
GPU-accelerated SDR Implementation of a
Multi-User Detector for Satellite Return Links

Chen Tang, Francisco Lázaro Blasco, Student Member, IEEE

Abstract—In the past decade new satellite applications have
emerged, which require a bidirectional satellite link. Due to
the scarcity and high cost of satellite frequency spectrum, it is
very important to utilize the available spectrum as efficiently
as possible. The efficient usage of the spectrum in the satellite
return link is a challenging task, especially if multiple users
are present. In previous works Multi-User Detection (MUD)
techniques have been widely studied to increase the spectral
efficiency of the satellite return link. However, due to the high
computational complexity and its sensitivity to synchronization
and channel estimation errors, only few implementations of MUD
for satellite communications exist. In this paper a novel Graphics
Processing Unit (GPU)-based Software Defined Radio (SDR)
implementation of a MUD receiver for transparent satellite return
link is presented, which uses iterative channel estimation and
decoding. In addition to its high flexibility and low cost, with
the GPU acceleration our SDR MUD receiver implementation
achieves a decoding throughput of 290 Kbps, which is sufficient
to operate in real time in satellite return links.

Keywords—muti-user detection, satellite return link, successive
interference cancellation, software defined radio, GPU

I. INTRODUCTION

Satellite communication systems are a very good solution
when it comes to delivering service to a broad area, since
they do not require the deployment of costly terrestrial in-
frastructures. Traditionally, satellite systems have been used
to provide television and radio broadcasting services, which
are unidirectional services. However, in the past decade new
applications have emerged, which require a bidirectional com-
munication. The most prominent example is internet access
for rural areas, where using the satellite service is commonly
the only possibility. Moreover, there is a trend towards intro-
ducing interactive applications in satellite television services.
Hence, it is necessary to provide the user terminals with
transmission capabilities through satellite return links, while
still maintaining a low cost. Such cheap user terminals have
a very limited transmission power and can only transmit with
low data rates (at most in the order of 100 kbps). Moreover,
the scarcity of frequency spectrum drives satellite operators
to use higher frequency bands, where phase noise becomes
more problematic for cheap user terminals with low stability
oscillators. Therefore, it is challenging to provide an efficient

Chen Tang and Francisco Lázaro Blasco are with the
Institute of Communications and Navigation, German Aerospace
Center (DLR), Oberpfaffenhofen, 82234 Wessling, Germany.
Email:{Chen.Tang,Francisco.LazaroBlasco}@dlr.de

spectrum access in satellite return link in the presence of strong
phase noise.

The satellite return link can be considered as a multi-
user communication problem. In most of today’s systems, the
multiple access issue is solved by orthogonalization, such as
the case of GSM, in which TDMA is used, or Digital Video
Broadcasting - Return Channel via Satellite (DVB-RCS),
where Multi Frequency TDMA (MF-TDMA) is used. This
means that users are assigned with different resources so that
they do not interfere with each other. In our implementation we
employ MUD techniques to boost the spectral efficiency in a
satellite return link, in which users are assigned with the same
resources and their transmissions interfere. Although there is
an enormous amount of literature in the field of MUD, there
are actually only a few practical implementations for satellite
systems [1] [2]. In [1] an implementation of MUD for the
return link of a satellite system is presented, which is not
designed for the presence of strong phase noise. In [2] a MUD
receiver for spread spectrum Aloha is presented. In contrast to
[1] and [2], our system is designed to operate in the presence
of strong phase noise without employing spreading techniques.

The reasons for the low adoption rate of MUD techniques
are twofold. The first reason is the high computational com-
plexity. The second reason is the sensitivity of MUD tech-
niques to synchronization and channel estimation errors. The
latter is even more problematic, when the channel is time
variant because of phase noise.

Due to the high computational complexity of MUD tech-
niques, implementations are commonly restricted to use pro-
grammable hardware devices, such as Field Programmable
Gate Array (FPGA) or Application Specific Integrated Circuit
(ASIC). However, the development of such hardware devices
is very costly and implementations are not flexible to accom-
modate changes in the communication standards. From the
perspective of economic cost and flexibility, SDR implemen-
tations of the MUD receiver have big advantages compared to
conventional hardware implementations. The software of the
SDR implementation can be easily modified to support new
radio protocols or system requirements. Another advantage of
SDR is its low implementation cost. However, the weak point
of SDR implementations is their low throughput, especially
when complex MUD algorithms have to be implemented
completely in software.

In this paper we present a novel SDR implementation of the
MUD receiver, which utilizes GPU acceleration and achieves a
decoding throughput of 290 Kbps. The implementation is able

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31011529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

T F F F F

F F F FTTerminal 1

Terminal 2

Superframe

Time
Training Payload

Time-slot

Fig. 1. Transmission inside one time-slot. The block denoted by T represent
the training part and the blocks denoted with F represent payload frames.

to achieve a spectral efficiency of 1.1 b/s/Hz in the presence of
strong phase noise. The receiver presented in this work uses
Successive Interference Cancellation (SIC), iterative channel
estimation and Low Density Parity Check (LDPC) channel
decoding to increase the spectral efficiency as much as possible
and still achieves a decoding throughput that allows real time
processing for satellite return links. In this paper a MUD
receiver for two users is considered. However, since SIC is
used in our system, it can be extended to support more users
in a straightforward way.

The article is structured as follows. Section II describes our
system model and MUD receiver design. Section III gives
a general introduction from the implementation perspective
of our MUD receiver. Then, more details of the GPU-based
implementation of our MUD receiver are introduced in IV.
Afterwards, the simulation results of the Packet Error Rate
(PER) and the processing time of our GPU-based SDR MUD
implementation are presented in V. Finally Section VI draws
the conclusions.

II. SYSTEM MODEL AND RECEIVER DESIGN

In this paper we focus on a satellite return link scenario
based on MF-TDMA, as it is the case for DVB-RCS. As the
transmission scheme the scheduler assigns the same frequency
and time-slot to K user terminals, which are assumed to have
limited transmission power and low transmission data rate, as
introduced in the previous section. In our system the simplified
case K = 2 is considered. Terminals are assumed to be
roughly synchronized. Fig. 1 shows how the transmission of
the two terminals is organized inside one time-slot. In each
time-slot each terminal transmits a super-frame, which consists
of a training part and a payload part. In the training part the
first terminal transmits while the second is silent, then the
second terminal transmits and the first terminal is silent. This
interference free part will be used by the burst demodulator
for detection and synchronization purposes. In the second part
terminals transmit a number of data frames that collide, which
requires MUD to decode.

If only the data part of the time-slot is considered, the
received signal y(t) at time instant t can be expressed as:

y(t) =

K−1∑
k=0

L∑
l=0

hk(t− lTs)xk(l)pk(t− lTs − τk) + n(t) (1)

where K is the number of users, L is the number of symbols
in a frame, hk(t) is the complex channel coefficient for user k

Decode User 1

Waveform
Reconstruction

Incoming
signal

+
-

Decode User 2

Waveform
Reconstruction

+

-
)(ty

)(1 ty

)(2 ty

)(ˆ)(ˆ
11 txth

)(ˆ)(ˆ
22 txth

Fig. 2. SIC decoding scheme

at time instant t, xk(l) is the l-th transmitted symbol from user
k, pk(t) is the transmit pulse shape filter of user k, Ts is the
symbol duration, τk represents the delay of user k with respect
to the start of the frame and n(t) is the complex valued additive
white Gaussian noise. In our case the channel coefficient is
induced by phase noise, hk(t) = |hk|ejφk(t). |hk| is assumed
to be constant, while the variation of φ(t) can be modelled as
a random-walk (Wiener) process [3]. Under this assumption
the evolution of the channel phase for discrete time instants
can be expressed as:

θk(t− lTs) = θk(l) = θk(l − 1) + ∆k(l) (2)

where ∆k(l) are i.i.d zero mean real Gaussian random vari-
ables with variance ρ2p. We will assume that the transmitted
symbols xk(l) belong to an M-PSK alphabet. Bit interleaved
coded modulation will be used together with a Soft-Input Soft-
Output (SISO) channel decoder.

The MUD receiver employed is based on SIC [4], as shown
in Fig 2. The reason of choosing SIC is that although it is
not optimal, its computational complexity increases linearly
with the number of system users. SIC is based on a simple
idea: User 1 is decoded treating the interference from the user
2 as Gaussian noise. After decoding user 1, its waveform is
reconstructed and removed from the received signal. If this
reconstruction is perfect, user 2 is now free of interference
and can be decoded. In order to reduce the PER, a multi-stage
SIC can be used [4], where the SIC process is repeated for
several times and each execution of SIC is denoted as a stage.
If the user 1 signal cannot be recovered error free after the
first stage, a second stage is carried out by reconstructing the
signal from user 2 and cancelling it from the received signal
on user 1. User 1 will now have a lower interference and can
hopefully be decoded correctly. This process is repeated until
the maximum number of stages is achieved, or until both users
are decoded correctly. Based on SIC, our simplified case with
K = 2 number of users can be easily extended to support
more user terminals.

SIC is very sensitive to channel estimation errors. In order
to improve the performance of the SIC receiver, an iterative
channel estimation and decoding algorithm is used. The basic
idea of such an algorithm is to use not only pilot symbols

but also data symbols to estimate the channel. In our receiver
the Expectation-Maximization (EM) algorithm is applied as
described in [5], where the E-step corresponds with the channel
decoding and the M-step with the channel estimation. The
equations used for the M-step are the following [4]:

ˆ|hk| =

∑L−1
t1=0Re (x̂∗k (t1) yk (t1))∑L−1

t1=0 |x̂2k (t1) |
(3)

θ̂k (t1) = Arg
t+W∑

t1=t−W
x̂∗k (l) yk (l) (4)

ĥk (t1) = ˆ|h|ke
jθ̂k(t1) (5)

σ̂2
k =

1

2L

L−1∑
t1=0

|yk (t1)− ĥk (t1) x̂k (t1) |2 (6)

where yk is the input signal of the single user receiver of the
user k, which is the received signal minus the reconstructed
signal from the other users. x̂k is the output of the SISO
channel decoder. In order to estimate the channel amplitude
ˆ|hk| for each user and the noise level σ̂2

k, the assumption is
made that these magnitudes stay constant over the duration of
the whole frame L. For the estimation of the channel phase
θ̂k (t1) at discrete time instant t1, the channel phase is assumed
to be constant over a window of 2W + 1 samples centered on
t1.

Prior to SIC decoding it is necessary to perform fre-
quency, frame and time synchronization. In order to make
synchronization easier, a training part is introduced in each
superframe, which is free of multiuser interference, see Fig. 1.
Using this training part, it is possible to perform frequency,
frame and timing estimation using single user synchronization
algorithms. In particular, in our implementation the Oerder &
Meyr algorithm [6] is used for time synchronization. Timing
synchronization is not affected by phase noise. However phase
noise does have a negative impact in frequency and frame
synchronization. For the frame synchronization the Villanti et
al. algorithm [7] is used, which was specially developed to
perform frame estimation in the presence of phase uncertainty
due to doppler or phase noise. This algorithm breaks the syn-
chronization sequence into smaller subsequences and performs
correlation of the incoming signal with these subsequences.
Then the metrics obtained are summed up with the correlation.
Frequency estimation is done using the Rife and Boorstyn
algorithm [8]. This algorithm estimates the carrier frequency
by performing a FFT of the received signal. Its performance
is affected by the presence of phase noise, but it achieves the
Cramer-Rao lower bound.

III. SDR-BASED MUD RECEIVER

In general, the current data rates used in satellite return links
are moderate/low, e.g. the baud-rate used in our system for both
user terminals is 62500 symbols per second. Thus, it is feasible
for a SDR-based MUD receiver to operate in real time. The
real time threshold Treal−time is defined as:

Tprocess ≤ Treal−time = Tframe (7)

Host
(CPU)

Device
(GPU)

Host
(CPU)

Device
(GPU)

Serial Code

Parallel Code

Serial Code

Parallel Code

Fig. 3. GPGPU implementation structure

i.e. the average processing time Tprocess of a data frame is
lower than its frame duration Tframe. In our case, each frame
is composed of 4800 data symbols, 63 header symbols and
440 pilot symbols, which results in Tframe ≈ 85ms. However,
due to the computational complexity of the algorithms used in
our MUD receiver, it is still challenging to achieve a real time
SDR-based MUD system even with such a moderate data rate.

Conventionally programmable hardware devices, such as
Digital Signal Processors (DSPs) and FPGAs together with
Radio Frequency (RF) transceiver are used to implement a
SDR system. For instance, the real time implementations of
MUD receiver by using dedicated DSPs and FPGAs were
presented in [9] [10] [11]. A number of dedicated hardware
implementations of LDPC decoders have also been proposed
in the past few years [12] [13]. However, the drawbacks
of high cost, considerable development effort and lack of
flexibility of FPGAs and DSPs restrict the deployment of
SDR technologies [14]. As an example, dedicated hardware-
based LDPC implementations have to start a new design and
development process to adapt to a different coding design,
since the structure of the LDPC decoder changes according
to the parity check matrix.

In recent years owing to the tremendous parallel compu-
tational power and very high memory bandwidth, general-
purpose computing on graphics processing unit (GPGPU) has
become an attractive alternative to FPGA and DSP to achieve
high-performance SDR systems. GPUs are originally designed
to optimize the floating-point calculations for image and video
rendering. GPGPU technique utilizes a GPU to perform gen-
eral computations in applications traditionally handled by the
CPU. The implementation of a GPGPU in a conventional
CPU-based system is illustrated in Fig. 3. The parts of the
application that need to be executed serially are implemented
on CPU. The parts that are very computationally intensive and
can be parallelized are deployed on the GPU.

State of the art high-end GPUs consist of thousands of pro-
cessing cores, which can provide over 3 tera-floating operation-
per-second (TFLOP) computing capability [15]. Moreover,
with novel GPGPU architectures, such as Compute Unified
Device Architecture (CUDA) introduced by Nvidia [15], ap-
plications running on a GPUs can be programmed with high-
level C-like languages, which makes it easier to implement and
modify a GPU-driven SDR system. Therefore, due to its high
computing capability, low cost and high flexibility, GPGPU has
become a very promising solution for modern SDR systems.

For instance, many SDR blocks with high computational
complexity and inherent parallelism, such as channel estima-
tion, channel decoding and digital filters can be implemented
on GPU. In [16] a high throughput SDR-based multiple-
input and multiple-output (MIMO) detector is implemented on
GPU. GPU-accelerated LDPC decoder has also been widely
studied [17] [18] [19] [20].

In this work we adopt CUDA to exploit GPU to accelerate
the SDR implementation of our MUD system. The implemen-
tation details of our GPU-accelerated MUD receiver will be
given in the next section.

IV. IMPLEMENTATION OF GPU-ACCELERATED MUD
RECEIVER

Based on the receiver design introduced in Sec. II, all
components of our MUD receiver are implemented in software,
except for a reconfigurable hardware for sampling and analog-
to-digital conversion. As some of the algorithms of the MUD
receiver used in our work have very high computational
complexity, we exploit the CUDA programming model to
accelerate our SDR implementation on GPU.

As the first step of a GPU implementation using CUDA,
it is important to assess the application to locate the main
processing bottlenecks that can be parallelized and accelerated
by GPU [21]. After some performance profilings are carried
out, the main processing bottlenecks of the MUD receiver can
be summarized as follows:
• Channel decoding: In our system, an irregular LDPC

channel code is used. The codeword length is 4800
symbols for both user terminals and the code rates are
2/3 and 1/2 for user terminal 1 and 2 respectively.
The Min-Sum LDPC decoding algorithm [22] is im-
plemented. The maximum number of iteration is set to
50. Although the min-sum algorithm is considered as
one of the most efficient algorithms used for LDPC
decoding with lower workload than the well known
Sum-Product algorithm (SPA) [23], its computational
complexity is still quite significant. Despite the use
of early termination techniques, in which the decoding
stops when a valid codeword is detected, the LDPC
channel decoder is still one of the main processing
bottlenecks.

• Channel estimation: The EM channel estimation we
deployed is based on filtering operations in the time
domain, as given in Eq. (3), (4) and (5). In our case,
a long data set with thousands-points FFT has to be
calculated, which is also a very intensive computation.
Moreover, it has to iterate several times with the channel
decoder.

• Downsampling and interference cancellation: in our im-
plementation oversampling factor 8 is used. Due to this
high oversampling factor, interference cancellation and
downsampling take a substantial amount of time.

• Data transfer between host (CPU) and device (GPU)
memory: Because of the EM algorithm we employed, the
iterative channel estimation and channel decoding has to
be repeated several times, in our case 4 EM iterations

Downsampling Interleaving Channel Estimation

Demodulation

DeinterleavingChannel Decoding

Single User Receiver: User2

Single User Receiver: User1
Input symbols

Interference Cancellation

Both user
decoded?

No

Yes

Next stage

Multi-Stage SIC

EM
Iteration

Data transfer
(CPU GPU)

Data transfer
(GPU CPU)

Run on CPU

Run on GPU

Fig. 4. Multi-Stage SIC MUD receiver on GPU

are used. Thus, if there is any memory copy between
host (CPU) and device (GPU) during the EM iterations,
such a data transfer has to be repeated for 4 times.
In order to achieve better processing performance, it is
important to minimize such data transfer between host
and device [21], as the peak theoretical GPU memory
bandwidth is much higher than the peak bandwidth
between host (CPU) memory and device (GPU) memory.

Based on this assessment of our MUD receiver, we decided
to implement all of the components of each single user
receiver together with the interference cancellation on GPU,
as illustrated in Fig. 4. Although some components of the
single user receiver demonstrate little speedup from the GPU
implementation, the benefit of running all components on GPU
is to minimize the latency of intermediate data transfer between
the host and device memory.

In order to have a benchmark for the processing perfor-
mance, we duplicate the implementation of our MUD receiver
in C++ running on CPU. The simulation results are given in
the next section.

V. SIMULATION RESULTS

In this section the simulation results in terms of PER and the
processing performance of our GPU-based implementation of
the MUD receiver are presented. These results are compared
with the CPU-based implementation. The specifications of the
devices are given in Tab. I. As introduced before, only two
satellite terminals are assumed to share the satellite return
link at the same time. The results presented in this section
correspond to a scenario, in which the power of user 1 is
3 dB higher than the power of user 2, which is a realistic
setting for a satellite return link. The number of SIC stages
is fixed to 3. The phase noise of the terminals resulted in a
standard deviation of 2.29◦ for the phase increments between
consecutive symbols.

The PER performance of the GPU-based implementation for
each user terminal is presented in Fig. 5. On the other hand, the

TABLE I. IMPLEMENTATION DEVICES

CPU GPU
Platform Intel Xeon(R) E5620 Nvidia Tesla C2070

Cores 4 (used only one core) 448
Clock rate 2.4GHz 1.15GHz

-1 0 1 2 3 4 5 6
10-4

10-3

10-2

10-1

100

Es/N0 (dB)

PE
R

GPU U1(float)
GPU U2(float)

Fig. 5. PER of the GPU-based MUD implementation

CPU-based implementation gives the same PER performance
with the GPU-based solution. Thus, it is omitted in Fig. 5 for
the sake of clarity.

The total processing time of the MUD implementation is
defined as:

Tprocess = Tds + Tch est + Tch dec + Tic + Tmisc (8)

which consists of the time for downsampling Tds, channel
estimation Tch est, channel decoding Tch dec, interference can-
cellation Tic and Tmisc that includes memory operations and
the remaining miscellaneous components of the MUD given in
Fig. 4. As given in Eq. (7), the real time processing threshold
can be defined as:

Treal−time = 85ms (9)

Tab. II shows a comparison of the processing time between
the CPU-based and GPU-based implementations for both user
terminals to decode one frame. The total processing time
reduces with the increase of SNR. In the case of higher SNR,
due to the early termination scheme we used, the channel
decoder can skip the remaining decoding iterations and finish
the decoding process as long as the valid codeword is detected.
On the other hand, with the lower PER in the high SNR
range, there is a high probability that both users can already
be decoded properly in the first SIC stage, in which case
the successive SIC stages can be skipped. The processing
time consumed by the downsampling and the interference
cancellation stays nearly constant with different SNRs.

Compared to the CPU-based solution, with the GPU ac-
celeration, the processing time of the MUD receiver can be
significantly reduced, especially for the part of the LDPC
channel decoder. The channel decoding can be sped up by a
factor 10 by use of the GPU. A channel decoding throughput
of 2.0 Mbps is achieved for terminal 1 (code rate 2/3) with
Es/N0 = 3.45 dB and 1.9 Mbps for terminal 2 (code rate

TABLE II. COMPARISON OF TOTAL PROCESSING TIME OF THE MUD
IMPLEMENTATION IN SINGLE PRECISION

Es/N0 (dB) Tds(%) Tch est(%) Tch dec(%) Tic(%) Tmisc(%) Tprocess(ms)

User1: 2.45
User2: -0.40

CPU 4.5 7.8 77.9 7.6 2.2 542.76
GPU 4.7 15.8 46.2 10.31 23.0 82.81

Speedup factor 6.3 3.2 11.0 4.9 0.6 6.5

User1: 3.45
User2: 0.60

CPU 7.8 11.8 62.0 14.3 4.0 147.12
GPU 7.2 19.8 21.4 16.7 34.9 28.63

Speedup factor 5.6 3.1 14.9 4.4 0.6 5.1

User1: 5.45
User2: 2.60

CPU 16.8 15.4 28.9 25.9 13.0 65.25
GPU 8.5 19.8 11.0 18.2 42.5 19.5

Speedup factor 6.6 2.6 8.8 4.7 1.0 3.3

1/2) with Es/N0 = 0.60 dB. The parts of the downsampling
and interference cancellation of MUD receiver can also be
parallelized and accelerated by GPU. Because of the GPU
initialization and the latency of memory transfer between CPU
and GPU, the miscellaneous part of the GPU-based imple-
mentation shown in Tab. II takes more time to process. From
this simulation result we can see that our GPU-accelerated
MUD solution can perform much better than the real time
processing requirement defined in Eq. (9) in terms of the
overall processing time for both user terminals to decode each
packet, even for the SNR as low as 2.70 dB for terminal 1 and
−0.15 dB for terminal 2.

Our GPU-accelerated LDPC channel decoder could be fur-
ther optimized by using a coalesced GPU memory access pat-
tern [17] [18] [19] [20]. However, in order to realize coalesced
GPU memory access for LDPC decoder, a complex translating
array for the data address transformation is needed, which
increases the implementation complexity. On the other hand,
the performance of the GPU-based LDPC channel decoder
can also be increased by using fast GPU on-chip cached
memory [20]. But the state of the art GPUs like the one
we used (Nvidia Tesla C2070) support cache for the off-chip
global memory. Therefore, it is of little benefit to use on-chip
cached memory in our implementation. Moreover, the further
optimization of LDPC channel decoder on GPU would only
provide a marginal gain on the total processing time, since the
LDPC decoding only amounts to less than 20% of the total
processing time of the MUD receiver in most of operational
SNRs.

VI. CONCLUSION

In this article, we described the system design and the im-
plementation of a MUD receiver using SIC for a satellite return
link based on MF-TDMA. The receiver is able to cope with the
imperfections of cheap user terminals and increase the spectral
efficiency of satellite return links. With the acceleration of
an affordable commercial GPU, our SDR implementation of
the MUD receiver is able to operate in real time. Moreover,
compared to the dedicated hardware implementation, our SDR-
based solution has higher flexibility and lower development
cost.

VII. ACKNOWLEDGEMENTS

The authors were supported by the Space Agency of the
German Aerospace Center and the Federal Ministry of Eco-
nomics and Technology based of on the agreement of the
German Bundestag, under support code 50 YB 0905. The

2 2.5 3 3.5 4 4.5 5 5.5
0

50

100

150

200

250

300

Es/N0 (dB) (User1)

Th
ro

ug
hp

ut
 (K

bp
s)

CPU (float)
GPU (float)
Real time threshold

-0.5 0 0.5 1 1.5 2 2.5 3

Es/N0 (dB) (User2)

Fig. 6. Throughput of the MUD implementation

authors would like to acknowledge Federico Clazzer and Dr.
Svilen Dimitrov for the useful discussions.

REFERENCES

[1] P. Fines, P. Febvre, and E. Christofylaki, “Turbo-code division multiple
access: capacity enhancement of mobile satellite systems using narrow-
band multiuser detection,” in Proc. of 10th International Workshop on
Signal Processing for Space Communications, Rhodes Island, Greece,
Oct. 2008.

[2] F. Basile and G. Mendola, “Satellite hub communication system GPU
based,” in Proc. of GPU Technology Conference, San Jose, CA, USA,
May 2012.

[3] G. Colavolpe, A. Barbieri, and G. Caire, “Algorithms for iterative
decoding in the presence of strong phase noise,” IEEE J. Sel. Areas
Commun., vol. 23, no. 9, pp. 1748–1757, 2005.

[4] F. Lázaro Blasco and F. Rossetto, “On the derivation of optimal partial
successive interference cancellation,” in Proc. of IEEE Globecomm,
Houston, Texas, US, Nov. 2011.

[5] M. Kobayashi, J. Boutros, and G. Gaire, “Successive interference
cancellation with SISO decoding and EM channel estimation,” IEEE
J. Sel. Areas Commun., vol. 19, no. 8, pp. 1450–1460, Aug. 2001.

[6] M. Oerder and H. Meyr, “Digital square and filter timing recovery,”
IEEE Trans. Commun., vol. 36, pp. 605–612, May 1988.

[7] M. Villanti, P. Salmi, and G. E. Corazza, “Differential post detection
integration techniques for robust code acquisition,” IEEE Trans. Com-
mun., vol. 55, no. 11, pp. 2172–2184, Nov. 2007.

[8] D. Rife and R. Boorstyn, “Single tone parameter estimation from
discrete-time observations,” IEEE Trans. Inf. Theory, 1974.

[9] S. Rajagopal, S. Bhashyam, J. R. Cavallaro, and B. Aazhang, “Real-
time algorithms and architectures for multiuser channel estimation
and detection in wireless base-station receivers,” IEEE Trans. Wireless
Commun., vol. 1, no. 3, pp. 468–479, Jul. 2002.

[10] J. Tranquilli, J. Farkas, J. Niedzwiecki, B. Pierce, L. Brothers, and J. De-
bardelaben, “Real time implementation of a multiuser detection enabled
ad-hoc network,” in Proc. of Military Communications Conference, San
Diego, California, USA, Nov. 2008.

[11] I. Seskar and N. Mandayam, “A software radio architecture for linear
multiuser detection,” IEEE J. Sel. Areas Commun., vol. 17, no. 5, pp.
814–823, May 1999.

[12] G. Masera, F. Quaglio, and F. Vacca, “Implementation of a flexible
LDPC decoder,” IEEE Trans. Circuits Syst. II, vol. 54, no. 6, Jun. 2007.

[13] S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and N. Wehn,
“A novel LDPC decoder for DVB-S2 IP,” in Proc. of Design, Automa-
tion and Test in Europe, Nice, France, Apr. 2009.

[14] J. Kim, S. Hyeon, S. Choi, and H. University, “Implementation of an
sdr system using graphics processing unit,” IEEE Commun. Mag., pp.
156–162, Mar. 2010.

[15] Nvidia, “Nvidia CUDA Zone.” [Online]. Available: https://developer.
nvidia.com/category/zone/cuda-zone

[16] M. Wu, Y. Sun, S. Gupta, and J. Cavallaro, “Implementation of a high
throughput soft MIMO detector on GPU,” Journal of Signal Processing
Systems, vol. 64, no. 1, pp. 123–136, Jul. 2011.

[17] G. Falcao, L. Sousa, and V. Silva, “Massively ldpc decoding on
multicore architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 2, pp. 309–322, Feb. 2011.

[18] C. Chang, Y. Chang, M. Huang, and H. B., “Accelerating regular ldpc
code decoders on GPUs,” IEEE J. Sel. Topics Appl. Earth Observ, vol. 4,
no. 3, pp. 653–659, 2011.

[19] G. Wang, M. Wu, Y. Sun, and C. J.R., “A massively parallel implemen-
tation of QC-LDPC decoder on GPU,” in Proc. of IEEE 9th Symposium
on Application Specific Processors, San Diego, California, USA, 2011,
pp. 82–85.

[20] S. Kang and J. Moon, “Parallel LDPC decoder implementation on GPU
based on unbalanced memory coalescing,” in Proc. of IEEE Int. Conf.
on Commun., Ottawa, Canada, Jun. 2012.

[21] Nvidia, “CUDA C Best Practices Guide,” Oct. 2012. [Online].
Available: {http://docs.nvidia.com/cuda/pdf/CUDA C Best Practices
Guide.pdf}

[22] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
U.Linkping, 1996.

[23] S. Lin and D. Costello, Error Control Coding. Prentice Hall, 2004.

