
Implementation of a Multi-User Detector for
Satellite Return Links on a GPU Platform

Francisco Lázaro Blasco, Student Member, IEEE, Chen Tang,

Abstract—Due to the scarcity and high cost of satellite fre-
quency spectrum, it is very important to utilize the available
spectrum as efficiently as possible. The efficient usage of the
spectrum in the satellite return link is a challenging task,
especially if multiple users are present. In previous works Multi-
User Detection (MUD) techniques have been widely studied
to increase the spectral efficiency of the satellite return link.
However, due to the high computational complexity and its
sensitivity to synchronization and channel estimation errors, only
few implementations of MUD for satellite communications exist.
In this paper a novel Graphics Processing Unit (GPU)-based
Software Defined Radio (SDR) implementation of a MUD receiver
for transparent satellite return link is presented, which uses
iterative channel estimation and decoding. The implementation
can cope with the presence of strong phase noise. In addition to its
high flexibility and low cost, with the GPU acceleration our SDR
MUD receiver implementation achieves a decoding throughput of
270 Kbps using a single GPU card.

Keywords—muti-user detection, satellite return link, successive
interference cancellation, software defined radio, GPU

I. INTRODUCTION
Satellite communication systems are a very good solution

when it comes to delivering service to a broad area, since they
do not require the deployment of costly terrestrial infrastruc-
tures. Traditionally, satellite systems have been used to provide
television and radio broadcasting services, which are unidirec-
tional services. However, in the past decade new applications
have emerged, which require a bidirectional communication.
The most prominent example is internet access for rural
areas, where using the satellite service is commonly the only
possibility. Moreover, there is a trend towards interactive appli-
cations in satellite television services. Hence, it is necessary
to provide the user terminals with transmission capabilities
through satellite return links, while still maintaining a low cost.
Such cheap user terminals have a very limited transmission
power and can only transmit with low data rates (at most in
the order of 100 kbps). Moreover, the scarcity of frequency
spectrum drives satellite operators to use higher frequency
bands, where phase noise becomes more problematic for cheap
user terminals with low stability oscillators. Therefore, it is
challenging to provide an efficient spectrum access in satellite
return link in the presence of strong phase noise.

Francisco Lázaro Blasco and Chen Tang are with the
Institute of Communications and Navigation, German Aerospace
Center (DLR), Oberpfaffenhofen, 82234 Wessling, Germany.
Email:{Francisco.LazaroBlasco,Chen.Tang}@dlr.de

The satellite return link can be considered as a multi-
user communication problem. In most of today’s systems, the
multiple access issue is solved by orthogonalization, such as
the case of GSM, in which TDMA is used, or Digital Video
Broadcasting - Return Channel via Satellite (DVB-RCS),
where Multi Frequency TDMA (MF-TDMA) is used. This
means that users are assigned with different resources so that
they do not interfere with each other. In our implementation we
employ MUD techniques to boost the spectral efficiency in a
satellite return link, in which users are assigned with the same
resources and their transmissions interfere. Although there is
an enormous amount of literature in the field of MUD, there
are actually only a few practical implementations for satellite
systems [1] [2]. In [1] an implementation of MUD for the
return link of a satellite system is presented, which is not
designed for the presence of strong phase noise. In [2] a MUD
receiver for spread spectrum Aloha is presented. In contrast to
[1] and [2], our system is designed to operate in the presence
of strong phase noise without employing spreading techniques.
The reasons for the low adoption rate of MUD techniques

are twofold. The first reason is the high computational com-
plexity. The second reason is the sensitivity of MUD tech-
niques to synchronization and channel estimation errors. The
latter is even more problematic, when the channel is time
variant because of phase noise.
Due to the high computational complexity of MUD tech-

niques, implementations are commonly restricted to use pro-
grammable hardware devices, such as Field Programmable
Gate Array (FPGA) or Application Specific Integrated Circuit
(ASIC). However, the development of such hardware devices
is very costly and implementations are not flexible to accom-
modate changes in the communication standards. From the
perspective of economic cost and flexibility, SDR implemen-
tations of the MUD receiver have big advantages compared to
conventional hardware implementations. The software of the
SDR implementation can be easily modified to support new
radio protocols or system requirements. Another advantage of
SDR is its low implementation cost. However, the weak point
of SDR implementations is their low throughput, especially
when complex MUD algorithms have to be implemented
completely in software.
In this paper we present a novel SDR implementation

of the MUD receiver, which uses Successive Interference
Cancellation (SIC), iterative channel estimation and Low
Density Parity Check (LDPC) channel decoding. Although
the algorithms used in the receiver are very complex, the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31011525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

implementation achieves a decoding throughput of 270 kbps
running completely on software on a single GPU. For a two
user uplink where both users employ BPSK modulation and
in the presence of strong phase noise the receiver achieves an
spectral efficiency of 1.1 b/s/Hz.
The article is structured as follows. Section II motivates

why MUD can increase the throughput of a satellite uplink.
Section III describes our system model and MUD receiver
design. Section IV gives a general introduction from the
implementation perspective of our MUD receiver. Then, more
details of the GPU-based implementation of our MUD receiver
are introduced in V. Afterwards, the simulation results of the
Packet Error Rate (PER) and the processing time of our GPU-
based SDR MUD implementation are presented in VI. Finally
Section VII draws the conclusions.

II. A CASE FOR EMPLOYING MUD IN SATELLITE
UPLINKS

In this section we give a short overview of MUD and explain
why it can increase the spectral efficiency of a satellite uplink
compared to TDMA. Fig. 1 shows the achievable rate region
for the uplink AWGN channel with two users [3], where it
has been assumed that the signal to noise ratio of users 1 and
2 are P1/N = 2.51 and P2/N = 1 (corresponds to a power
imbalance of 4 dB). For a given scheme, the achievable rate
region is that which is within the boundary depicted in Fig. 1.
In other words, it is possible that user 1 and 2 communicate
at rates R1 and R2 respectively, if the point (R1, R2) lies in
the achievable region.
Let us first look at the achievable rate region of MUD

whose boundary is the solid line in Fig. 1. When MUD is
used, one would like to operate in the points on the solid
line joining the corner points A and B, since these points
maximize the sum rate (R1 + R2). With MUD any point of
that line is achievable. If one wants to be fair the best choice
would be operating at point A where user 2 gets its maximum
possible rate (1 b/s/Hz in this case) and user 1 still gets a
substantial rate (1.585 b/s/Hz). Let us now look at the dashed
line which gives the achievable rate region for TDMA with
a constraint on the mean transmit power. Using TDMA it is
also possible to operate a point which gives the maximum rate
since the dashed touches the solid line at one point. At this
point the rate of user 1 is close to its maximum rate but the rate
of user 2 is considerable lower with respect to its maximum
rate. Hence, although TDMA can theoretically achieve the sum
rate it does so by assigning the channel to the strongest user
most of the time and the weak users get a very low rate. In
other words, TDMA cannot be fair and provide a high sum
rate at the same time. Moreover, this rate region assumes that
the total transmit power stays the same and hence there is
no constraint on the maximum transmit power. The dashed
line with square markers delimits the achievable rate region
of TDMA when the maximum transmit power is limited to
P1 = 4 and P1 = 1, which is the case of satellite uplinks. If
we consider this constraint, the achievable rates with MUD are
much higher and provide a much better fairness compared to
TDMA. These gains are obtained mainly due to the fact that

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

R1

R
2

A

B

log(1 + P2

N
)

log(1 + P2

P1+N
)

log(1 + P1

N
)log(1 + P1

P2+N
)

MUD
TDMA
TDMA Power Lim

Fig. 1. Achievable rate region for the uplink AWGN channel with two users.

with MUD we can let users transmit always with maximum
power and in the same frequency. In TDMA users need to be
silent when other users are transmitting.
If we would consider FDMA, the achievable rate region

would be delimited by the dashed line without markers, even
in presence of a constraint on the maximum transmit power.
However, using FDMA may not be advisable in a real system
for several reasons. First, one needs to introduce guardbands
in order to prevent interference among neighbouring carriers.
Second, in the presence of strong phase noise decreasing the
symbol rate makes dealing with phase noise more difficult. If
we consider a random walk model for phase noise, the phase
increments between consecutive symbols follow a Gaussian
distribution. For example, if we reduce the symbol rate by a
factor 2 the variance of the phase increments among consecu-
tive symbols doubles. A stronger phase makes synchronization
more difficult.
In the following sections of this paper we give details about

our MUD which allows the system to operate in a point close
to A in Fig. 1, where the weak user gets its maximum possible
rate and the strong user can still communicate at a considerable
rate. We remark that Fig. 1 assumes an AWGN channel without
phase noise. In our implementation, as we will show in later
sections of this paper, BPSK modulation was used and a strong
phase noise was present in the system. The achievable rates in
the presence of phase noise and using BPSK modulation would
actually be lower as shown in Fig. 1. However the aim remains
unchanged, the weak user shall be able to communicate a rate
very close to the maximum it would achieve in the absence of
the strong user.

III. SYSTEM MODEL AND RECEIVER DESIGN
In this paper we focus on a single carrier of a satellite

return link. This could be the case of DVB-RCS which uses
MF-TDMA and divides the bandwidth of the return link
into several carriers and uses TDMA within each carrier.

T F F F F

F F F FTTerminal 1

Terminal 2

Superframe

Time
Training Payload

Time-slot

Fig. 2. Transmission inside one time-slot. The blocks denoted by T represent
the training part and the blocks denoted with F represent payload frames.

We assume the scheduler assigns the same frequency and
time-slot to K user terminals, which are assumed to have
limited transmission power and low transmission data rate, as
introduced in the previous section. Terminals are assumed to
be roughly synchronized. Fig. 2 shows how the transmission
of the two terminals is organized inside one time-slot. In each
time-slot each terminal transmits a super-frame, which consists
of a training part and a payload part. In the training part the
first terminal transmits while the second is silent, then the
second terminal transmits and the first terminal is silent. This
interference free part will be used by the burst demodulator
for detection and synchronization purposes. In the second part
terminals transmit a number of data frames that collide, which
requires MUD to decode.
If only the data part of the time-slot is considered, the

received signal y(t) at time instant t can be expressed as:

y(t) =

K−1∑

k=0

L∑

l=0

hk(t− lTs)xk(l)pk(t− lTs − τk) + n(t) (1)

where K is the number of users, L is the number of symbols
in a frame, hk(t) is the complex channel coefficient for user k
at time instant t, xk(l) is the l-th transmitted symbol from user
k, pk(t) is the transmit pulse shape filter of user k, Ts is the
symbol duration, τk represents the delay of user k with respect
to the start of the frame and n(t) is the complex valued additive
white Gaussian noise. In our case the channel coefficient is
induced by phase noise, hk(t) = |hk|e

jφk(t). |hk| is assumed
to be constant, while the variation of φ(t) can be modelled as
a random-walk (Wiener) process [4]. Under this assumption
the evolution of the channel phase for discrete time instants
can be expressed as:

θk(t− lTs) = θk(l) = θk(l − 1) + Δk(l) (2)

where Δk(l) are i.i.d zero mean real Gaussian random vari-
ables with variance ρ2p. We will assume that the transmitted
symbols xk(l) belong to an M-PSK alphabet. Bit interleaved
coded modulation will be used together with a Soft-Input Soft-
Output (SISO) channel decoder.
The MUD receiver employed is based on SIC [5], as shown

in Fig 3. The reason of choosing SIC is that although it is
not optimal, its computational complexity increases linearly
with the number of system users. SIC is based on a simple
idea: User 1 is decoded treating the interference from the user
2 as Gaussian noise. After decoding user 1, its waveform is
reconstructed and removed from the received signal. If this

Decode User 1

Waveform

Reconstruction

Incoming

signal

+

-

Decode User 2

Waveform

Reconstruction

+

-

)(ty
)(1 ty

)(2 ty

)(ˆ)(ˆ 11 txth

)(ˆ)(ˆ 22 txth

Fig. 3. SIC decoding scheme

reconstruction is perfect, user 2 is now free of interference
and can be decoded. In order to reduce the PER, a multi-stage
SIC can be used [5], where the SIC process is repeated for
several times and each execution of SIC is denoted as a stage.
If the user 1 signal cannot be recovered error free after the
first stage, a second stage is carried out by reconstructing the
signal from user 2 and cancelling it from the received signal
on user 1. User 1 will now have a lower interference and can
hopefully be decoded correctly. This process is repeated until
the maximum number of stages is achieved, or until both users
are decoded correctly. Based on SIC, our simplified case with
K = 2 number of users can be easily extended to support
more user terminals.
SIC is very sensitive to channel estimation errors. In order

to improve the performance of the SIC receiver, an iterative
channel estimation and decoding algorithm is used. The basic
idea of such an algorithm is to use not only pilot symbols
but also data symbols to estimate the channel. In our receiver
the Expectation-Maximization (EM) algorithm is applied as
described in [6], where the E-step corresponds with the channel
decoding and the M-step with the channel estimation. A
simplified block diagram of the EM algorithm is shown in
Fig. 4. Initially a channel estimation is performed using only
pilot symbols. This channel estimation is used to perform soft
demodulation and soft channel decoding. The soft output of
the channel decoder is then fed back to the channel estimator
which performs a channel estimation using pilot symbols and
the loglikelihood values obtained from the channel decoder.
The equations used for the M-step are the following [5]:

ˆ|hk| =

∑L−1
t1=0 Re (x̂∗

k (t1) yk (t1))∑L−1
t1=0 |x̂

2
k (t1) |

(3)

θ̂k (t1) = Arg
t+W∑

t1=t−W

x̂∗

k (l) yk (l) (4)

ĥk (t1) = ˆ|h|ke
jθ̂k(t1) (5)

σ̂2
k =

1

2L

L−1∑

t1=0

|yk (t1)− ĥk (t1) x̂k (t1) |
2 (6)

where yk is the input signal of the single user receiver of user

channel

estimation
incoming

signal
demodulation

channel

decoding

Fig. 4. EM algorithm used for channel estimation

k, which is the received signal minus the reconstructed signal
from the other users. x̂k is the output of the SISO channel
decoder. In order to estimate the channel amplitude ˆ|hk| for
each user and the noise level σ̂2

k, the assumption is made that
these magnitudes stay constant over the duration of the whole
frame L. For the estimation of the channel phase θ̂k (t1) at
discrete time instant t1, the channel phase is assumed to be
constant over a window of 2W + 1 samples centered on t1.
Prior to SIC decoding it is necessary to perform fre-

quency, frame and time synchronization. In order to make
synchronization easier, a training part is introduced in each
superframe, which is free of multiuser interference, see Fig. 2.
Using this training part, it is possible to perform frequency,
frame and timing estimation using single user synchronization
algorithms. In particular, in our implementation the Oerder &
Meyr algorithm [7] is used for time synchronization. Timing
synchronization is not affected by phase noise. However phase
noise does have a negative impact in frequency and frame
synchronization. For the frame synchronization the Villanti et
al. algorithm [8] is used, which was specially developed to
perform frame estimation in the presence of phase uncertainty
due to doppler or phase noise. This algorithm breaks the syn-
chronization sequence into smaller subsequences and performs
correlation of the incoming signal with these subsequences.
Then the metrics obtained are summed up with the correlation.
Frequency estimation is done using the Rife and Boorstyn
algorithm [9]. This algorithm estimates the carrier frequency
by performing a FFT of the received signal. Its performance
is affected by the presence of phase noise, but it achieves the
Cramer-Rao lower bound.

IV. SDR-BASED MUD RECEIVER
Conventionally programmable hardware devices, such as

Digital Signal Processors (DSPs) and FPGAs together with
Radio Frequency (RF) transceiver are used to implement a
SDR system. For instance, the real time implementations of
MUD receiver by using dedicated DSPs and FPGAs were
presented in [10] [11] [12]. A number of dedicated hardware
implementations of LDPC decoders have also been proposed
in the past few years [13] [14]. However, the drawbacks
of high cost, considerable development effort and lack of
flexibility of FPGAs and DSPs restrict the deployment of
SDR technologies [15]. As an example, dedicated hardware-
based LDPC implementations have to start a new design and
development process to adapt to a different coding design,
since the structure of the LDPC decoder changes according
to the parity check matrix.

Host

(CPU)

Device

(GPU)

Host

(CPU)

Device

(GPU)

Serial Code

Parallel Code

Serial Code

Parallel Code

Fig. 5. GPGPU implementation structure

In recent years owing to the tremendous parallel compu-
tational power and very high memory bandwidth, general-
purpose computing on graphics processing unit (GPGPU) has
become an attractive alternative to FPGA and DSP to achieve
high-performance SDR systems. GPUs are originally designed
to optimize the floating-point calculations for image and video
rendering. GPGPU technique utilizes a GPU to perform gen-
eral computations in applications traditionally handled by the
CPU. The implementation of a GPGPU in a conventional
CPU-based system is illustrated in Fig. 5. The parts of the
application that need to be executed serially are implemented
on CPU. The parts that are very computationally intensive and
can be parallelized are deployed on the GPU.
State of the art high-end GPUs consist of thousands of pro-

cessing cores, which can provide over 3 tera-floating operation-
per-second (TFLOP) computing capability [16]. Moreover,
with novel GPGPU architectures, such as Compute Unified
Device Architecture (CUDA) introduced by Nvidia [16], ap-
plications running on a GPUs can be programmed with high-
level C-like languages, which makes it easier to implement and
modify a GPU-driven SDR system. Therefore, due to its high
computing capability, low cost and high flexibility, GPGPU has
become a very promising solution for modern SDR systems.
For instance, many SDR blocks with high computational

complexity and inherent parallelism, such as channel estima-
tion, channel decoding and digital filters can be implemented
on GPU. In [17] a high throughput SDR-based multiple-
input and multiple-output (MIMO) detector is implemented on
GPU. GPU-accelerated LDPC decoder has also been widely
studied [18] [19] [20] [21].
In this work we adopt CUDA to exploit GPU to accelerate

the SDR implementation of our MUD system. The implemen-
tation details of our GPU-accelerated MUD receiver will be
given in the next section.

V. IMPLEMENTATION OF GPU-ACCELERATED MUD
RECEIVER

Based on the receiver design introduced in Sec. III, all
components of our MUD receiver are implemented in software,
except for a reconfigurable hardware for sampling and analog-
to-digital conversion. As some of the algorithms of the MUD
receiver used in our work have very high computational
complexity, we exploit the CUDA programming model to
accelerate our SDR implementation on GPU.

As the first step of a GPU implementation using CUDA,
it is important to assess which algorithms require the most
processing time and also wether these algorithms have a
parallel structure. The processing bottlenecks of our SDR were
the following:
• Channel decoding: In our system, irregular LDPC chan-
nel codes are used. The optimal iterative decoding algo-
rithm, Sum-Product algorithm (SPA) is computationally
slow since it requires computing a hyperbolic tangent. In
order to speed up the decoding the Min-Sum algorithm
[22] was used, which is faster at the cost of a small
Es/N0 degradation (in the order of 0.1 to 0.2 dB).
Nevertheless, the Min-Sum algorithm is still heavy to
be computed in software since it at every iteration
one has to compute the output message at all variable
and check nodes. Luckily, iterative LDPC decoding is
inherently parallel, since the computation of the output
message at one variable node is independent from the
computation of the messages at all other variable nodes,
and the same holds for check nodes. As we will show
in Section VI a parallel implementation of the LDPC
decoder running on a GPU was around 10 times faster
than an implementation running on a CPU.

• Channel estimation: The EM channel estimation we
deployed consists of a filtering operation in the time
domain, as given in Eq. (3), (4) and (5). In our case
channel estimation took a substantial amount of time,
mainly because it was being performed several times
inside the EM loop. Filtering can be implemented in the
frequency domain using FFT which runs very fast on
parallel platforms such as GPU.

• Downsampling and interference cancellation: in our im-
plementation oversampling factor 4 is used. Channel de-
coding and estimation at 1 sample per symbols, however,
other operations such as downsampling and interference
cancellation run on the oversampled waveform which
implies performing more operations. Both downsam-
pling and interference cancellation can be parallelized.

Apart from the computing time spent on these algorithms
one needs to take into account that data transfer between host
(CPU) and device (GPU) memory takes also a substantial
amount of time. The reason behind is that the peak theoret-
ical GPU memory bandwidth is much higher than the peak
bandwidth between host (CPU) memory and device (GPU)
memory. For example, the EM algorithm employed iterates
channel estimation and channel decoding several times, 4 times
in our case. Thus, if there is any memory copy between host
(CPU) and device (GPU) during the EM iterations, such a
data transfer has to be repeated for 4 times. In order to achieve
better processing performance, it is important to minimize data
transfer between host and device [23].
Based on this assessment of our MUD receiver, we decided

to implement all of the components of each single user
receiver together with the interference cancellation on GPU,
as illustrated in Fig. 6. Although some components of the
single user receiver demonstrate little speedup from the GPU
implementation, the benefit of running all components on GPU

Downsampling Interleaving Channel Estimation

Demodulation

DeinterleavingChannel Decoding

Single User Receiver: User2

Single User Receiver: User1

Input symbols

Interference Cancellation

Both user

decoded?

No

Yes

Next stage

Multi-Stage SIC

EM

Iteration

Data transfer

(CPU GPU)

Data transfer

(GPU CPU)

Run on CPU

Run on GPU

Fig. 6. Multi-Stage SIC MUD receiver on GPU

is to minimize the latency of intermediate data transfer between
the host and device memory.

VI. PERFORMANCE MEASUREMENTS
In this section the simulation results in terms of PER and the

processing performance of our GPU-based implementation of
the MUD receiver are presented. These results are compared
with the CPU-based implementation. The specifications of the
devices are given in Tab. I. As introduced before, 2 satellite
terminals are assumed to transmit using the same return link
carrier. We will assume that carriers support a symbol rate
of 62.5 ksymbols/s. The 2 terminals use BPSK modulation.
The results presented in this section correspond to a scenario
in which the power of user 1 is approximately 4 dB higher
than the power of user 2, which is a realistic setting for a
satellite return link in which user 1 could be assumed to be
in the center of a beam and user 2 close to the beam edge.
Both users employ irregular LDPC codes with a blocklength
of 4800 bits, user 1 with rate 2/3 and user 2 with rate 1/2.
A different 63 symbols long Gold sequence is employed as
training sequence by each user.The number of SIC stages is
fixed to 3. The terminals have a phase noise of −60 dBc/Hz
at 10 kHz, which assuming a random-walk Wiener process [4]
and a symbol rate of 62.5 Ksps results in Gaussian i.i.d phase
increments between consecutive symbols with zero mean and
standard deviation 2.29◦. This amount of phase noise can be
regarded as a worst case scenario when very cheap oscillators
are used.
For simplicity the satellite channel was assumed to be

AWGN. In our case this approximation is reasonable for fixed
terminals because the strong phase noise would dominate over
other channel impairments. The performance measurements
were carried using a real transmission and a channel simulator
which was injecting Gaussian noise in the analogue domain.
Fig. 7 shows the PER vs Es/N0 for both user terminals.

We remark that the results presented in this section include the
detection and estimation algorithms. If we look at the PER of

TABLE I. IMPLEMENTATION DEVICES

CPU GPU
Platform Intel Xeon(R) E5620 Nvidia Tesla C2070
Cores 4 (used only one core) 448

Clock rate 2.4GHz 1.15GHz

−3 −2 −1 0 1 2 3 4
10−3

10−2

10−1

100

Es/N0 (dB)

P
E
R

User 1 - MUD
User 2 - MUD
User 2

Fig. 7. PER vs Es/N0. The curves with circle and square markers represent
the PER of user 1 and user 2 in the MUD setting. The red curve with asterisk
markers represents the PER of user 2 for the single user setting (user 1 is not
present).

user 2 we can see how for target PER of 1%, the performance
with and without the presence of user 1 is very similar. When
user 1 is present, user 2 needs to increase its Es/N0 around
0.5 dB compared to the case in which user 1 is absent. Hence,
by increasing the transmit power of user 2 by 0.5 dB we can
let also user 1 communicate at a rate of 2/3. This allows us to
increase the throughput in the satellite uplink using the same
bandwidth.
Let us now look at decoding throughput and processing time

of our implementation. The total processing time of the MUD
implementation is defined as:

Tproc = TDS + TCE + TCD + TIC + Tmisc (7)

which consists of the time for downsampling TDS, channel
estimation TCE, channel decoding TCD, interference cancella-
tion TIC and Tmisc that includes memory operations and the
remaining miscellaneous components of the MUD given in
Fig. 6.
Tab. II shows a comparison of the processing time between

the CPU-based and GPU-based implementations for both user
terminals to decode one frame. The total processing time
decreases as the Es/N0 increases. For high Es/N0, due to
the early termination scheme used at the LDPC decoder, the
channel decoder can skip the remaining decoding iterations and
finish the decoding process as soon as it converges to a valid
codeword. Moreover, for high Es/N0 values, there is a high
probability that both users can already be decoded properly

TABLE II. COMPARISON OF TOTAL PROCESSING TIME OF THE MUD
IMPLEMENTATION.

Es/N0 (dB) TDS(%) TCE(%) TCD(%) TIC(%) Tmisc(%) Tproc(ms)

User 1: 2.14
User 2: -1.83

CPU 4.5 7.8 77.9 7.6 2.2 525
GPU 4.7 15.8 46.2 10.31 23.0 82.81

Speedup factor 5.22 2.6 9.3 4 0.5 5.38

User 1: 3.39
User 2: -0.58

CPU 7.8 11.8 62.0 14.3 4.0 136
GPU 7.2 19.8 21.4 16.7 34.9 27.1

Speedup factor 5.6 3.1 14.9 4.4 0.6 5.0

User 1: 5.14
User 2: 1.17

CPU 16.8 15.4 28.9 25.9 13.0 65.96
GPU 8.5 19.8 11.0 18.2 42.5 21.4

Speedup factor 6.0 2.4 8.1 4.3 0.9 3.0

in the first SIC stage which allows to skip the successive SIC
stages. The processing time consumed by the downsampling
and the interference cancellation stays almost constant with
the Es/N0.
Compared to the CPU-based solution, with the GPU ac-

celeration, the processing time of the MUD receiver can be
significantly reduced. As one can observe in Table II the
channel decoding can be sped up by use of the GPU by
a factor 8.1 to 14.9 depending on the Es/N0. Concretely,
a channel decoding throughput of 2.0 Mbps is achieved for
terminal 1 (code rate 2/3) with Es/N0 = 3.39 dB and 1.9
Mbps for terminal 2 (code rate 1/2) with Es/N0 = −0.58 dB.
Channel estimation is also faster on the GPU as on a CPU by
a factor 2.6 to 3.1 depending on the Es/N0. Downsampling
and interference cancellation are also faster on GPU. However,
if we look at the time spent on miscellaneous operations, it is
higher when using a GPU. The reason is that using a GPU
requires initializing the memory and memory transfer between
CPU and GPU. If the total processing time is considered,
the GPU implementation runs around 5 times faster at an
Es/N0 = 3.39 dB for User 1.
Fig. 8 shows the throughput of the MUD receiver running

on a GPU and on a CPU. It can be observed how the
throughput on a GPU is higher than on a CPU for all the
Es/N0 values. The throughput increases with the Es/N0.
This increase in throughput is mainly due to the fact that the
decoding throughput of the channel decoder increases with the
Es/N0 due to the early termination scheme used. It can also
be observed how for the GPU the throughput seems to saturate
at about 270 kbps.
We would like to remark that the GPU used to obtain this

results was a Nvidia Tesla C2070 which was no longer the
fastest available GPU on the market at the time of writing
this article. For instance, A NVidia Geforce GTX Titan Black,
can perform single precision floating point operations approx-
imately 5 times faster than a Nvidia Tesla C2070. Hence, we
speculate that the decoding throughput of our system would
increase substantially by simply running the SDR on a faster
GPU.

VII. CONCLUSION
In this article, we described the system design and the

implementation of a MUD receiver using SIC for a satellite
return link based on MF-TDMA. The receiver is able to cope
with strong phase noise and increase the spectral efficiency
of satellite return links. Concretely by increasing the transmit
power of the weakest user by 0.5 dB it allows to increase
the spectral efficiency from 0.5 b/s/Hz to 1.16 b/s/Hz (without

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

Es/N0 (dB) (User 1)

T
h
ro

u
g
h
p
u
t

(K
b
p
s)

GPU
CPU

Fig. 8. Throughput vs Es/N0 of the MUD Receiver. The black curve with
x markers represents the throughput of the MUD receiver running on a GPU
and the dashed blue curve represents the throughput of the receiver running
on a CPU.

considering protocol overhead). With the acceleration of an
affordable commercial GPU, our SDR implementation of the
MUD receiver has a decoding throughput of 270 kbps using
one single GPU. This throughput would suffice to decode
three 62.5 kbaud/s carriers with one single GPU unit. Hence,
a receiver platform employing several GPUs could be used
in a satellite hub to manage a bandwidth in order of MHz.
Compared to a dedicated hardware implementation, our SDR-
based solution has higher flexibility and lower development
cost.
Performance measurements have only been provided for

BPSK modulation because the strong phase noise prevented
using higher order modulations. The receiver implementation
actually supports MPSK modulation and can easily be ex-
tended to other modulation types.

VIII. ACKNOWLEDGEMENTS
The authors were supported by the Space Agency of the

German Aerospace Center and the Federal Ministry of Eco-
nomics and Technology based of on the agreement of the
German Bundestag, under support code 50 YB 0905. The
authors would like to acknowledge Dr. Hermann Bischl for
the useful discussions.

REFERENCES
[1] P. Fines, P. Febvre, and E. Christofylaki, “Turbo-code division multiple

access: capacity enhancement of mobile satellite systems using narrow-
band multiuser detection,” in Proc. of 10th International Workshop on
Signal Processing for Space Communications, Rhodes Island, Greece,
Oct. 2008.

[2] F. Basile and G. Mendola, “Satellite hub communication system GPU
based,” in Proc. of GPU Technology Conference, San Jose, CA, USA,
May 2012.

[3] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
New York, NY, USA: Cambridge University Press, 2005.

[4] G. Colavolpe, A. Barbieri, and G. Caire, “Algorithms for iterative
decoding in the presence of strong phase noise,” IEEE J. Sel. Areas
Commun., vol. 23, no. 9, pp. 1748–1757, 2005.

[5] F. Lázaro Blasco and F. Rossetto, “On the derivation of optimal partial
successive interference cancellation,” in Proc. of IEEE Globecomm,
Houston, Texas, US, Nov. 2011.

[6] M. Kobayashi, J. Boutros, and G. Gaire, “Successive interference
cancellation with SISO decoding and EM channel estimation,” IEEE
J. Sel. Areas Commun., vol. 19, no. 8, pp. 1450–1460, Aug. 2001.

[7] M. Oerder and H. Meyr, “Digital square and filter timing recovery,”
IEEE Trans. Commun., vol. 36, pp. 605–612, May 1988.

[8] M. Villanti, P. Salmi, and G. E. Corazza, “Differential post detection
integration techniques for robust code acquisition,” IEEE Trans. Com-
mun., vol. 55, no. 11, pp. 2172–2184, Nov. 2007.

[9] D. Rife and R. Boorstyn, “Single tone parameter estimation from
discrete-time observations,” IEEE Trans. Inf. Theory, 1974.

[10] S. Rajagopal, S. Bhashyam, J. R. Cavallaro, and B. Aazhang, “Real-
time algorithms and architectures for multiuser channel estimation
and detection in wireless base-station receivers,” IEEE Trans. Wireless
Commun., vol. 1, no. 3, pp. 468–479, Jul. 2002.

[11] J. Tranquilli, J. Farkas, J. Niedzwiecki, B. Pierce, L. Brothers, and J. De-
bardelaben, “Real time implementation of a multiuser detection enabled
ad-hoc network,” in Proc. of Military Communications Conference, San
Diego, California, USA, Nov. 2008.

[12] I. Seskar and N. Mandayam, “A software radio architecture for linear
multiuser detection,” IEEE J. Sel. Areas Commun., vol. 17, no. 5, pp.
814–823, May 1999.

[13] G. Masera, F. Quaglio, and F. Vacca, “Implementation of a flexible
LDPC decoder,” IEEE Trans. Circuits Syst. II, vol. 54, no. 6, Jun. 2007.

[14] S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and N. Wehn,
“A novel LDPC decoder for DVB-S2 IP,” in Proc. of Design, Automa-
tion and Test in Europe, Nice, France, Apr. 2009.

[15] J. Kim, S. Hyeon, S. Choi, and H. University, “Implementation of an
sdr system using graphics processing unit,” IEEE Commun. Mag., pp.
156–162, Mar. 2010.

[16] Nvidia, “Nvidia CUDA Zone.” [Online]. Available: https://developer.
nvidia.com/category/zone/cuda-zone

[17] M. Wu, Y. Sun, S. Gupta, and J. Cavallaro, “Implementation of a high
throughput soft MIMO detector on GPU,” Journal of Signal Processing
Systems, vol. 64, no. 1, pp. 123–136, Jul. 2011.

[18] G. Falcao, L. Sousa, and V. Silva, “Massively ldpc decoding on
multicore architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 2, pp. 309–322, Feb. 2011.

[19] C. Chang, Y. Chang, M. Huang, and H. B., “Accelerating regular ldpc
code decoders on GPUs,” IEEE J. Sel. Topics Appl. Earth Observ, vol. 4,
no. 3, pp. 653–659, 2011.

[20] G. Wang, M. Wu, Y. Sun, and C. J.R., “A massively parallel implemen-
tation of QC-LDPC decoder on GPU,” in Proc. of IEEE 9th Symposium
on Application Specific Processors, San Diego, California, USA, 2011,
pp. 82–85.

[21] S. Kang and J. Moon, “Parallel LDPC decoder implementation on GPU
based on unbalanced memory coalescing,” in Proc. of IEEE Int. Conf.
on Commun., Ottawa, Canada, Jun. 2012.

[22] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
U.Linkping, 1996.

[23] Nvidia, “CUDA C Best Practices Guide,” Oct. 2012. [Online].
Available: {http://docs.nvidia.com/cuda/pdf/CUDA C Best Practices
Guide.pdf}

