi, i = 1, . . . , l, l≪ n.(1.1)

We will also comment from time to time on the closely related generalized eigenprob-
lem

Avi = λiBvi, i = 1, . . . , l,(1.2)

with B = B∗ ∈ R
n×n Hermitian positive definite, to which our method can be

generalized straightforwardly. Although we present test cases and performance results
for real-valued matrices, all results carry over to the complex case (in which the
performance models have to be adjusted slightly to account for the additional data
transfers and floating-point operations).

Eigenproblems of the form (1.1) or (1.2) arise in many scientific and engineering
applications such as structural mechanics and material science, to name just two. The
main application of the authors here is quantum mechanics, where A is a sparse matrix
representation of the Hamiltonian in the Schrödinger equation. Here, we choose a spin
chain model as a typical example from solid state physics (see Section 5). The methods
presented can obviously be used in any application that requires finding a few exterior
eigenvalues of a large sparse operator and are suitable for both Hermitian and general
(non-Hermitian) operators A.

Related work. In this paper we investigate a block Jacobi-Davidson method
that performs matrix-vector products and vector-vector operations with several vec-
tors at once. Jacobi-Davidson (JD) methods for the calculation of several eigenvalues
were originally proposed in [9]. Since then, many authors have worked on the algo-
rithm, its theoretical properties and efficient implementation. For a review article,
see [12]. Stathopoulos and McCombs investigated Jacobi-Davidson and Generalized
Davidson methods for symmetric (respectively Hermitian) eigenvalue problems in [23]
and also addressed block methods briefly. The general consensus in the literature
seems to be that block methods do not “pay off” in the sense that the performance
gains do not justify the overall increase in the number of operations. In this paper
we seek to demonstrate the opposite by extending the performance model for the
sparse matrix-vector product given in [16] to the case of multiple vectors and a care-
ful pipelining of operations to optimally exploit performance gains. We also want to
provide a thorough derivation and discussion of a block variant, as we found this to
be missing in the literature to date.

The performance analysis and algorithmic principles presented here are also useful
for other algorithms like block Krylov methods or eigenvalue solvers that require
the solution of linear systems with multiple right-hand sides such as FEAST [26] or
TraceMin [15].

Challenges posed by modern computer hardware. In this section we dis-
cuss some aspects of present high performance computing (HPC) systems that are
crucial for the development of efficient sparse linear algebra algorithms. For an exten-
sive introduction to the topic, see [10]. A simplified model for a present supercomputer
is a cluster of compute nodes connected by some network (distributed memory archi-
tecture), where each compute node consists of several cores - i.e. sequential computing
units - that share memory and other resources (shared memory architecture). Addi-
tionally each node may contain special accelerator devices, but for simplicity we only
consider clusters of multi-core nodes here.
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Communication between nodes requires sending messages over the network, which
is usually slow (in terms of bandwidth and latency) compared to memory accesses.
On the node level, the speed of the main memory is already insufficient to keep the
cores working. To hide this effect, a hierarchy of caches is available. The usual setup
consists of one small and fast cache per core and one or several slower caches that are
possibly shared by all or several cores in a node. Data is fetched into the cache from
the main memory in fixed-length cache lines of consecutive elements.

From this machine model we can see that the overall performance of a computer
program is determined by two main aspects: parallelism—the ability to distribute
work among the nodes and the cores within a node—and data locality—the ability
to reduce data traffic by reusing data in the cache (temporal locality) or using as
many elements from each cache line as possible (spatial locality). In our experience,
many authors emphasize parallel scalability and neglect the discussion of the node-
level performance. We would like to point out that optimal use of all available cores
increases the energy efficiency of a program, rather than just reducing the runtime
at an increasing energy cost. This paper clearly focuses on the node-level optimiza-
tion, though aspects of multi-node performance, such as avoiding communication, are
addressed as well.

Document structure. In Section 2 we derive a block formulation of the Jacobi-
Davidson method and discuss its properties and relation with other methods. In
Section 3 we perform a series of benchmark experiments for the computational kernels
required. This is intended to motivate the use of block methods without considering
the numerical effects that may obscure the pure performance characteristics in the
context of a complete eigenvalue solver. Section 4 describes some aspects of the
efficient implementation of the proposed algorithm, and the paper is concluded with
an experimental investigation of the numerical behavior and computational efficiency
in Section 5, where we also compare our results with an existing software package
with similar functionality (PRIMME, [25]).

2. The block Jacobi-Davidson QR (BJDQR) method. For solving the
large sparse eigenvalue problems (1.1) or (1.2), the subspace iteration algorithm is
one of the simplest methods. The original version was introduced by Bauer under the
name of Treppeniteration (staircase iteration) in [3]. Practical implementations apply
projection and deflation techniques. Krylov subspace methods are based on projec-
tion methods, both orthogonal and oblique, onto Krylov subspaces, i.e., subspaces
spanned by the iterates of the simple power method. Well-known representatives
are the (non-)Hermitian Lanczos algorithm and Arnoldi’s method and its variations.
Davidson’s method, widely used among chemists and physicists, is a generalization
of the Lanczos algorithm and can be seen as a preconditioned Lanczos method. A
significantly faster method for the determination of several extremal eigenvalues and
eigenvectors is the Jacobi-Davidson QR (JDQR) method with efficient precondition-
ing. It combines an outer iteration of the Davidson type with inner iterations to solve
auxiliary linear systems. These inner systems can be solved iteratively using Krylov
subspace methods.

In the following, we focus on a block formulation of JD. Starting point for the
derivation of this method is the invariant subspace V = span{v1, . . . , vl} spanned by
the eigenvectors vi of (1.1), but for general, non-Hermitian matrices the conditioning
of the eigenvector basis of V may be arbitrarily bad.
If we consider an orthonormal basis of the invariant subspace, we obtain the following
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formulation of the problem (1.1):

{

AQ−QR = 0,

− 1

2
Q∗Q+ 1

2
I = 0.

(2.1)

Here AQ = QR denotes a partial Schur decomposition of A with an orthogonal matrix
Q ∈ C

n×l and an upper triangular matrix R ∈ C
l×l with ri,i = λi. There are also

other suitable formulations, see [29] for a discussion of the single vector case.
We can apply a Newton scheme to the nonlinear system of equations (2.1), which

yields a block Jacobi-Davidson style QR algorithm (see [9]). First, we write (2.1) as
corrections ∆Q and ∆R for existing approximations Q̃ and R̃,

{

A(Q̃+∆Q)− (Q̃+∆Q)(R̃+∆R) = 0,

− 1

2
(Q̃+∆Q)∗(Q̃+∆Q) + 1

2
I = 0.

(2.2)

Ignoring quadratic terms and assuming an orthogonal approximation Q̃, we obtain

{

A∆Q−∆QR̃ ≈ −(AQ̃− Q̃R̃) + Q̃∆R,
1

2
Q̃∗∆Q+ 1

2
∆Q∗Q̃ ≈ 0.

(2.3)

The second equation indicates that the term Q̃∗∆Q must be skew-Hermitian. In a
subspace iteration we are only interested in the part of ∆Q perpendicular to Q̃ as
only these directions extend the search space. We split the correction into two parts,
its projections onto Q̃ and onto the orthogonal complement Q̃⊥ of Q̃, respectively:

∆Q = Q̃Q̃∗∆Q
︸ ︷︷ ︸

∆Q‖

+(I − Q̃Q̃∗)∆Q
︸ ︷︷ ︸

∆Q⊥

.(2.4)

In order to improve the conditioning of the linear problem, we use the projection of
A onto Q̃⊥:

A⊥ := (I − Q̃Q̃∗)A(I − Q̃Q̃∗)(2.5)

⇔ A = A⊥ + Q̃Q̃∗A+AQ̃Q̃∗ − Q̃Q̃∗AQ̃Q̃∗.

With these expressions for A and ∆Q and noting that A⊥Q̃ = 0, we get

A⊥∆Q⊥ −∆Q⊥R̃ ≈ −(AQ̃− Q̃R̃)− (I − Q̃Q̃∗)A∆Q‖

+ Q̃Q̃∗(A∆Q−∆QR̃+ Q̃∆R).(2.6)

The first term on the right-hand side is the current residual. If the current approx-
imation satisfies a Galerkin condition, (AQ̃ − Q̃R̃) ⊥ Q̃, all terms in the first line of
the equation are orthogonal to Q̃ and the second line vanishes. In this case we can
also express the second term on the right-hand side using the residual:

(I − Q̃Q̃∗)A∆Q‖ = (I − Q̃Q̃∗)AQ̃Q̃∗∆Q

= (I − Q̃Q̃∗)
(

(AQ̃− Q̃R̃) + Q̃R̃
)

Q̃∗∆Q

= (AQ̃− Q̃R̃)(Q̃∗∆Q).(2.7)
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Near the solution both the residual and the correction are small (and Q̃ is orthogonal),
so this presents a second order term that we neglect in the following. We obtain a JD
style correction equation for an approximate Schur form:

(I − Q̃Q̃∗)A(I − Q̃Q̃∗)∆Q− (I − Q̃Q̃∗)∆QR̃ = −(AQ̃− Q̃R̃).(2.8)

This is a Sylvester equation for ∆Q⊥. As R̃ is upper triangular, we can also write (2.8)
as a set of correction equations with a modified right-hand side for general matrices:

(I − Q̃Q̃∗)(A− λ̃iI)(I − Q̃Q̃∗)∆qi = −(Aq̃i − Q̃r̃i)−

i−1∑

j=1

r̃j,i∆q⊥j , i = 1 . . . l.(2.9)

With this formulation we need to solve the correction equations successively for i =
1 . . . l. This prevents us from exploiting the performance benefits of block methods.
So from a computational point of view it would be desirable to ignore the coupling
terms

∑i−1

j=1
r̃j,i∆qj , which yields the uncoupled form

(I − Q̃Q̃∗)(A− λ̃iI)(I − Q̃Q̃∗)∆qi ≈ −(Aq̃i − Q̃r̃i), i = 1 . . . l.(2.10)

For Hermitian matrices, this is identical to (2.8) as R̃ is diagonal in this case. The fol-
lowing argument shows that even for general A the uncoupled formulation should pro-
vide suitable corrections ∆qi for a subspace iteration. The classical JDQR method [9]
uses the following correction equation for a single eigenvalue (with deflation of an
already converged eigenbasis Qk and Q̄ =

(
Qk q̃

)
):

(I − Q̄Q̄∗)(A− λ̃I)(I − Q̄Q̄∗)∆q = −(I −QkQ
∗
k)(Aq̃ − λ̃q̃).(2.11)

The individual correction equations from (2.10) are similar to (2.11), with the dif-
ference that they include a deflation of eigenvector approximations that have not
converged yet. The residuals of the two formulations are related in this way: in (2.11)
we need to orthogonalize the residual Aq̃− λ̃q̃ with respect to Qk, in the formulation
(Aq̃i − Q̃r̃i) from (2.10) we obtain directly the part of the residual of a single eigen-
value orthogonal to the eigenvector approximations due to the Galerkin condition of
the surrounding subspace iteration.

Generalized eigenproblems. We can use a similar approach for the generalized
eigenvalue problem (1.2) with Hermitian positive definite B if we require Q to be
B-orthogonal. The resulting uncoupled block correction equation (corresponding to
(2.10)) is:

(I − (BQ̃)Q̃∗)(A− λ̃iB)(I − Q̃(BQ̃)∗)∆qi ≈ −(Aq̃i −BQ̃r̃i), i = 1 . . . l.(2.12)

Relation with the Rayleigh quotient iteration (RQI). The Newton ap-
proach may not explain the convergence behavior of JD methods very well. If the
subspace span{q1, . . . , ql} of a partial Schur decomposition (Q,R) contains only part of
the invariant subspace of a multiple eigenvalue, the Jacobian of (2.1) may be singular
so that the conditions for local quadratic convergence are not met [29]. Zhou et al. [30]
show that more insight into the convergence of JD is gained by considering its relation
to the Rayleigh quotient iteration (RQI): in each iteration the JD correction extends
the subspace in such a way that it contains the RQI direction xRQI = (A−ρA(q̃)I)

−1q̃.
This relation can be generalized to our block correction equation (2.8). Absil et al. [1]
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propose a generalization of the RQI method to invariant subspaces with cubic conver-
gence for Hermitian matrices. The next direction XGRQI ∈ C

n×l of the Grassmann-

Rayleigh quotient iteration (GRQI) is calculated from the following Sylvester equation:

AXGRQI −XGRQIRA(Q̃) = Q̃,(2.13)

with the matrix Rayleigh quotient RA(Q̃) = (Q̃∗Q̃)−1Q̃∗AQ̃. As our approximate
partial Schur decomposition (Q̃, R̃) satisfies a Galerkin condition, we obtain R̃ =
RA(Q̃). Remembering the homogeneity property of GRQI (algorithm independent
of the representation of the subspace), we can show that (2.8) leads to corrections
satisfying

Q̃+∆Q⊥ = XGRQIM(2.14)

as long as M = Q̃∗A∆Q⊥ is invertible. If M is not invertible it is at least non-
zero and (2.14) holds for its largest regular submatrix and the corresponding columns
of ∆Q⊥.

Inexact solution. So if (2.10) is solved exactly in a subspace method, we may
expect cubic convergence to an invariant subspace for the Hermitian case. In the non-
Hermitian case we still have quadratic convergence to at least single eigenvalues (from
the standard RQI). In [18], Notay shows for a special case that the fast convergence is
preserved even with approximate corrections under the condition that we increase the
required accuracy of the corrections in the outer iteration fast enough. This obviously
holds for the block algorithm as well, and we will discuss the practical implementation
of varying the “inner tolerance” for each eigenvalue approximation in Section 4.1.

Computational kernels. Block variants of iterative methods in general aim
to achieve higher performance by exploiting faster computational kernels. For the
method described in this section, we assume that one of the main contributors to the
overall runtime is the application of the operator (I − QQT )(A − σI) to a vector in
each iteration of an inner iterative solver for (2.10). In Section 4.1 we will show how
to implement the algorithm such that this operator is (almost) always applied to a
fixed number of vectors at a time. To motivate this effort, we will next quantify the
performance advantages using simple qualitative models and a case study. Another
important operation is the orthogonalization of a block of vectors against an existing
orthogonal basis. This step also benefits from block operations and will be briefly
discussed in Section 4.2.

3. Performance engineering for the key operations. In the field of sparse
eigensolvers in general it is often possible to extend existing algorithms that deter-
mine one eigenvector at a time to block algorithms that search for a set of eigenval-
ues and -vectors at once. This is interesting from a numerical point of view since
subspace methods usually gather information for several eigenvalues near a specific
target automatically. Blocking of operations is also beneficial for the performance of
the implementation. By grouping together several matrix-vector multiplications of
the same matrix with different right-hand-side vectors (in the following called sparse
matrix-multiple-vector multiplication, spMMVM in distinction to spMVM for the
single-vector case), we can achieve that the matrix needs to be loaded only once
from main memory for several vectors. Additionally, faster dense matrix operations
can be employed for the vector-vector calculations when using block vectors. The
number of messages sent for all key operations can also be reduced by using block
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vectors, although the amount of communicated data remains the same. Obviously,
we can also combine this approach with appropriate matrix reorderings (e.g. using
RCM [6], Scotch [5] or ParMETIS [14]) to further reduce the communication effort in
the spMMVM.

SpMMVM performance models and implementation. Already for moder-
ately sized problems the spM(M)VM kernel is memory-bound on all modern computer
architectures. This is due to the fact that the kernel’s code balance (ratio of accessed
data from main memory to executed floating-point operations) is larger than typi-
cal values of machine balance (ratio of maximum memory bandwidth to arithmetic
peak performance). In addition, matrix properties like the density (share of non-zero
entries) and the sparsity pattern (distribution of non-zero entries) can have a large
influence on the performance.

A key factor for high spM(M)VM performance is the storage format of the sparse
matrix. While the popular compressed row storage (CRS) usually gives good per-
formance on CPUs, the more sophisticated SELL-C-σ format [16] yields high perfor-
mance on a much wider set of architectures for many matrices in practice. Extending
their results to the spMMVM (Y ← AX,X, Y ∈ R

n×nb with a block size nb), our
experiments have shown that it is important to use row-major storage for the blocks
of vectors X,Y , rather than the commonly used column-major ordering. This design
choice improves the spatial cache locality during the spMMVM and thus the overall
performance, independent of the matrix sparsity pattern or storage scheme. On the
other hand, the consecutive storage of many vectors in row-major ordering may lead
to strided memory access if single vectors or small blocks need to be accessed, which
led us to some of the implementation choices discussed in Section 4.

Assuming 64-bit matrix/vector values and 32-bit indices, no overhead in the ma-
trix storage (which can be achieved by sorting the matrix rows locally for SELL-C-σ)
and a large enough cache to hold X during the entire operation, the minimal data
volume for an spMMVM can be computed as

(3.1) Vmin = 12nnz + 16nnb bytes,

where nnz denotes the number of non-zero matrix entries. The minimum code balance
of the spMMVM kernel for processing a single non-zero matrix element is then given
by

(3.2) BC =
12 + 16 nb

nnzr

2nb

bytes

flop
=

(
6

nb
+

8

nnzr

)
bytes

flop
,

with nnzr = nnz

n the average number of non-zero entries per row. Here we employ
non-temporal stores for the result vector Y , which saves a load of this vector’s data
from the memory. In practice we expect a larger data transfer volume due to multiple
loads of X elements from the main memory (the cache size is limited and the access
pattern to X may be sub-optimal).

More details on this topic can be found for example in [21] and [16]. The actual
transferred data volume Vmeas ≥ Vmin can be measured with hardware performance
monitoring tools like LIKWID [27], and the traffic overhead due to multiple loads of
elements of X can be quantified as

(3.3) Vextra = Vmeas − Vmin.
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In order to get an idea of the impact of Vextra on the performance, a measure for the
relative data traffic can be formulated as

(3.4) Ω =
Vmeas

Vmin

≥ 1.

A value of Ω = 1 indicates the optimal case where each element of X is loaded only
once from the main memory in an spMMVM.

Assuming boundedness of the kernel to the machine’s maximum memory band-
width b [bytes/s], one can apply a simple roofline performance model (cf. [28] and the
references therein) in order to predict the maximum performance P ∗ [flops/s]:

(3.5) P ∗ =
b

BC
=

b
6

nb

+ 8

nnzr

.

Using this relation, one can also predict the potential speedup compared to nb single
spMVMs:

(3.6) S∗ =
P ∗
nb

P ∗
nb=1

= nb ·
6nnzr + 8

6nnzr + 8nb
.

Benchmarking setup and results. The measurements in this paper have been
conducted on a single socket Intel Xeon CPU E5-2660 v2 (“Ivy Bridge”) running at
2.20 GHz. This processor comes with 10 cores on which SMT has been disabled. It
features 64 GB of DDR3-1600 main memory and 25 MB of L3 cache. The maximum
memory bandwidth adds up to values between 41 GB/s for the STREAM [17] Triad
and 47 GB/s for a purely load-dominated micro-benchmark. Our implementation
uses OpenMP for shared memory parallelization and all results are obtained with the
Intel compiler version 13.1. In the case nb = 1, the matrix is stored in SELL-32-2048
and "DYNAMIC,250" OpenMP scheduling is applied. Otherwise, "DYNAMIC,1000"

OpenMP scheduling is used together with SELL-4-8.
Reducing Ω towards one is the key to achieving optimal spM(M)VM performance.

For a qualitative estimate of Ω the matrix bandwidth ω (1 ≤ ω ≤ 2n + 1) plays an
important role. It is defined as the width of the diagonal band which contains all of
the matrix’ non-zero entries. Clearly, a small value of ω is favorable in order to have
a potentially local access to the block vector X. The bandwidth of a matrix can be
reduced by row reordering which is also applied here.

L ω/ nb = 1 nb = 4 nb = 8
1e3 Vmin Vmeas Ω Vmin Vmeas Ω Vmin Vmeas Ω

22 76 0.117 0.120 1.02 0.151 0.173 1.15 0.196 0.220 1.12
24 255 0.472 0.484 1.03 0.602 0.741 1.23 0.774 1.098 1.42
26 869 1.979 2.141 1.08 2.478 3.820 1.54 3.143 5.629 1.79

Table 1: Test case properties and data traffic measurements for the matrices SpinSZ[L].
Data traffic volumes V are given in GB.

Table 1 shows relevant information and data traffic measurement results for three
test cases. More details can be found in Table 2 in Section 5. The traffic overhead Ω
increases due to the limited cache size as the problem size n or the vector block size
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Figure 1: Scaling performance for different block and problem sizes.

nb are increased. The row-major storage of the vector blocks helps to keep Ω close to
one as compared to column-major storage (see also Figure 2).

Figure 1 shows the intra-socket scaling performance and the speedup through
blocking for the same set of test matrices and block sizes nb = 4 and nb = 8. A first
observation is that the speedup achieved by using block operations decreases as the
problem size increases. On the other hand, higher speedups can be expected for larger
values of nb. These observations can be related to the measured traffic overhead Ω in
Table 1. The discrepancy between the actual speedup S and the maximum speedup
S∗ from (3.6) is rooted in Ω. As an example, we consider SpinSZ[22] (n = 7 · 105 and
nnzr = 12.57, cf. Table 2) for nb = 4:

(3.7) S∗ = nb ·
6nnzr + 8

6nnzr + 8nb
= 4 ·

6 · 12.57 + 8

6 · 12.57 + 8 · 4
≈ 3.1

However, the actual speedup adds up to S ≈ 2.6 and S∗/S ≈ 1.19 ≈ Ω(= 1.15). The
rather moderate values of Ω for SpinSZ[22] for all values of nb can be explained by
the fact that the outermost cache (25 MB) can easily accommodate nb vector chunks
of length ω. This is no longer true for SpinSZ[26] for nb = 4 and higher, resulting in
a considerable increase in Ω. Finally, the properties of a block algorithm may limit
the meaningful block size by introducing more iterations and memory overhead with
increasing nb (cf. Section 5).

Implementation and performance of the projection operator. Another
major contributor to the runtime is the projection Y ← (I − QQT )X, carried out
in each inner iteration of JD. It consists of two dense matrix-matrix multiplications
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Figure 2: Required runtime for 120/nb applications of the Jacobi-Davidson oper-
ator (yj ← (I − QQT )(A − τjI)xj) with shifts τ ∈ R and 8 projection vectors
(q1, . . . , q8) = Q for different block sizes nb using the bandwidth-reduced SpinSZ[26]
matrix. The Trilinos [11] package Epetra (MPI only) achieves lower overall perfor-
mance as the vectors xj are copied before the spMMVM and the subtraction of τjxj

is done separately.

(GEMM operations) and a vector update. The matrices Q and X are very tall and
skinny, so that the GEMM operation is memory-bound (as opposed to the case of
square matrices where it is typically compute-bound if implemented correctly). We
can therefore again apply the roofline model from (3.5) for performance predictions.

Using high-performance BLAS implementations typically does not yield satisfac-
tory performance for the case of tall skinny matrices. We therefore implement them by
hand and provide specialized kernels for useful values of nb in block Jacobi-Davidson
(e.g. 1, 2, 4 and 8). Due to the simple nature of these operations, we can easily match
the maximum performance predicted by the model.

Figure 2a shows the contribution of the different kernels to the overall runtime
of the Jacobi-Davidson operator. Due to the characteristics of the (blocked) vector-
vector operations, the speedup due to blocking of the entire Jacobi-Davidson operator
is larger than the speedup only for the spMMVM. Taking into account the additional
flops of the projection, the total flop rate of the Jacobi-Davidson operator for nb = 8
and the SpinSZ[26] matrix adds up to 23.9 Gflop/s compared to 19 Gflop/s (cf. Fig-
ure 1) for the spMMVM operation alone. The CPU socket has a peak performance of
176 Gflop/s, of which we achieve 13.6%, which is quite satisfying for such a sparse ma-
trix. As we will see in the next section, we can implement the block Jacobi-Davidson
method such that it exploits these fast kernels as much as possible. The tall skinny
matrix operations discussed here are also used in block orthogonalization steps using
iterated classical Gram-Schmidt (in combination with e.g. TSQR, cf. Section 4.2).
In contrast, no block speedup for the spMMVM is achieved in Figure 2b beyond
nb = 2 due to the column-major storage of the blocks of vectors X and Y .
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4. Algorithmic choices. In this section we will discuss some aspects of our
implementation that are different from what is common practice. The first point
concerns the simultaneous solution of several linear systems with l shifted matrices
(A − λ̃jI), j = 1 . . . l using a Krylov subspace method. This is required for solving
the correction equations in block JD. We chose GMRES here because of its general
applicability (see for example [19]), but the ideas could be transfered to any other
Krylov subspace method. The second aspect we investigate is how to formulate the
algorithm to reduce the number of global synchronization points and the total amount
of communication compared to textbook implementations of JDQR.

4.1. Pipelining for the correction equations. Our pipelined GMRES (PGM-
RES) solver allows the concurrent solution of lpgmres independent linear systems of
the form (2.10) using a standard GMRES method, but grouping together similar
operations across the systems.

The block size lmach that would deliver the optimal performance on the given
machine is not always the best from a numerical point of view. For instance, the
number of vectors in a spMMVM should be chosen based on the sparsity pattern
and hardware characteristics such as the cache line length or the network bandwidth
(cf. Section 3 and [16]), whereas the Jacobi-Davidson block size lbjdqr might be chosen
to contain the largest multiplicity of the eigenvalues encountered. It is reasonable to
choose lpgmres = lmach ≤ lbjdqr.

A system that has converged (to its individual tolerance) is replaced by another
until the number of unconverged systems is smaller than lmach. At this point the
iteration is stopped for all systems, or lpgmres is reduced gradually until all systems
have converged. In our experience the former approach gives better overall perfor-
mance while not affecting the robustness of BJDQR, and is therefore chosen in our
experiments in Section 5.

A single (unpreconditioned) GMRES iteration consists of the following steps (cf.
[19, Section 6.5] for the complete algorithm):

1: apply operator to preceding basis vector (ṽk+1 ← (I − Q̃Q̃∗)(A− λ̃j)vk),
2: orthogonalize ṽk+1 w.r.t. all previous basis vectors,
3: local operations (compute/apply Givens rotations, check residual).

Step 1 is always performed on lpgmres contiguously stored vectors at a time.
Step 2 is implemented using a modified Gram-Schmidt (MGS) method. Similar to
the spMVM, the vector operations required are combined. If the shortest (longest)
Krylov sequence among the lpgmres systems currently iterated is mmin (mmax), we
can perform mmin MGS steps with full blocks, and then mmax − mmin operations
with single vectors or parts of blocks (if lbjdqr = lpgmres and the iteration is stopped
as soon as a system converges, only full blocks are used).

The basis vectors of the individual systems j are stored as column j of block
vectors in a ring buffer. Figure 3 illustrates a partly filled buffer for 4 systems. If all
blocks are filled for a particular solver, it is restarted. The next block vector to be
used is selected periodically.

Block GMRES. One could use a block Krylov method that constructs a single
Krylov space for all systems (the shifts λ̃j do not change the Krylov space for a given
starting vector). However, such an approach has the restriction lpgmres = lbjdqr and
therefore does not offer the full flexibility presented here.
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ṽk+1 ← Avk

GMRES subspace 1:

GMRES subspace 2:
...

Figure 3: PGMRES ring buffer for the Krylov subspaces of 4 systems (rows) with
current subspace dimensions (black dots) k1 = 4, k2 = 6, k3 = k4 = 1.

Preconditioning. In this paper we do not employ additional preconditioning
for the linear systems, but the common practice of preconditioning based on a nearby
positive definite matrix could be readily implemented here. Popular preconditioning
techniques such as incomplete factorization or multigrid methods should benefit from
similar performance gains due to blocking as the spMVM in this paper.

4.2. Avoiding communication. With the increasing number of nodes (and
cores per node) of HPC systems, it becomes inevitable to ask the question if we can
reduce the amount of communication a parallel algorithm requires. We want to briefly
address this issue for the BJDQR method as well, although it is not the central topic
of this work. Obviously the blocking of operations in BJDQR already reduces the
number of data transfers compared to its single vector counterpart.

Block orthogonalization. An accurate method to create an orthogonal basis
for the subspace W is crucial for the convergence of the Jacobi-Davidson algorithm.
The efficient (and accurate) parallel orthogonalization of a block of vectors T with
respect to previously calculated basis vectors W is considerably more challenging than
just orthogonalizing one vector after another. Standard methods for the latter are the
iterated classical Gram-Schmidt (ICGS) and the (iterated) modified Gram-Schmidt
(IMGS) algorithms. Working with a complete block T , however, allows using faster
BLAS3 operations. One problem here lies in the fact that when we first orthogonalize
the columns of T internally and then against W , the second step may reduce the
accuracy of the first, and vice versa.

In [8, 13] a new algorithm to orthogonalize a small block of vectors (TSQR) is
described. It uses Householder-transformations of subblocks with reductions on ar-
bitrary tree structures to both optimize cache usage for intra-node performance and
communication between nodes. In combination with a rank revealing technique and
block ICGS to orthogonalize the new block T against W one obtains a very fast and
robust method (see the discussion about RR-TSQR-BGS in [13]). We have seen very
good results with this method in BJDQR, but as the current TSQR implementation
in Trilinos 11.6 [11] does not support row-major storage of the input block vector, we
use IMGS for the internal orthogonalization of T in this paper.

Locking vs. deflation. A deflation approach for Jacobi-Davidson explicitly
orthogonalizes the residual w.r.t. already converged Schur vectors Q, r̃ = (I−QQ∗)r̃,
in every iteration. Additionally, explicit orthogonalization is required whenever an
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eigenvalue converges. We can also achieve orthogonality by keeping the converged
vectors in the search space (through the Galerkin condition). Obviously, we still need
to orthogonalize the new corrections t with respect to Q, but this is now part of
the regular orthogonalization step. As locking Schur vectors of converged eigenvalues
improves the stability of the method for multiple or tightly clustered eigenvalues
(see [22] and the references therein), it is important to transform the search space
such that the locked Schur vectors are listed as the first basis vectors in W . This
allows us to lock kconv eigenvalues and corresponding Schur vectors in the left part of
the projected Schur decomposition HQH = QHRH with

QH =

(
I 0
0 qH

)

,

RH =

(
R1:kconv,1:kconv

H1:kconv,kconv:k q
H

0 rH

)

and(4.1)

Hkconv :k,kconv:k q
H = qHrH .(4.2)

When the search space grows too large, we shrink it to a fixed size jmin. This op-
eration does not require communication, and as long as jmin ≥ kconv all converged
eigenvectors remain locked. Locking is a standard technique in the field of subspace
accelerated eigensolvers [20, Chapter 5], but we show this specific formulation to il-
lustrate how the additional communication required for the deflation can be avoided.

5. Numerical and performance studies. In this section, we first want to
check our implementation against an existing code. We then test the block JDQR
method with different symmetric and non-symmetric real eigenvalue problems, which
are summarized in Table 2. Finally, we show some results for larger matrices on up
to 64 nodes (1280 cores) of a state-of-the-art cluster consisting of dual socket Intel
Ivy Bridge nodes (cf. Section 3 for architectural details). The sparse matrix format
used in this section is CRS for all experiments.

name number of rows non-zero count eigenvalues sought properties

Andrews 6.0 · 104 7.6 · 105 smallest spd
cfd1 7.1 · 104 1.8 · 106 " "
finan512 7.5 · 104 6.0 · 105 " "
torsion1 1.0 · 104 2.0 · 105 " "

ck656 656 3 884 rightmost non-symm.
cry10000 1.0 · 104 5.0 · 104 " "
dw8192 8 192 4.2 · 104 " "
rdb3200l 3 200 1.9 · 104 " "

SpinSZ[22] 7.0 · 105 8.8 · 106 leftmost symm.
SpinSZ[24] 2.7 · 106 3.6 · 107 " "
SpinSZ[26] 1.0 · 107 1.5 · 108 " "
SpinSZ[28] 4.0 · 107 6.1 · 108 " "

Table 2: Overview of the matrices used in the experiments. The symmetric positive
definite (spd) matrices come from the University of Florida Sparse Matrix Collection
[7], the non-symmetric matrices are from the Matrix Market [4], and the SpinSZ[L]
matrices are used here as a scalable example from quantum physics (see text).
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Spin chain test matrices. As an example for a typical matrix from quantum
physics we use the matrices SpinSZ[L] that give the Hamilton operator for the Heisen-
berg XXZ spin chain model with Sz-symmetry (see e.g. [2] for a physical introduction).
For a chain with L spins, in the case of zero total magnetization (〈Sz〉 = 0) and without
translational symmetry, the matrix SpinSZ[L] is a symmetric matrix whose dimension
NL =

(
L

L/2

)
grows exponentially with L. It contains between 2 . . . L (open boundary

conditions) or 3 . . . L + 1 (periodic boundary conditions) non-zeroes per row, with
about L/2 non-zeroes on average. The sparsity pattern is characterized by many thin
(one-element wide) outlying diagonals, such that the band width is of the order NL/2.
Consequently, a good matrix reordering strategy is required to reduce the communica-
tion overhead and achieve reasonable performance on distributed memory machines.
For moderately sized matrices (NL . 108) the (serial) reverse Cuthill-McKee (RCM)
algorithm [6] can be used, for larger matrices parallel strategies are required [5, 14].
Here, a RCM reordering was used for single-node calculations and ParMETIS for the
inter-node tests.

Comparison with another implementation. We would like to compare our
results to a state-of-the-art implementation of Jacobi-Davidson. Here we use the
PRIMME software, [25], with sparse matrix-vector products (and spMMVM) provided
by the Trilinos library Epetra [11]. We run PRIMME/Epetra using MPI on all 20
cores of a node of the above mentioned cluster for block sizes 1 to 8. Our software
PHIST (Pipelined Hybrid-parallel Iterative Solver Toolkit) is executed on the same
machine using OpenMP for the intra-node parallelism. We also compare two ways of
stopping the inner QMR iterations in PRIMME: (a) limiting the number of iterations
to 8 or stopping if a decreasing inner tolerance is reached (comparable to our own
implementation), and (b) using an adaptive inner tolerance or stopping when the

method nb matvecs walltime [s] time/spMVM [ms] block speedup

PRIMME (a) 1 1374 183 49.7⋆ (37.3%) 1.0
2 1569 203 50.6 (39.1%) 0.90
4 1899 236 49.9 (40.2%) 0.78
8 2323 286 49.7 (40.4%) 0.64

PRIMME (b) 1 1377 180 49.6 (37.9%) 1.0
2 1553 202 50.8 (39.0%) 0.89
4 1680 210 50.2 (40.1%) 0.86
8 1989 260 50.3 (38.4%) 0.69

PHIST 1 1426 228 39.2⋆⋆ (25%) 1.0
2 ≤1591 174 22.1 (20%) 1.31
4 ≤1887 172 15.2 (17%) 1.33
8 ≤2463 219 11.9 (13%) 1.04

Table 3: Comparison of our code PHIST with the PRIMME software. The column
‘time/spMVM’ shows the average time per single matrix-vector product and the con-
tribution to the overall runtime in percent. The different configurations (a) and (b)
are explained in the text.
⋆ As explained in Figure 2 copying data slows down the spMVM in Epetra.
⋆⋆ Times for yj = (A− σjI)xj were measured for PHIST.
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eigenvalue residual has been reduced by one order of magnitude (see also [23,24]). The
test matrix is SpinSZ[26] (cf. Table 2) with RCM reordering. We seek 20 eigenpairs
at the lower end of the spectrum, the required accuracy is 10−8, and the methods are
restarted from 30 vectors if a basis size of 50 is reached (32-64 vectors for nb = 8).
PHIST performs 30 single-vector Arnoldi steps to construct the initial basis.

The results are shown in Table 3. PRIMME is somewhat faster than our code
in the single-vector case because it requires slightly fewer matrix-vector products
and is specialized for the case of symmetric matrices, which saves some vector-vector
operations (for instance, a short recurrence in the inner iterations is exploited). The
more sophisticated inner stopping criterion can further accelerate the computations,
especially in the block variant (cf. the results for ‘PRIMME (b)’).

PRIMME becomes substantially slower when using the block algorithm and in
our experiments only about 15% of the matrix-vector products performed are actually
block operations. In contrast, our code becomes about 25% faster due to the tech-
niques discussed in this paper, in particular due to the massive performance gain of
the spMMVM shown in Section 3. With block size nb = 4, we can match the overall
runtime of PRIMME/Epetra for nb = 1, even though significantly more spMVMs are
performed and a method for unsymmetric matrices is used.

The advantages of PRIMME (exploiting symmetry and an improved inner stop-
ping criterion) are obviously complementary to the performance advantages of PHIST
(runtime reduction by blocking). When comparing the PHIST results among each
other, we see that for an increasing block size the contribution of the spMMVM
decreases and other operations start to dominate the overall runtime. This can be ex-
plained by the lack of an efficient block orthogonalization (like TSQR, cf. Section 4.2)
in our current implementation. Note that in particular the performance of the block
spMVM is significantly superior to the performance of the (block) spMVM implemen-
tation in PRIMME/Epetra.

Numerical behavior. To get an idea of the increase in the number of operations
due to blocking, we compare the number of spMVM needed to calculate a given
number of eigenvalues with different block sizes. Figure 4 shows the relative number
of spMVMs compared to the single vector method. As long as more than about 20
eigenpairs are sought, the increase in the number of spMVMs is roughly constant,
and for all test matrices it is below the typical speedup for the spMMVM we observed
in Section 3 (indicated by the horizontal black line in Figure 4). Points below the
horizontal line promise a distinct gain in wall clock time in favor of the block method.
Thus, we can expect to improve the performance of the Jacobi-Davidson method by
blocking for a wide range of matrices, symmetric or unsymmetric.

Next, we investigate the scalability of our code beyond a single node for two of
the spin chain matrices. The implementation exploits MPI for the communication
between the nodes (cf. also [21]). Figure 5 shows that on up to 64 nodes, blocking
reduces the overall runtime for block sizes 2 and 4. Using a block method has two
counteracting effects here: On one hand, the total communication volume increases
with the number of matrix-vector multiplications; on the other hand, the individual
messages become larger through message aggregation. So the pure communication
time can increase as well as decrease depending on the sparsity pattern of the matrix
and its distribution among the nodes, which explains the deviations from the single-
node case.
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Figure 4: Influence of the block size nb on the required number of spMVMs for different
matrices. The relative increase compared to the single vector computation is shown.
The horizontal line indicates the increase in single-socket performance measured for
the comparatively large prototype matrix SpinSZ[26] in Figure 1.

16



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8 16 32

sp
ee

d
u
p

th
ro

u
gh

b
lo

ck
in

g

nodes (with 20 cores each)

single vector
block size 2
block size 4

(a) SpinSZ[26]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 8 16 32 64
sp

ee
d
u
p

th
ro

u
gh

b
lo

ck
in

g

nodes (with 20 cores each)

single vector
block size 2
block size 4

(b) SpinSZ[28]

Figure 5: Relative performance gains through blocking for the computation of 20
exterior eigenvalues of two spin chain matrices on an Intel Ivy Bridge cluster.

Figure 6 shows the runtime reduction when increasing the number of nodes used.
A significant parallel speedup is achieved in this strong scaling experiment, but on
larger numbers of nodes the matrix-vector multiplications start to dominate the overall
runtime (about 50% on 32 nodes for both test cases) as they require more and more
communication.
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Figure 6: Required runtime for the computation of 20 exterior eigenvalues of two spin
chain matrices on an Intel Ivy Bridge cluster.
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Summary and conclusions. We have derived a block formulation of the Jacobi-
Davidson method for general (non-symmetric) eigenvalue problems. The key oper-
ation in this method, which is executed many times in the inner loop, consists of a
sparse matrix-vector product followed by an orthogonal projection. By performance
engineering and benchmarking we have demonstrated that applying this operation to
blocks of vectors, as in our proposed algorithm, has significant performance advan-
tages over the single vector case. An important implementation detail is the row-wise
storage of blocks of vectors. This design choice, which is hardly ever found in imple-
mentations of block algorithms, is the key to achieving the speedup we have shown
for the sparse matrix-vector products. We then showed some ways to achieve opti-
mal blocking of operations by pipelining the operations in separate inner solves and
discussed some ways to reduce the total amount of communication.

Our numerical results in the final section indicate that the assumptions made in
deriving the block method are justified: the method works well for a wide range of
matrices, both symmetric and non-symmetric. The performance results show that the
hybrid parallel approach we take (MPI+OpenMP) gives good scalability on a modern
cluster, and that the block variant outperforms its single-vector counterpart even for
fairly large problems on up to 1280 cores. The direct comparison of eigensolvers
and implementations is difficult because there are so many aspects that determine
the overall runtime. However, all our numerical results confirm that blocking can
significantly reduce the time to solution if implemented correctly.

Future work will include algorithmic improvements such as a specialized solver
for Hermitian matrices, an implementation of the TSQR orthogonalization for block
vectors in row-major storage, and an improved stopping criterion for the inner itera-
tions. We also plan to investigate how to hide the communication of the matrix-vector
multiplications behind other operations, and to allow using accelerator hardware such
as GPUs.
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