Improving Powder Flowability by Adding Nanoparticles for Thermochemical Heat Storage with Moving Reaction Bed

C. Roßkopf, M. Haas, M. Linder, A. Wörner

German Aerospace Center (DLR), Stuttgart, Germany

Thermochemical Heat Storage Application & Potential

Application:

- Storage of industrial waste heat
- Reduction of energy generation cost
- Base load capability of renewable energy systems

Potential:

- High storage densities
- Long-term and loss-free storage
- Heat release at any time
- Possibility of heat transformation

Thermochemical Heat Storage **Reaction System**

Reversible Gas-Solid-Reaction:

$$CaO_{(s)} + H_2O_{(g)} \rightleftharpoons Ca(OH)_{2(s)} + 99,5 \text{ kJ/mol}$$

Temperature range ~ 400-700 °C

→ Main advantage: Low price (55-65 €/ ton)

- Poor thermal conductivity and permeability of CaO/Ca(OH)₂
 - → High demand on reactor geometry leads to high costs
 - → Adjustment of reactor to required power
 - → Supply of capacity in cheap tanks
 - → Material flow through the reactor is essential!

Challenge **Poor Powder Properties**

Low thermal conductivity **VS** Poor flowability

Plate heat exchanger

Approaches

→ Pellets unstabile during cycling

→Increasing the roughness of particle surface

Modification of Material Increasing the Roughness of Surface

Extension of Van-der-Waals Eq. :

$$F_{VdW} = \frac{C_H}{6} \left[\frac{R \cdot r}{a^2 (R+r)} + \frac{R^2}{(2a_P)^2 \cdot 2R} \right]$$

→ Increasing of the roughness of the surface and distance between the particles by addition of nano particles

State of the art:

- ¹ Improving powder flowability in bulk and pharmaceutical industries
- ² Combination of nano particle agglomerates with CaO to improve fluidization behavior for CO₂ adsorption

→ Coating of Ca(OH), by nano particles in order to improve flowability is uninvestigated

² Pontiga et. al, Dry fas-solid carbonation in fludized beds of Ca(OH)2 and nanosilica/Ca(OH)2 at ambient temperature and low CO2 pressure, Chemical Engineering Journal, 2013

¹ K.Köpker et al., Application of nano particles, Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Wuerttemberg, 2007

Dry particle coating

Ca(OH)₂ 0,5 - 15% Aerosil 300

Results of Material Modification Effects of Variable Power Inputs

Cycling stability Tests in pilot-scale reactor

Cycling stability After Cycling

→ Calcium silicates lead to

- Reduction of storing capacity
- Hardening of surface structure

Roßkopf et al., *Investigations of Nano Coated CaO/Ca(OH)*₂ *Cycled in Thermochemical Storage*, in preparation

Conclusion & Outlook

- Thermochemical Heat storage based on Ca(OH)₂ demands a flow-through of the reactor
- Improvement of Ca(OH)₂ flowability by adding nano particles at ambient conditions is shown
- Homogeneous flow through thermochemical reactor at room temperature achieved
- Cycling stability is proven over 10 cycles in pilot-scale reactor
- → Flow behaviour during thermochemical reaction will be investigated

Thank you for your attention

Thermodynamic equilibrium

Storage densities

Typical storage densities in kWh/m³:

- Sensible, mortar, ΔT=50K	25 - 30
- Sensible, Water, ΔT=50K	50
- Latent, solid-liquid	50 - 100
- Physical oder chemical sorption	50 - 140
- Thermochemical reaction	100 – 700
- Storage capacity in 1 kg Ca(OH)2	0,373 Wh
- Storage capacity of pilot-scale reactor	~200 kWh/m³

Particle size Pelletizing the material

- Increase of weight force by increasing the particles diameter
- → Problem: Volume change of the material by chemical reaction leads to tensions within the pellet
- → Cracking of the pellet after few cycles in thermochemical reactor

